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Abstract: Access to mental health services remains a global challenge, particularly for 

marginalized groups. This research endeavors to enhance the accessibility of mental health 

services by integrating media communication technology with biomechanical biosensors, 

including electrodermal activity sensors and heart rate monitors. The proposed approach 

leverages mobile communication platforms and wearable biosensors for real-time 

biomechanical parameter monitoring (including heart rate, blood pressure, respiratory rate, 

body temperature, and galvanic skin response, etc.) and remote interventions. Judge the 

impact on the brain and neuroendocrine system through the changes in biomechanical 

indicators, and use this as a basis for judging mental health. The objective is to develop a 

telehealth model that merges bio-data-driven alerts with communication tools to deliver 

prompt psychological support. This study underscores the deficiencies of traditional health 

systems in ensuring comprehensive mental health monitoring and emphasizes the potential of 

media communication technologies as scalable and accessible tools for early interventions in 

underserved areas, and also emphasizes the relationship between the physiological indicators 

measured by biosensors and the biomechanical mechanisms of mental health. Despite the 

existence of online methods for detecting mental health issues, early detection remains 

problematic. This research presents a framework for integrating pre-processed biosignal data 

with user-generated content to facilitate proactive monitoring. To address the limitations of 

conventional classifiers, the study introduces a Fitness-Dependent Optimizer-tuned Upgraded 

Decision Tree (FDO-UDT) model, which enhances the early identification of at-risk 

individuals using personalized thresholds and real-time event detection based on 

biomechanical data, it is helpful to provide an early warning before the clinical symptoms of 

mental health problems occur. The results indicate that automated alerts triggered by 

biomechanical sensor thresholds improve responsiveness and engagement, ensuring timely 

interventions for those in need. The FDO-UDT model achieves performance metrics of 

90.21% accuracy, 98.01% recall rate, and 86.38% precision, outperforming traditional 

methods. The study concludes that the integration of media communication technologies with 

biomechanical sensors offers scalable solutions to improve the delivery of mental health 

services, especially for rural and underserved populations. 
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Fitness-Dependent Optimizer Tuning Upgraded Decision Tree (FDO-UDT); biosignal 

monitoring 

1. Introduction 

The two components of the human condition are mental as well as physical 

health. Physical health is a state of the body, taking into account anything from the 

degree of activity to the lack of sickness. Everyone’s psychological and social well-

being is positively correlated with their psychological state [1]. Although the concept 

varies according to the culture, it often relates to the satisfaction of life, the 
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achievement of objectives and potential, the capacity to handle stress and sorrow, 

and the final makes sense to establish connections with people on several levels. 

Health is defined as a state of entire psychological, social, and bodily wellness, 

rather than the absence of a sickness or disease [2]. Physically healthy people have 

traits like balanced strength in their muscles, a high degree of cardiac fitness, a low 

heart rate at rest, a high level of lipoprotein cholesterol, and happiness at work and 

home. People in good psychological condition can make changes, feel important and 

worthwhile, and have a strong sense of self-worth [3]. They largely rely on their 

initiative to address their problems and make their own decisions; they feel safe both 

individually and collectively. This demonstrates that others are understood. They are 

capable of tolerating dissatisfaction in their day-to-day activities, they respect other 

people, they have a feeling of duty, and they behave emotionally maturely [4]. A 

person in good psychological condition is capable of managing daily stress and 

achieving their objectives. Mental health can be impacted by a variety of factors, 

including anxiety, trauma, and sleep issues [5]. Although a person cannot prevent 

mental disease from happening, they can safeguard their mental well-being all of 

their life. To create a wireless body area network that can support contemporary 

mental health treatment, they want to investigate biosensors [6]. Several 

physiological illnesses, disabilities, and abnormalities are growing more common as 

the world’s population ages, with major societal and economic consequences. Both 

the people and the country’s healthcare institutions will benefit from the prevention 

and proper management of such illnesses [7]. Benefits from intelligent information 

