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Abstract: Biosensors have emerged as efficient devices for monitoring personal fitness 

levels and health profiles as an important part of this technological development. With 

growing concern about students’ health and bodily fitness, educational and health experts as 

well as lawmakers have increasingly emphasized their importance. The goal of the study is to 

explore a real-time system for collecting and analyzing data on students’ physical fitness and 

health utilizing biosensors and advanced algorithms. The study proposed a novel Efficient 

Osprey Optimized Adjustable Random Forest (EOO-ARF) to predict the student health and 

physical fitness level. The student health and physical fitness data was gathered from a 

Kaggle source. To gather information using wearable biosensors to constantly monitor 

crucial health parameters such as blood oxygen levels, body temperature, heart rate, and 

physical activity. The data was pre-processed using the Z-score normalization to enhance the 

quality of the data. The Principal Component Analysis (PCA) was used to extract the features 

from pre-processed data. This model takes the indices of students’ physical health as the 

input parameters and produces an overall health score. EOO is used for optimization, and the 

process aims at selecting the most appropriate features to identify the health metrics most 

relevant to influencing students’ general fitness levels. ARF is applied to predict the health 

and fitness levels of students. The performance of the suggested approach is evaluated in 

terms of F1-score (98.13%), recall (98.2%), and accuracy (98.44%). The integration of 

biosensors with innovative analytic methods could transform the monitoring and 

improvement of the physical fitness and health of students take place in real-time. 

Keywords: student health; physical fitness; biosensors; principal component analysis (PCA); 

efficient osprey optimized adjustable random forest (EOO-ARF) 

1. Introduction 

Physical fitness and health status among students are essential indicators that 

show the level of health and performance of students. The necessity of increasing the 

physical component when considering a person’s learning process has drawn 

attention recently, which led to the interest in methods of monitoring student health 

[1]. Since fitness-related problems can be addressed in educational settings, there is a 

growing interest in studying student’s levels of fitness and health prediction. The 

health histories of students enable teachers, policymakers, and even health 

practitioners to offer more targeted support, ensuring that learners achieve academic 

excellence while exercising a healthy lifestyle [2]. 

Fitness in the physical aspects embraces range of motion, muscle strength, 

stamina, and the proportion of the body, which are enhancements to the general 

health of an individual. Importantly, health is not only the absence of disease but also 

encompasses physical, mental, and social well-being [3]. Students’ health and fitness 

depend on various aspects, including diet, habits of living, regular exercise as well as, 
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and the socio-economic status of the learner. Routine physical checkups and 

traditional health assessments are useful but cannot capture real-time information 

or long-term patterns [4]. Advances in big data analytics and ML have completely 

revolutionized the health and fitness predictions made in this digital era. The 

prediction algorithms are also capable of considering behaviors such as sleep, food, 

and physical activity, and associating them with fitness-related outcomes [5].  

The important aspect of predicting the health and physical condition levels of 

students is that it extends to their well-being [6]. Academic achievement is directly 

correlated with physical fitness because physically active students perform better in 

thinking, memory, and concentration. The prediction models can be used for the 

early detection of health risks that can be useful in controlling life conditions such as 

obesity diseases, heart diseases, and mental health diseases, among others that are on 

the rise in younger generations [7]. 

To forecast the health and degree of physical fitness of students, the research 

suggested a unique Efficient Osprey Optimized Adjustable Random Forest (EOO-

ARF) approach. 

The study is separated into the following sections: related works, methodology, 

results, and conclusion. 

2. Related works 

The BDNN-CSMHPM was proposed in the investigation [8], to assess the 

psychological strain of college students during study tours. The BDNN-CSMHPM 

design fared higher than other approaches as per mental health prediction ratio 

98.9%, accuracy 96.4%, emotion recognition 95.3%, Pearson correlation coefficient 

97.2%, and psychological monitoring 94.3%. An outline for using IoT for the 

tracking of student health was discussed in the research [9]. They applied smart 

healthcare technology that enabled them to monitor students’ health conditions 

continually and capture changes in physiological and behaviors. The results showed 

that the proposed model made it possible to achieve the specified requirements for 

the speed and competitiveness of the model in terms of the students’ health 

identification. A new IoT architecture for monitoring Sports health was introduced 

and established in the investigation [10] which used CNN and Big data analytics 

models for prediction. According to the results obtained, it was evident that the 

suggested strategy outperformed the other assessment measures of accuracy, 

specificity, sensitivity, MCC, and F1 score. Using the wearable smart bracelet 

technology, an investigation [11] suggested 1D-CNN with an LSTM-based assessment 

model to evaluate teenagers’ physical fitness levels. The outcomes suggested the 

viability of running PPG records to forecast young people’s levels of physical fitness. 