and communication technologies include enhancing life quality and assisting seniors 

and other populations with illnesses that are chronic or acute in leading lives that are 

independent. A component of an active biological system that can be a digestive 

enzyme, an antibody, or something similar, is positioned on top of a transducer in 

biosensors, which are comprehensive tests that can identify the presence of a specific 

analytic [8]. There is a constant supply of medical information that can yield 

valuable insights into an individual’s mental health when incorporated into an 

intelligent analytics system. Smart biosensors in health use the latest developments 

in wireless technology and micro-technology to gather and send data, and when 

combined with sensors, can improve therapy and surveillance [9]. For instance, 

wearable biosensors are particularly useful in preventing and controlling health risks 

and offer monitoring of vital signs for all age groups, including youngsters, seniors, 

and hospitalized. Smart biological sensors can help those who need mental health 

services or care, and also individuals who experience a progressive loss of their 

mental, physical, and other abilities as they age [10]. Finally, biosensors facilitate 

advanced, economical, and effective medical detection applications [11]. Using 

cutting-edge and micro-technological advancements, biosensors offer efficient and 

real-time monitoring, particularly in health services [12].  

Aim of the study 

The objective is to develop a telehealth technology approach that offers instant 

psychological support through communication tools with bio-data-driven 

notifications. By employing personalized criteria and real-time event detection, the 
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study suggests an FDO-UDT algorithm to address the shortcomings of traditional 

classifications and enhance the early identification of people at risk. 

2. Related work  

The potential and challenges associated with using intelligent biological sensors 

for medical purposes were discussed in the article, along with several cutting-edge 

approaches to using smart biosensors in the setting [13]. The initial project was an 

infrastructure and the second described an Internet of Things, or IoT setting with 

sensors and devices that might be used to make customized suggestions to increase 

worker productivity and workplace safety. The final result was a sophisticated non-

invasive bio-signal monitoring system that might identify possible pathological 

problems in infants while they were asleep. 

The wireless sensing techniques for psychological surveillance were thoroughly 

reviewed in the article [14]. It examined recently released research that used 

noninvasive sensing techniques to forecast mental health conditions. It also 

identified the current problems with contactless sensing techniques and suggested 

ways to address them in future studies. 

They provided a thorough analysis of psychological services and their 

significance to human living in the research [15]. An investigation and discussion of 

various biosensors for monitoring psychological wellness have been conducted. 

Additionally, they plan to create a Wireless Body Area Network (WBAN) prototype 

that would assist mental health practitioners in managing clients, guaranteeing their 

confidentiality, and averting unintentional fatalities. 

Following the approach, they worked on sensors intended to assess the physical 

surroundings, interactions between people, and physiological processes in the study 

[16]. Smart technologies for healthcare and monitoring of people could be designed 

and implemented using a wide range of sensors, both natural and man-made, 

including those found in plants. To clear up, automated systems and sensing 

technology could be used to improve AN called Anxiety Neurosis care and lessen 

the workload for medical personnel.  

The mechanism of disease of mental illnesses with high rates of disabilities, 

morbidity, and deaths was described in the article in a way that implied biomarkers 

[17]. From advancements in psychological biosensors with biometric data 

components, generating principles, and flexible information to the development of 

Big Data networks used to share difficult psychological indicators and cases, it was 

expected that mental health services could be progressively improved from several 

angles. 

The assessment techniques have been divided into five subdivisions of 

biological sensors that include eyesight, EEG denoted Electroencephalogram signal, 

Electrooculogram called EOG signal, and multi-signal. The study examined the use 

of biosensors in the diagnosis of mental illnesses [18]. There was also discussion of a 

potential use in healthcare diagnosis. 

The scientific proof supporting the application of medical equipment to 

facilitate early mental disease diagnosis and prevention was explained in the article 

[19]. In disadvantaged areas, connected health systems and patients could receive 
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seamless, coordinated, and ongoing care by utilizing technological innovations to 

improve mental healthcare treatments. A summary of several health technology 

applications, as well as the benefits and drawbacks of technological acceptance and 

scale-up, were provided in the research. A thorough analysis of the most recent 

advancements, patterns, and studies in wearable biosensor devices for health 

surveillance was the goal of the research [20]. Paper the requirement of 

multifunctional sensing technologies for immediate action for health tracking 

systems while dealing with technological concerns such as implementations, 

flexibility, and satisfaction among users was discussed [21]. Similarly, the need for 

portable and handheld biosensor solutions for guaranteeing reliability and user 

acceptance was focused on dealing with the technical barriers and improved 

performance [22]. Particular attention was paid to the difficulties multi-parameter 

physiological measurement systems encounter in their technical construction.  

3. Proposed system 

This section details the dataset employed in the study and describes the 

proposed FDO-UDT method, highlighting its relevance to the research objectives. It 

successfully lays the basis for comprehending the methodology that was used in the 

study.  

3.1. Dataset 

The data gathering of this study involved monitoring the participant’s pulse rate 

variability (PRV) derived from photoplethysmography (PPG) plays, an important 

role in detecting mental stress. It is the alternative solution to heart rate variability 

(HRV)obtained from the electrocardiography (ECG). Mental stress is a normal 

reaction to daily activity. However, both acute and chronic stress can lead to 

psychological and cardiovascular problems. HRV is thought to be a good indication 

of both mental stress and health. The conventional method for determining HRV is 

to use ECG as the time difference that separates successive R peaks. The PPG is 

regarded as an option for detecting mental stress by measuring PRV, the time gap 

between two consecutive PPG peaks. This study included 27 healthy bachelor 

students fifteen males and twelve females with an average age of 21 ± 2 years to 

gather PRV data. Data is collected from the subject’s earlobes using a highly 

responsive, affordable, low-powered PPG sensor that is RoHS-exempt the data was 

recorded from the earlobes. The simulated technique included two phases at the 

beginning and throughout the entire Stroop challenge. During the beginning phase, 

every student is asked to sit in an acceptable spot in the classroom during campus 

hours, with the sensor attached to their earlobe. The individuals are then asked to 

write down their colored terms. During the Stroop test stage, the participants were 

engaged with an Android operating system app to induce cognitive class. The dataset 

was sourced from an open-access platform on Kaggle, which was used to feed the 

FDO-UDT contributing to its improved ability to detect the mental health with 

superior performances [23].  

Integrating sensors with telehealth 

Sensors that can be worn have made major advances in detecting physiologic 
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parameters for telehealth. Biosensors, which measure heart rate, have a huge 

capacity for illness identification. Biosensors will be connected with the 

telecommuting platform via Application Programming Interfaces (APIs). The 

teletherapy platform may generate alerts that notify the medical professional and 

offer specific treatments, such as exercises for breathing, to assist the user in 

efficiently managing their physiological condition. 

• APIs for monitoring psychological wellness: APIs can be used to track mental 

health information such as mood, anxiety, and sleep behaviors. These APIs 

enable people to track their psychological health and communicate the results 

with medical professionals.  

• APIs for connecting mental health services: There are APIs that allow users to 

access psychological resources like treatment and therapy. These APIs can help 

people connect with medical professionals and obtain the treatment they 

require.  

3.2. Using FDO-UDT to improve early detection of at-risk people 

The suggested method integrates the FDO and UDT model with real-time 

biosensor data and media communication technologies to enhance psychological 

health service delivery. The FDO-UDT model employs a hybrid approach, utilizing 

optimization techniques to personalize thresholds for bio signal alerts, enabling 

accurate identification of at-risk individuals. This model processes electrodermal 

activity and heart rate data, leveraging machine learning (ML) algorithms to detect 

significant changes indicative of psychological distress.  