The use of DT and the correlation analysis method to analyze the physical 

condition of college students was examined in the research [12]. The findings 

demonstrated that an excellent categorization accuracy rate could be attained by 

training and the accuracy rate could be achieved at 85.033% by improving the depth. 

To increase college students’ knowledge of their physical health and help them to 

establish objectives for their daily activity, an investigation [13] examined how 

students’ vital abilities, weight, height, gender, and other characteristics affected 
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their fitness levels. The outcomes demonstrated that the BP neural network 

forecasting algorithm was capable of accurately predicting students’ performance. 

Using modern medical technology, an IoT-based approach to student health 

management was proposed in research [14] to continuously track students’ health 

indicators and detect biological and behavioral changes. The performance of the 

SVM increased as a result of having the recommended model evaluated, which was a 

very good result for the objectives. 

The effectiveness of various ML approaches in forecasting university students’ 

social, physical, and psychological conditions was evaluated in the research [15]. RF 

algorithm outperformed traditional ML methods with significantly enhanced recall, 

F1 score, accuracy, and precision. The POAANN was proposed in research [16] for 

forecasting student physical health assessments. The suggested POA-ANN obtained 

the values of f1-score (0.965), sensitivity (0.964), accuracy (0.973), and precision 

(0.961). To build a hyper parameter adaptive optimization-based framework for 

predicting physical fitness scores, research [17] employed the GWO to enhance the 

GRU neural network’s variables. The outcomes demonstrated that the GWO-GRU 

model-based forecasting methodology was more reliable and accurate as compared 

to traditional methodologies and formed a reliable tool for the teaching of physical 

education and monitoring college students’ health. 

3. Methodology 

The student health and physical health data was collected from Kaggle for this 

purpose. The data was normalized using the Z-score normalization technique. PCA is 

used to obtain features from the analyzed data that was pre-processed. For the 

purpose of the given study, the new novel Efficient Osprey Optimized Adjustable 

Random Forest (EOO-ARF) approach was introduced. An overview of the 

methodology is depicted in Figure 1 below. 

 

Figure 1. Overview of methodology. 

3.1. Data collection 

The student health and physical fitness data was gathered for the Kaggle 

source [18]. The data collection process for the Student Health and Physical 

Fitness Dataset involves the use of wearable biosensors to track the real-time 

health metrics of students. These sensors are worn by the students throughout the 

day, capturing various physiological indicators such as heart rate, blood oxygen 

levels, body temperature, and physical activity. Data is collected continuously at 
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regular intervals, and each entry is timestamped for temporal analysis. The data is 

supplemented by self-reported values such as stress levels, providing a more holistic 

view of the student’s health. The dataset is designed to capture a comprehensive 

range of health metrics, which are then used for predictive analysis and machine-

learning models aimed at improving student fitness and wellness. This dataset uses 

modern ML approaches to make it easier to analyse and forecast students’ levels of 

fitness and health. Table 1 gives the details about what are all the data collected 

from the students. 

Table 1. Key features of the student health and physical fitness dataset. 

Feature Description 

Student ID Unique identifier for each student to maintain individual records. 

Age Age of the student (15 to 18 years). 

Gender Gender classification (Male, Female, Other). 

Blood Oxygen Level Blood oxygen saturation percentage, a key indicator of respiratory health 

Body Temperature Temperature reading in Celsius, monitoring the student’s health status. 

Heart Rate Heart rate in beats per minute (bpm), reflecting cardiovascular health 

Physical Activity Level Intensity of physical activity (METs, metabolic equivalent tasks). 

Overall Health Score Computed score based on multiple health metrics, reflecting overall health 

Date and Time Timestamp for each data entry, enabling temporal analysis 

Sleep Duration Hours of sleep, affecting recovery and health. 

Hydration Level Daily water intake in liters, important for physical performance 

Stress Level Self-reported stress level on a scale of 1 to 10, indicating mental well-being. 

3.2. Z-score normalization 

A normalizing technique based on the data’s SD and mean is called Z-score 

normalization. This strategy is highly beneficial when the actual maximum and 

minimum values of the information are not known. The following Equation (1) is 

employed. 

𝑊𝑛𝑒𝑤 =
𝑊 − 𝜇

𝜎
=
𝑊 −𝑀𝑒𝑎𝑛(𝑊)

𝑆𝑡𝑑𝐷𝑒𝑣(𝑊)
 (1) 

where, 𝜇—Population mean, 𝑊𝑛𝑒𝑤—New value,𝜎—SD value,𝑊—Old value. 

3.3. Principal component analysis (PCA) 

PCA is a common feature extraction technique based on statistical methods. 