3.2.1. UDT 

Using examples of weighted data, the method creates UDT structures. 𝑆 =

{𝑗1,  𝑗2, … ., 𝑗𝑚}  is a set of 𝑚  training examples, assuming that have it. These 

examples belong to a group of classes, 𝐷 = {𝐷1,  𝐷2, … … ,  𝐷𝑙}. The crisp instances 

of a class, where each of them has a complete weight allocated to a single class. The 

weighted situations, in which every instance’s weight is divided across different 

classes. In other words, the strength of each instance 𝑗’s participation in class 𝐷𝑖 and 

∑ 𝛿𝐷𝑖(𝑗)𝑙
𝑖=1 = 1 is represented by its weight, 𝛿𝐷𝑖(𝑗). The weighted examples are now 

to be used in the application of the data concept. To leverage the UDT method to 

improve the accuracy of identifying individuals at risk for psychological health 

issues by effectively utilizing weighted biosensor data, thus enhancing the overall 

monitoring and intervention framework. This is how the likelihood of class 𝐷𝑖 might 

be stated.  

𝑜̂𝑖(𝑆) =
∑ 𝛿𝐷𝑖(𝑗)𝑗∈𝑆

|𝑆|
 (1) 

The total amount contributed by each of the training cases to class 𝐷𝑖 is shown 

by the numerator in Equation (1). Observe that ∑ 𝛿𝐷𝑖(𝑗)𝑗∈𝑆 = |𝐷𝑖(𝑆)|in the case of 

sharp categories. The objective is to utilize the contributions of each training case, 

considering their weights, to enhance the identification of individuals at risk for 

psychological health issues. By adapting Equation (1) to account for these weighted 

contributions, the model aims to improve the accuracy of classifying at-risk 
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individuals based on biosensor data. Using Equation (1) has an impact when taking 

the weighted classes into account. In this instance, each class’s trained example’s 

contributions will be considered. Consequently, in the following way shown in 

Equation (2).  

𝑂(𝑆) = (𝑜1(𝑆) =
∑ 𝛿𝐷1(𝑗)𝑗∈𝑆

|𝑆|
, … … . . , 𝑜̂𝑙(𝑆) =

∑ 𝛿𝐷𝑙(𝑗)𝑗∈𝑆

|𝑆|
) (2) 

The complexity of 𝑂̂(𝑆), and the data that this distribution conveys, can be 

written in the form of Equation (3).  

𝐼𝑛𝑓𝑜𝑊 𝐷𝑇 (𝑂̂(𝑆)) = − ∑ 𝑜̂𝑖(𝑆) × 𝑙𝑜𝑔2(𝑜̂𝑖(𝑆))

𝑙

𝑖=1

 (3) 

This is the expression for the details of 𝑆 based on attribute A, which contains 𝑛 

values in Equation (4).  

𝐼𝑛𝑓𝑜𝑊 𝐷𝑇 ∗ (𝐵, 𝑆) = ∑
|𝑆𝑘|

|𝑆|
𝐼𝑛𝑓𝑜 (𝑂̂(𝑆𝑘))

𝑛

𝑘=1

 (4) 

The following is how the information gain is expressed as Equation (5).  

𝐺𝑎𝑖𝑛𝑊 𝐷𝑇(𝐵, 𝑆) = 𝐼𝑛𝑓𝑜𝑊 𝐷𝑇(𝑆) − 𝐼𝑛𝑓𝑜𝑊 𝐷𝑇(𝐵, 𝑆) (5) 

The following Equation (6) is the expression for the gain proportion, which 

serves as the selection criteria. 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝑊 𝐷𝑇(𝐵, 𝑆) =
𝐺𝑎𝑖𝑛𝑊 𝐷𝑇(𝐵, 𝑆)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐵, 𝑆)
 (6) 

The method is not to be mistaken with the fuzzy decision tree model a 

collection of overlapping subspaces makes up a fuzzy decision tree. This is done by 

fuzzily dividing a node into two overlapped subdivisions that contain objects using 

an individually linear discriminator function. Certain items are solely given to the 

left replacement, some to the right, and others to both. In line with such a concept, a 

test instance could connect to several terminal nodes. A defuzzification approach is 

used to aggregate the output estimates of these terminal nodes to get the test 

instance’s final projected participation. The method, in comparison, uses the 

traditional DT model, which assigns a certain class to every test example. In contrast, 

the study employs a traditional DT model that assigns a specific class to every test 

example to enhance the classification accuracy for individuals at risk of 

psychological health issues.  

3.2.2. FDO 

FDO is dynamic, has a rapid convergence percentage, and can solve linear 

issues. To improve psychological health by biosensors and communication 

technology allowing for real-time monitoring and early intervention for individuals 

at risk. FDO consists of the points that are listed below. A randomly selected 

collection of scout bees is started in the field of search space, 𝑊𝑙(𝑙 = 1,2,3, … … 𝑚). 

The scout honey bees are haphazardly looking for an improved residence. When a 

better position is discovered, the old one is abandoned.  
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Consequently, the algorithm identifies a new optimal solution at each place. 

This capability is crucial for detecting physiological signals indicative of 

psychological distress, thereby enabling timely support for users. However, the 

present forward path will return to its previous direction in search of the optimum 

answer if it does not yield any optimum alternative. As they hunt for the best 

response, the scout bees add pace to their present location and instant, which might 

be displayed in the following Equation (7). 

𝑊𝑙,𝑠+1 = 𝑊𝑙 + 𝑂 (7) 

where 𝑊 stands for the scout bees, 𝐿 for their current location, 𝑠 for their repetition, 

and 𝑂 for their direction and forward momentum pace. The speed is determined by a 

parameter called fitness weight (FW). The pace’s growth, however, is completely 

arbitrary. The expression for the FW is in Equation (8). The FDO method utilizes 

biosensor data to guide the scout bees’ movements, optimizing the monitoring of 

psychological health and enabling timely support for at-risk individuals.  

𝐹𝑊 = |
𝑊𝐿,𝑠,𝑒

∗

𝑊𝑙,𝑠,𝑒
| − 𝛾 (8) 

The fitness value for the present resolution is represented by 𝑊𝐿,𝑠,𝑒
∗ , the 

weighting factor that controls the FW, and the value of the fitness functional for the 

entire optimal solution is indicated by 𝑊𝑙,𝑠,𝑒 . If 1 indicates a strong rate of 

convergence, and if 0 indicates doesn’t impact the calculation above. For a stable 

search, is typically 0 in many situations. This condition is problematic, though. 

Depending on it. The spectrum of [0, 1] is where the FW must reside. If the values of 

𝑊𝐿,𝑠,𝑒
∗ , and 𝑊𝑙,𝑠,𝑒are equal, then FW will be 1. FW’s value will be 0 when 𝑊𝑙,𝑠,𝑒 is 

zero. Equations (9) and (10), is essential to maintain an optimal FW to ensure 

effective guidance of the biosensor-based monitoring, facilitating timely 

interventions for at-risk individuals. Applying the following guidelines 

prevent 𝑠 𝑊𝐿,𝑠,𝑒
∗ = 0 , Wherein is an arbitrary number between −1 and 1. The 

following Table 1 displays the hyperparameters for the proposed method.  

𝑂 = 𝛼𝑊𝐿,𝑠,𝑒:  𝐼𝑓 𝑊𝐹 = 0,   𝑂𝑅   𝑊𝐹 = 0,   𝑂𝑅    𝑊𝑙,𝑠,𝑒 = 0 (9) 

𝑂 = {
𝑊𝐹(𝑊𝑙,𝑠,𝑒 − 𝑊𝑙,𝑠,𝑒

∗ ) − 1;  𝐼𝑓 𝑊𝐹 < 1 𝐴𝑁𝐷 𝑊𝐹 > 0 𝐴𝑁𝐷 𝛼 < 0

𝑊𝐹(𝑊𝑙,𝑠,𝑒 − 𝑊𝑙,𝑠,𝑒
∗ ) − 1;  𝐼𝑓 𝑊𝐹 < 1 𝐴𝑁𝐷 𝑊𝐹 > 0 𝐴𝑁𝐷 𝛼 ≤ 0

} (10) 

Table 1. Hyper parameters of FDO-UDT. 