The basic idea is to use linear transformation to transfer the sample data from the 

HDS into the LDS while maintaining the most accurate representation of the original 

information. This allows for the extraction of the primary features of the original 

data and the removal of correlations between the features, or unnecessary data. The 

expansion serves as the foundation for the PCA. 

A popular orthogonal transform used to emphasize differences and decreasing 

correlation is the transform. 𝑤 is represented by the weighted average of 𝑚 

orthogonal basis vectors, assuming that 𝑊 is an 𝑚-dimensional arbitrary variable. 
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𝑤 =∑ 𝛼𝑗𝜑𝑗
𝑚

𝑗=1
 (2) 

𝛼𝑗-Weighting coefficient, 𝜑𝑗-Orthogonal basis vector and 𝜑𝑗provides, 

𝜑𝑗
𝑆𝜑𝑖 = {

1 𝑗 = 𝑖
0 𝑗 ≠ 𝑖

 (3) 

The matrix for Equation (2) is represented as, 

𝑤 = (𝜑1, 𝜑2, … . , 𝜑𝑚) [

𝛼1
𝛼2
⋮
𝛼𝑚

] = Φ𝛼 (4) 

The 𝛼 = (𝛼1, 𝛼2, … . . , 𝛼𝑚)
𝑆, 𝛷 = (𝜑1, 𝜑2, … , 𝜑𝑚) in the calculation are 

orthogonal matrices, corresponding to 𝛷𝑆𝛷 = 1. The subsequent equation may be 

constructed by pre-multiplying Φ𝑆  by two sides of Equation (4), where 𝛷  is an 

orthogonal matrix, 

𝛼 = Φ𝑆 × 𝑤 (5) 

The entire autocorrelation matrix for 𝑤 is assumed to be, 

𝑄 = 𝐹[𝑤 × 𝑤𝑆] (6) 

The following Equation (7) is produced when Equation (4) is submitted into 

Equation (6), 

𝑄 = 𝐹[Φ𝛼𝛼𝑆 ×Φ𝑆] = Φ𝑄[𝛼𝛼𝑆]Φ𝑆 (7) 

The subsequent calculation should be met if there is no relationship between the 

elements of the essential vector 𝛼. 

𝐹[𝛼𝑖𝛼𝑙
𝑆] = {

𝜆𝑖   𝑖 = 𝑙
0   𝑖 ≠ 𝑙

 (8) 

Equation (8) is expressed as a rectangular form. 

𝐹𝐹{𝛼𝛼𝑆} = [
𝜆1
    ⋯

0

0 𝜆𝑚

] = ⋀ (9) 

The following calculation may be derived by substituting Equation (9) into 

Equation (7), 

𝑄 = Φ⋀Φ𝑆 (10) 

The two sides of the equation above are post-multiplied by 𝛷. The subsequent 

equation may be generated since 𝛷 is an orthogonal matrix. 

𝑄Φ = Φ⋀Φ𝑆Φ = Φ⋀ (11) 

That is: 

𝑄𝜑𝑖 = 𝜆𝑖𝜑𝑖(𝑖 = 1,2, … . ,𝑚) (12) 
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According to Equation (12), 𝜆𝑖 is the eigenvalue of the autocorrelation matrix 𝑄, 

and 𝜑𝑖  is the associated eigenvector. Several eigenvalues are orthogonal to the 

associated eigenvectors where 𝑄 is a real pair matrix. 

3.4. Efficient osprey optimized adjustable random forest (EOO-ARF) 

An innovative approach called EOO-ARF was developed to be able to better 

predict student levels of physical fitness and health. This model includes the 

optimization layer inspired by the osprey hunting behavior and utilizes the strength 

of the chosen random forest approach that is widely utilized for regression tasks. 

Within this structure, an optimization technique mimics the effective foraging of 

ospreys and is employed to optimize the random forest’s adjustable parameters, 

including the number of trees, and the maximum depth. This flexibility allows the 

algorithm to the constantly varying datasets, leading to improved relevancy of the 

model on the forecast of the students’ levels of fitness and health. 

EOO-ARF can help to determine the general health condition of students by 

combining various variables like biometric characteristics, food habits, and the level 

of exercise. Ensemble learning using random forest avoids overfitting and ensures 

the strength of the decision-making process. The reliability and effectiveness of the 

model provide a basis for application by educational organizations in promoting 

improved levels of health, including student’s quality of life as well as academic 

performance. 

3.4.1. Adjustable random forest 

The RF method improves the prediction accuracy of the decision tree node 

splitting technique by optimizing an adaptive parameter selection procedure. 