Hyperparameter Description Range 

Population Size (m)  Number of scout bees in the search space  50−100 

Max Iterations (s)  Maximum number of optimization iterations  100−500 

Fitness Weight (FW)  Controls momentum and convergence  [0,1]  

Threshold Value  Personalized threshold for biosignal alerts  0.01−0.1  

Direction (o)  Forward momentum of Scout bees  −1 to +1  

Learning Rate (∝) Regulates parameter updates in the decision tree  0.01−0.1  
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Table 1. (Continued). 

Hyperparameter Description Range 

Decision Tree Depth  Maximum depth of the decision tree 5−15 

Minimum Split Size  The minimum number of samples required to split the anode  2−10 

Gain Ratio Threshold  Threshold for selecting the optimal split in UDT  0.1−0.9  

Biosignal Sampling Rate Frequency of collecting data from biosensors  1Hz−100Hz  

Optimization Convergence  Convergence rate of FDO algorithm <0.001 (error margin)  

By combining these biosensors with mobile communication platforms, the 

method facilitates immediate data transmission and remote intervention capabilities. 

Additionally, user-generated content is incorporated to enrich the contextual 

understanding of each individual’s psychological state. Automated alerts triggered 

by the FDO-UDT model ensure timely responses, increasing engagement and 

responsiveness from healthcare providers. This hybrid framework not only addresses 

the limitations of traditional health systems but also promotes scalable and accessible 

psychological support for underserved populations. Ultimately, it aims to create a 

proactive monitoring system that significantly improves early intervention efforts in 

mental health care. Algorithm 1 shows the proposed method FDO-UDT.  

Algorithm 1 FDO-UDT 

1: 𝑖𝑚𝑝𝑜𝑟𝑡 𝑛𝑢𝑚𝑝𝑦 𝑎𝑠 𝑛𝑝 
2: 𝐹𝐷𝑂 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
3: 𝑑𝑒𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡(𝑊_𝑠𝑡𝑎𝑟, 𝑊, 𝛾): 
4: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑏𝑠((𝑊_𝑠𝑡𝑎𝑟 / 𝑊)  −  𝛾) 
5: 𝑆𝑐𝑜𝑢𝑡 𝑏𝑒𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 
6: 𝑑𝑒𝑓 𝑠𝑐𝑜𝑢𝑡_𝑏𝑒𝑒_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑊_𝑙, 𝑂): 
7: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑊_𝑙 +  𝑂 
8: 𝑈𝐷𝑇 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 
9: 𝑑𝑒𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑆, 𝐷): 
10: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =  {} 
11: 𝐹𝑜𝑟 𝑑 𝑖𝑛 𝐷: 
12: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑑]  =  𝑠𝑢𝑚(𝛿_𝐷𝑖(𝑗) 𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑆) / 𝑙𝑒𝑛(𝑆) 
13: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 
14: 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
15: 𝑑𝑒𝑓 𝑖𝑛𝑓𝑜_𝑔𝑎𝑖𝑛(𝑆, 𝐵): 
16: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑓𝑜(𝑆)  −  𝑖𝑛𝑓𝑜(𝐵, 𝑆) 
17: 𝑑𝑒𝑓 𝑖𝑛𝑓𝑜(𝑆): 
18: 𝑝𝑟𝑜𝑏 =  𝑛𝑝. 𝑎𝑟𝑟𝑎𝑦([𝑜_ℎ𝑎𝑡_𝑖(𝑆)  ×  𝑛𝑝. 𝑙𝑜𝑔2(𝑜_ℎ𝑎𝑡_𝑖(𝑆)) 𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑙𝑒𝑛(𝑆))]) 
19: 𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑠𝑢𝑚(𝑝𝑟𝑜𝑏) 
20: 𝑀𝑎𝑖𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 
21: 𝑖𝑓 __𝑛𝑎𝑚𝑒__  ==  "__𝑚𝑎𝑖𝑛__": 
22: 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
23: 𝑆 =  [𝑗1, 𝑗2, . . . , 𝑗𝑚]   
24: 𝐷 =  [𝐷1, 𝐷2, . . . , 𝐷𝑙]  
25: 𝑊_𝑠𝑡𝑎𝑟 =  𝑛𝑝. 𝑅𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑()   
26: 𝑊 =  𝑛𝑝. 𝑅𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑() 
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Algorithm 1 (Continued) 