Different decision trees will result from choosing different node-splitting strategies 

for the same data set due to the various features. The result indicates that random 

forest prediction demonstrates varying levels of efficiency. To create a new splitting 

rule for selecting and partitioning node characteristics, it is recommended that, after 

the decision tree is constructed, the best feature for dividing the nodes be identified 

and the node-splitting method be expressed as a linear combination. 

The 𝐺𝑖𝑛𝑖 index and information gain, derived by dividing the sample set 𝐶 by 

features 𝑏, are displayed using the node splitting equation. 

𝐺𝑎𝑖𝑛(𝐶, 𝑏) = 𝐸𝑛𝑡(𝐶) −∑
|𝐶𝑢|

|𝐶|
𝐸𝑛𝑡(𝐶𝑢)

𝑈

𝑢=1

 (13) 

𝐺𝑖𝑛𝑖(𝐶, 𝑏) = ∑
|𝐶𝑢|

|𝐶|
𝐺𝑖𝑛𝑖(𝐶𝑢)

𝑈

𝑢=1

 (14) 

where 𝐶𝑢  denotes all the samples 𝐶 that have a𝑏𝑢  value on the feature 𝑏  and are 

located in the 𝑢 branch node. 

𝐸𝑛𝑡(𝐶) = −∑𝑜𝑙𝑙𝑜𝑔2𝑜𝑙

|𝑧|

𝑙=1

 (15) 
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𝐺𝑖𝑛𝑖(𝐶) = − ∑ 𝑜𝑙𝑜𝑙′ = 1−∑𝑜𝑙2

|𝑧|

𝑙=1

|𝑧|

𝑙=1𝑙′≠𝑙

 (16) 

The following Equation (17) is the combination of the node splitting equation 

and the adaptive parameter-choosing procedure, which should be used to target the 

greater purity of the data set following separation. 

𝐺 = 𝑚𝑖𝑛
𝛼,𝛽∈𝑄

𝐸{𝐶, 𝑏} = 𝛼𝐺𝑖𝑛𝑖(𝐶, 𝑏) − 𝛽𝐺𝑎𝑖𝑛(𝐶, 𝑏) 

s. 𝑡. {
𝛼 + 𝛽 = 1
0 ≤ 𝛼, 𝛽 ≤ 1

 
 

(17) 

The weight coefficient of feature splitting is represented as 𝛼, 𝛽. In this stage, 𝐺 

has a very low value. The best combination of parameters is obtained by using the 

adaptive parameter-choosing technique. This indicates the best node division 

conditions to enhance the prediction. 

Performance is evaluated using the accuracy rate and the prediction error rate. 

Equation (18) defines the prediction error rate for sample 𝐶. 

𝐹(𝑒; 𝐶) =
1

𝑛
∑𝐽𝐽(𝑒(𝑤𝑗) ≠ 𝑧𝑗)

𝑛

𝑗=1

 (18) 

Equation (19) defines the accuracy rate, 

𝑎𝑐𝑐(𝑒; 𝐶)
1

𝑛
∑𝐽𝐽(𝑒(𝑤𝑗) = 𝑧𝑗) = 1 − 𝐹(𝑒; 𝐶)

𝑛

𝑗=1

 (19) 

3.4.2. Efficient osprey optimization algorithm 

To enhance accuracy in predicting models regarding students’ health and fitness, 

a new innovative approach called the EOO algorithm was developed. Based on the 

hunting tactics of ospreys, the EOOA can identify optimal parameters and patterns, 

thereby improving precision in health assessments and providing personalized 

workout recommendations for students. 

Osprey optimization algorithm 

The Osprey Optimization Algorithm (OOA) approach may be used to emulate 

Osprey behavior. This hunting strategy assists the osprey in locating its prey, hunting 

it, and then putting the prey where it is to be eaten. A sample osprey behavior is used 

to exemplify the proposed OOA approach which is subdivided into two processes 

namely exploitation and exploration. 

The OOA approach is a population-based technique that uses a repetition-based 

process to provide suitable solutions based on the population members’ ability to 

explore the problem-solving area. The significance of the problem variable is 

determined by every osprey in the OOA population based on its position in the SS. 

The problem is formally expressed utilizing vectors, and each osprey represents a 

possible solution. All ospreys comprise the OOA population, which may be 

simulated using Equation (20). At the beginning of the OOA application, the starting 

point in the SS is arbitrarily initialized using Equation (21). 
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𝑊 =

[
 
 
 
 
𝑊1

⋮
𝑊𝑗
⋮
𝑊𝑀]

 
 
 
 

𝑀×𝑛

=

[
 
 
 
 
𝑊1,1

⋮
𝑊𝑗,1
⋮

𝑊𝑀,1

⋯
⋱
⋯
⋰
⋯

𝑊1,𝑖

⋮
𝑊𝑗,𝑖
⋮

𝑊𝑀,𝑖

⋯
⋰
⋯
⋱
⋯

𝑊1,𝑛

⋮
𝑊𝑗,𝑛
⋮

𝑊𝑀,𝑛]
 