27: 𝛾 =  1.0 
28: 𝑂 =  𝑛𝑝. 𝑅𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑()   
29: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 
30: 𝐹𝑊 =  𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡(𝑊_𝑠𝑡𝑎𝑟, 𝑊, 𝛾) 
31: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑐𝑜𝑢𝑡 𝑏𝑒𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
32: 𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑠𝑐𝑜𝑢𝑡_𝑏𝑒𝑒_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑊, 𝑂) 
33: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 
34: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑆, 𝐷) 

4. Experimental result  

The result section efficiently describes the experimental setup and comparison 

phase using the performance metrics for the study of psychological healthcare.  

4.1. Experimental setup  

Table 2 presents a clear and structured overview of the experimental setup 

including the types of programming language, processor, libraries, memory, and 

implementation system used in the proposed method. This organized format 

facilitates easy reference and understanding of the implementation process, ensuring 

efficient execution of the method.  

Table 2. Experimental setup. 

𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐲 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 

Programming Language Python 3. x 

Libraries Required numpy, pandas, sci − kit − learn, matplotlib, deep, scipy, seaborn 

Operating System Windows, macOS 

Processor 
Minimum: Intel Core i5/AMD Ryzen 5 

Recommended: Intel Core i7/AMD Ryzen 7 

RAM 
Minimum: 8 GB 

Recommended: 16 GB  

Storage Minimum: 2 GB free space 

Python Environment Jupyter Notebook/Anaconda/Vs Code 

4.2. Comparison phase  

The approach that is suggested is contrasted with the existing Gradient boosting 

and the method of Random Forest denoted by RF based on performance standards 

including accuracy, recall, and precision [24, 25]. It highlights the advantages of the 

proposed method, presenting its greater ability to effectively identify at-risk 

individuals and improve psychological health service delivery.  

Evaluation metrics  

Accuracy: The likelihood of correct classification for mental health is referred 

to as accuracy, which is defined in Equation (11).  

Accuracy =
TN + TP 

TN + FP + TP + FN 
× 100% (11) 
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• True-negative (TN) refers to the number of clean signals correctly identified as 

clean.  

• True-positive or TP: Hidden signals are those that are appropriately identified 

among all those transmitted.  

• FN called False-negative is the proportion of those signals mislabeled as clean.  

• False positive defined as FP refers to the number of instances where the 

classifier incorrectly labels the communication as a mental illness. 

Figure 1 illustrates that the suggested method FDO-UDT achieves higher 

accuracy at 90.21% compared to the other existing methods gradient boosting [24] 

and RF [25] which are 88.80% and 83.23% which displays the FDO-UDT is more 

effective in accurately predicting mental health risks and robust detection. 

 

Figure 1. Comparative analysis of FDO-UDT accuracy with existing approaches. 

Precision: It is defined in Equation (12), as the number of accurately detected 

positive instances among all expected positive results. This method is beneficial 

when false positives are significant. It plays a crucial role in the context of the 

study’s objective, as high precision ensures that the alerts generated for 

psychological distress are reliable, reducing the likelihood of unnecessary 

interventions.  

Precision =
TP

TP + FP
 (12) 

Figure 2 displays the evaluation of the metric precision. The existing gradient 

boosting methods and RF get lower values of 84.21% and 78.02%, respectively. In 

contrast, the proposed method FDO-UDT performs better, demonstrating a precision 

of 86.38% in making precise predictions reinforcing its potential for improved 

accuracy.  
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Figure 2. FDO-UDT precision outcome with existing approaches. 