 
 
 

𝑀×𝑛

 (20) 

𝑊𝑗,𝑖 = 𝑘𝑎𝑖 + 𝑞𝑗,𝑖. (𝑣𝑎𝑖 − 𝑘𝑎𝑖) (21) 

where,𝑀—Number of ospreys, 𝑊𝑗,𝑖-𝑖
𝑡ℎ size (Problem-related variables), 𝑊—Osprey 

population matrix, 𝑛—Number of variable problems, and 𝑊𝑗-𝑗
𝑡ℎosprey.𝑘𝑎𝑖—Lower 

bound,𝑞𝑗,𝑖—Random value between 0 and 1, and 𝑣𝑎𝑖—Upper bound. 

According to Equation (22), a vector may be used to indicate the assessed 

values for the problem’s OF. 

𝐸 =

[
 
 
 
 
𝐸1
⋮
𝐸𝑗
⋮
𝐸𝑀]
 
 
 
 

𝑀×𝑛

=

[
 
 
 
 
𝐸(𝑊1)
⋮

𝐸(𝑊𝑗)

⋮
𝐸(𝑊𝑀)]

 
 
 
 

𝑀×𝑘

 (22) 

The OF value for the 𝑗𝑡ℎ osprey is represented by 𝐸𝑗, whereas 𝐸 is a vector of 

OF values. The assessed value for the OF is the primary factor used to measure the 

quality of possible solutions. As a result, the greatest value obtained for the OF 

represents the ideal candidate solution or the ideal member, and the worst value 

discovered for the OF represents the ideal candidate solution or the worst member. 

The ideal solution candidate should be modified in conjunction with the current 

locations in the SS, which are altered with each iteration. 

Exploration stage 

Ospreys can find fish underwater due to their outstanding hunting skills and 

sharp vision. They find the fish and then go into the water to seek and attack it. The 

first stage of osprey population regeneration in the OOA has been examined using 

models of osprey behavior in nature. When osprey locations are greatly modified in 

the SS by simulating attacks on fish, the OOA’s power exploration in identifying 

optimum locations and escapes from optimal locations is enhanced. The OOA model 

describes each underwater fish as an additional osprey’s location in the SS, with 

every osprey having a greater OF value. The fish composition for every osprey was 

determined using Equation (23). 

𝐹𝑃𝑗 = {𝑊𝑗|𝑙 ∈ {1,2, …… ,𝑀} ∧ 𝐸𝑙 < 𝐸𝑗 ∪ {𝑊𝑏𝑒𝑠𝑡} (23) 

𝑊𝑗,𝑖
𝑂𝐽 = 𝑤𝑗,𝑖 + 𝑞𝑗,𝑖. (𝑆𝐹𝑗,𝑖 − 𝐽𝑗,𝑖. 𝑤𝑗,𝑖) (24) 

𝑊𝑗,𝑖
𝑂𝐽 =

{
 

 𝑊𝑗,𝑖
𝑂𝐽, 𝑘𝑎𝑖 ≤ 𝑊𝑗,𝑖

𝑂𝐽 ≤ 𝑣𝑎𝑖

𝑘𝑎𝑖,         𝑊𝑗,𝑖
𝑂𝐽 < 𝑘𝑎𝑖

𝑣𝑎𝑖 , 𝑊𝑗,𝑖
𝑂𝐽 > 𝑘𝑎𝑖

 (25) 
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𝑊𝑗 = {
𝑊𝑗

𝑂𝐽
, 𝐸𝑗

𝑂𝐽
< 𝐸𝑗

𝑊𝑗, 𝑒𝑙𝑠𝑒
 (26) 

where, 𝐹𝑃𝑗—Collection of fish locations for the 𝑗𝑡ℎ osprey, and 𝑊𝑏𝑒𝑠𝑡—Best osprey 

solution.  

When the osprey randomly finds one of these fish, it attacks. The relevant 

osprey’s modified position is determined using Equation (24) by simulating its 

approach to the fish. This new location replaces the osprey’s initial one if it increases 

the value of the OF, based on Equation (26). Based on the original OOA stage, it 

𝑊𝑗
𝑂𝐽

represents the prey’s new position.𝑞𝑗,𝑖. Represents a random integer in the range 

[0, 1], 𝐽𝑗,𝑖 represents an arbitrary number from the set {1, 2}, and 𝑊𝑗,𝑖
𝑂𝐽

 represents its 

𝑖 size. The fish chosen for the 𝑗𝑡ℎ prey is 𝑆𝐹𝑗, the OF value is 𝐸𝑗
𝑂𝐽

, and the 𝑖 size is 

𝑆𝐹𝑗,𝑖. 