Recall: This metric measures the proportion of accurately detected positive 

instances among all positive instances. When false negatives are prohibitive. The 

model indicates its effectiveness in accurately identifying at-risk individuals, 

ensuring that those who need immediate psychological support are promptly detected 

and assisted. The following Equation (13) is used to compute recall.  

Recall =  
TP 

TP + FN 
 (13) 

Figure 3 describes the performance metric recall, indicating that FDO-UDT 

achieves greater values of recall of 98.01% than the other existing methods RF [25], 

and gradient boosting [24] which are 89.87% and 96.97% it indicating the accurate 

instances identification in mental health in large data by minimizing the possibilities 

of incorrect estimations. In comparison, the existing methods, gradient boosting and 

RF show lower recall rates of 79.66% and 83.53% respectively. The following Table 

3 shows the performance of the proposed FDO-UDT with the existing methods. 

According to the comparison, the method performed greater than the other methods.  

 

Figure 3. Performance evaluation of the metric recall. 

Table 3. Value of the metrics. 

Methods Accuracy (%) Precision (%) Recall (%) 

Gradient Boosting [24] 88.80 84.21 96.97 

RF [25] 83.23 78.02 89.87 

FDD-UDT [Proposed] 90.21 86.38 98.01 
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5. Discussion 

The suggested FDO-UDT method demonstrates superior performance 

compared to existing methods such as Gradient Boosting and RF. It outperformed 

the traditional methods in terms of recall, accuracy, and precision demonstrating its 

enhanced ability to detect psychological factors. The gradient Bosting model with 

effective but still it struggles with higher misclassification rates due to its reliance on 

fixed constraints making it less adaptable to fluctuations in data. RF though more 

reliable does not match the broader optimization capabilities of FDO-UDT. 

Incorporating FDO-UDT significantly improves all key metrics delivered in its 

ability to identify at-risk individuals with greater reliability. This flexibility allows 

for better detection and timely interventions making FDO-UDT a more robust and 

effective solution for enhancing health service, particularly in remote and limited 

areas. Overall, this method is highly encouraged for its ability to integrate into 

fitness-dependent optimization which enhances the adaptability and early 

identification leveraging the dynamic threshold conditions that are important 

considerations for telemedical services. 

6. Conclusion 

The purpose is to develop a telehealth model that uses bio-data-driven alerts and 

means of communication to provide instant psychological aid. This study 

emphasizes the limitations of traditional healthcare systems in offering 

comprehensive mental wellness monitoring, and underlines the limitations of 

traditional healthcare systems in providing comprehensive mental wellness 

monitoring, highlighting the need for communication through media technologies to 

be adaptable and accessible instruments for early treatments in marginalized 

communities. Although existing internet technologies can assist diagnose 

psychological health disorders, early diagnosis is a significant challenge. This study 

proposes a system for combining pre-processed biosignal data with user-generated 

material to enable proactive monitoring. To overcome the limitations of conventional 

classifiers, the paper offers an FDO-UDT framework that uses specific thresholds 

and real-time detection of events to enhance the early identification of at-risk people. 

The findings showed that automated warnings based on sensor parameters improve 

awareness and engagement criteria, resulting in prompt action for persons in need. 

FDO-UDT outperforms standard approaches in terms of accuracy (90.21%), recall 

(98.01%), and precision (86.38%). The study finds that media communication tools, 

when integrated with biosensors, provide scalable alternatives for improving 

psychological health treatment delivery by accurate and timely identification of 

individual risk, particularly among rural and underserved groups. The study is 

limited by potential challenges in data privacy, integration issues with existing 

telehealth platforms, and reliance on wearable biosensors that may not be accessible 

to all users. Further research can explore advanced machine learning models for 

improved prediction accuracy, wider adoption of affordable biosensors, and 

integration with diverse healthcare systems to enhance scalability.  
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