Exploitation stage 

The initial step in simulating osprey behavior in OOA is to utilize equation (27) 

to determine a new random location for each population member suitable for fish 

eating. The relevant osprey’s prior location is replaced by the new location, if the OF 

value remains constant at this new location, based on Equation (28). 

𝑊𝑗,𝑖
𝑂2 = 𝑤𝑗,𝑖 +

𝑘𝑎𝑖 + 𝑞. (𝑣𝑎𝑖 − 𝑘𝑎𝑖)

𝑠
; 𝑗 = 1,2, … . . , 𝑀; 𝑖 = 1,2, … . , 𝑛; 𝑠 = 1,2, … . , 𝑆 (27) 

𝑊𝑗,𝑖
𝑂2 = {

𝑊𝑗,𝑖
𝑂2, 𝑘𝑎𝑖 ≤ 𝑊𝑗,𝑖

𝑂2 ≤ 𝑣𝑎𝑖

𝑘𝑎𝑖,    𝑊𝑗,𝑖
𝑂2 < 𝑘𝑎𝑖

𝑣𝑎𝑖,    𝑊𝑗,𝑖
𝑂2 > 𝑘𝑎𝑖

 (28) 

𝑊𝑗 = {
𝑊𝑗,𝑖

𝑂2,   𝐸𝑗
𝑂2 < 𝐸𝑗

𝑊𝑗 ,   𝑒𝑙𝑠𝑒
 (29) 

where 𝑊𝑗
𝑂2 represents the prey’s new location according to the subsequent OOA 

stage.  𝐸𝑗 —Fish was chosen for the 𝑗𝑡ℎ  prey,𝑊𝑗,𝑖
𝑂2 - 𝑖𝑡ℎ size, 𝑞—Random integer 

between 0 and 1,𝐸𝑗
𝑂2—Value of the OF,𝑆—Total number of iterations, and 𝑠—

Method’s iteration counter. 

Lévy flight optimization 

A random walk is a random event where waves or particles follow arbitrary 

paths. Random walks were initially used to explain how particles moved through 

fluids (Brownian motion). Lévy flight is a specific type of general random walk 

where a heavy-tailed probability distribution describes the stride length throughout 

the walk. They can characterize all scale-invariant random procedures. 

𝐾(𝑊𝑖) ≈ |𝑊𝑖|
1−𝛼 (30) 

where, 1 < 𝛼 ≤ 2—Exponential power, and 𝑊𝑖—Flight length. 

Equation (31) defines the probability density of the Lévy stable procedure in 

integral form. 
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𝑒𝐾(𝑤; 𝛼, 𝛾) =
1

𝜋
∫ exp(−𝛾𝑟𝛼) cos(𝑟𝑤)𝑑𝑟

∞

0

 (31) 

Where 𝛾 chooses the scale units and 𝛼 is the distribution index, which regulates 

the process’s scale characteristics. Especially in certain instances may integrals in 

equation (30) be solved analytically. A Gaussian distribution is represented when 

𝛼 = 2, while a Cauchy distribution is represented when 𝛼 = 1. When extremely 

large values, in Equation (32), the series expansion approach often needs to be used 

to solve the integral in Equation (30), 

𝑒𝐾(𝑤; 𝛼, 𝛾) =
𝛾Γ(1+ 𝛼) sin (

𝛼𝜋

2
)

𝜋𝑊(1+𝛼)
, 𝑤 → ∞ (32) 

Where, Γ—Gamma function.  

To produce stable Lévy procedures for actual values of the index distribution (𝛼) 

between 0.3 and 1.99, a precise and rapid approach was suggested. The Lévy 

distribution in Equation (33) serves as the foundation for the random number 

generation technique. 

𝐿𝑒𝑣𝑦(𝛼) = 0.05 ×
𝑤

|𝑧|1/𝛼
 (33) 

𝑤 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑤
2 ) (34) 

𝑧 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑧
2) (35) 

𝜎𝑤 = [
Γ(1+ 𝛼) sin (

𝛼𝜋

2
)

Γ (
(1+𝛼)

2
)𝛼2

(𝛼−1)

2

]

1/𝛼

𝑎𝑛𝑑  𝜎𝑤 = 1    𝛼 = 1.5 (36) 

When two commonly distributed variables, 𝑤 𝑎𝑛𝑑 𝑧, have SDs of 𝜎𝑤 𝑎𝑛𝑑 𝜎𝑧, 

respectively. 

Efficient osprey optimization (EOO) 

The OOA is an efficient solution for unimodal and low-dimensional 

optimization issues. However, OOA’s results are not very excellent when it comes to 

multimodal and high-dimensional optimization challenges. The EOO method is 

suggested to enhance exploration, OOA convergence, exploitation, and local optimal 

avoidance. The suggested approach integrates Lévy flight optimization with the 

OOA. By optimizing Lévy flight, search agent variability could be maximized, 

ensuring that the technique can effectively travel the search area and minimize local 

avoidance. The Lévy flying algorithm can find the global optimum solution in a 

significant, complicated SS. Its ability to integrate extensive research with the 

exploitation of appealing tracts is the basis for development. Moreover, ranging from 

discrete optimization to continuous optimization problems with complexity 

parameters can be solved using the Lévy flight method. Lévy flying paths are 

relevant to the optimization of the transition from the OOA exploration phase to the 

exploitation phase. Furthermore, the Lévy flight approach’s adaptation to OOA 

improves the capacity to resolve difficult parameter issues. Consequently, following 
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the position change, the Osprey’s location is updated using the Lévy flying path. By 

updating Equation (27) and adding Equation (33) to Equation (27), the suggested 

EOO technique is a variant of the OOA approach, as shown in the following 

Equation (37), 

𝑊𝑗,𝑖
𝑂2 = 𝑤𝑗,𝑖

𝐿𝑒𝑣𝑦(𝛼)

𝑠
; 𝑗 = 1,2, … . ,𝑀; 𝑖 = 1,2, … . , 𝑛; 𝑠 = 1,2, … . . , 𝑆 (37) 

4. Result 

The suggested approach was tested on the Windows 11 laptop that has an Intel 

i5 9th Gen CPU, 16 GB of RAM, and an environment configured for Python 3.10.1. 

Key libraries used included TensorFlow and Keras for machine learning (ML), 

NumPy and Pandas for data processing, and Matplotlib for visualization. scikit-learn 

was utilized for model evaluation, while OpenCV supported any necessary computer 

vision tasks. The setup ensured efficient model training and real-time predictions. 

The effectiveness of the suggested strategy is compared to conventional 

approaches, including Categorical Boosting (CatBoost) [19], and Crayfish 

Optimization-driven Adaptive-Weighted AdaBoost (CO-AWAdaBoost) [20]. 

Figure 2 presents a breakdown of student health and fitness metrics based on 

bio-sensor data, categorizing students into three groups: Healthy, At Risk, and 

Unhealthy. Most students fall under the healthy category across various parameters. 

For heart rate, 70% of students are healthy, while 20% are at risk and 10% are 

unhealthy. In terms of step count, 60% are healthy, 25% are at risk, and 15% are 

unhealthy. Regarding physical activity, 75% of students are healthy, with 15% at risk 

and 10% unhealthy. Sleep duration shows that 65% of students are healthy, 20% are 

at risk, and 15% are unhealthy. Overall, while the majority of students show good 

health and fitness, there is a notable percentage who fall into the at-risk or unhealthy 

categories, particularly in terms of step count, physical activity, and sleep duration. 

This highlights the need for targeted interventions to promote physical activity, 

improve sleep habits, and address cardiovascular health. 

 

Figure 2. Output of student health and physical fitness metrics. 
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Figure 3 compares the F1 scores of three methods for predicting healthy 

students based on health and fitness data. The F1-score is an important metric that 

balances precision (accuracy of positive predictions) and recall (ability to identify all 

true positives), reflecting how well a model reduces false positives and false 

negatives. The F1-score of the CatBoost method reached 84.3% and shows 

satisfaction, as there is scope for improvement. The F1-score values of the CO-

AWAdaBoost method increased significantly to 97.88%, which means that the 

precision and recall values are balanced with each other. F1-score values of EOO-

ARF [Proposed] improved over the others and obtained the highest value as 98.13%. 

This outcome demonstrated that the EOO-ARF method was indeed a good predictor 

of proper, reliable forecasts and hence the most effective model in determining 

student health in this study. 

 

Figure 3. F1-score comparison between the proposed method and existing methods. 

The accuracy measures the percentage of the total number of forecasts with the 

correct predictions. It supports the identification of fitness patterns and accurate 

focused health action since it provides an assessment of the effectiveness of the 

model. The CatBoost model achieves an accuracy of 86.7%, while CO-

AWAdaBoost shows a slightly higher accuracy of 98.25%. However, the model 

proposed in this article—EOO-ARF—has been an outperformer with an accuracy of 

98.44%. The higher accuracy suggests that the EOO-ARF approach happens to be a 

better alternative than traditional models and would be able to capture some of the 

complex health data patterns. This makes it a good option for monitoring fitness and 

addressing targeted health interventions. Therefore, the EOO-ARF model presents an 

applicative potential in terms of a real-world application where exact health 

predictions are necessary to improve wellness outcomes (Figure 4). 
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Figure 4. Accuracy performance in prediction comparison between existing and 

proposed methods. 

As Figure 5 shows, the recall rates of the three methods used in the study are 

presented: CatBoost, CO-AWAdaBoost, and the proposed EOO-ARF approach. 

Recall represents the ratio of correctly classified true-positive instances, which is a 

performance metric, and describes how well the model can detect students requiring 

fitness increase or health improvements. This figure clarifies that the EOO-ARF 

method proposed here is more efficient than the conventional methods by providing 

a higher value of recall, which is 98.2% compared to CatBoost of 82% and CO-

AWAdaBoost with a value of 97.86%. Therefore, this means that the EOO-ARF 

method is more efficient in identifying students who need health interventions. The 

proposed method has a higher recall value, showing the number of relevant cases 

captured is much more, which in health-related prediction tasks is a valuable signal. 

It visually supports this improvement by showing the recall performance of the 

different models. Table 2 shows that the Overall performance of EOO-ARF method 

proves the most effective in terms of accurately predicting students’ health needs. 

 

Figure 5. Recall the comparison within the proposed method and existing methods. 
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Table 2. Overall result performance. 

Methods Accuracy (%) Recall (%) F1-score (%) 

CatBoost [19] 86.7% 82% 84.3% 

CO-AWAdaBoost [20] 98.25% 97.86% 97.88% 

EOO-ARF [Proposed] 98.44% 98.2% 98.13% 

5. Discussion 

The current algorithms, including CatBoost and CO-AWAdaBoost, have 

shortcomings that the EOO-ARF addresses. Though efficient, CatBoost finds 

difficulty with handling multidimensional health data and tends to have low recall, 

missing some at-risk students. Though CO-AWAdaBoost is better than CatBoost, it 

leaves room for improvement between precision and recall, sometimes 

misclassifying the health status. Moreover, both of the above methods are vulnerable 

to overfitting and not adaptive to fluctuations in real-time health data. The suggested 

EOO-ARF model reduces the limitations as it uses an improved selection process in 

features and a more sophisticated hybrid approach that improves accuracy and recall. 

This model adaptively learns to effectively capture the intricate patterns in the health 

and fitness data, making sure there are even more at-risk students identified and 

interventions that are more accurately targeted. The high F1-score of the proposed 

EOO-ARF method will also ensure that the balance between precision and recall is 

optimized, reducing errors and providing more reliable predictions than the existing 

methods. This makes the proposed model a better tool for real-time health 

monitoring and intervention planning. 

6. Conclusion 

In the last few decades, growing awareness about students’ health and physical 

fitness has drawn the attention of educators, health professionals, and governments 

toward it. In this study, a new EOO-ARF approach is proposed for the prediction of 

students’ health and their level of physical activity. Student health and physical 

fitness data have been collected from the Kaggle source. The efficiency of the 

proposed technique is validated through F1-score (98.13%), accuracy (98.44%), and 

recall (98.2%). These experiments clearly show that the EOO-ARF approach does 

better in the case of health and fitness prediction than the traditional approaches such 

as CatBoost and CO-AWAdaBoost. Further, it can be noticed that a higher F1 score 

was associated with better precision and recall, while accuracy and recall rates 

portrayed the potential of the model to well identify those students who need health 

interventions. Overall, the EOO-ARF model proves to be a reliable tool for 

monitoring student health, with significant potential for real-world applications in 

fitness tracking and targeted health interventions. There are several limitations in the 

self-reported information, lack of continuous monitoring, and possible sample biases 

minimized generalization due to geographical differences between samples, and 

possible external influences on students’ health and fitness levels. Th description of 

abbreviation as shown in Table A1 (Appendix). Future studies ought to include self-

reporting biases, longitudinal research, and other sample methods using different 
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samples while improving on generalizability across areas, or even controlling the 

external factors that may intervene in the health and fitness results. 
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Appendix 

Table A1. Description of abbreviations. 

1D One dimensional  IoT Internet of Things  

OF Objective function BP Backpropagation 

BDNN-CSMHPM 
Biosensor-based and deep neural network-based 

College Student Mental Health Prediction Model  
POAANN 

Puzzle Optimization Algorithm with Artificial Neural 

Network  

GWO Grey Wolf optimistic  HDS High-dimensional space  

CNN Convolutional neural networks  DT Decision Tree 

PPG Photoplethysmography  SS Search space  

SVM Support vector machine MCC Matthews correlation coefficient 

LDS Low-dimensional space LSTM Long Short-Term Memory  

ML Machine learning  GRU Gated Recurrent Unit  

SD Standard deviation   

 


