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Abstract: Food microbiological detection is an important part of food safety management. 

Understanding the behavior and characteristics of microorganisms at the cellular and 

molecular level can enhance the detection process. To quickly and effectively detect food 

microorganisms, a rapid microorganisms detection method based on biotechnology and 

computer vision is proposed. Firstly, food bacterial strains are cultivated based on 

biotechnology and sample data is prepared. At the cellular level, this involves understanding 

the growth kinetics and metabolic processes of the microorganisms. Secondly, a 

microorganisms classification detection model is proposed based on residual neural networks, 

and transfer learning and attention mechanisms are introduced to optimize the model. By 

mimicking the way cells and molecules interact and signal, these techniques can help the 

model better recognize and classify different microbial species. Considering the problem of 

insufficient detection of large-scale complex scenes, an improved object detection model is 

proposed, which introduces a lightweight model to replace the backbone feature network and 

uses deep separation convolution to replace ordinary convolution, thereby raising the training 

accuracy of the model. In the classification model experiment, the research model shows 

better model loss performance and microorganisms detection accuracy in both low-density 

and high-density microbial scenarios. In the analysis of object detection models, compared to 

other models, the research model has smaller losses. In large-scale scenes and multi-feature 

large-scale scenes, the research model has losses of 0.12 and 3.56, respectively, which are 

better than other models. In addition, in common microorganisms detection, the high 

accuracy of 99.75% for detecting Escherichia coli indicates the model's proficiency in 

recognizing the specific cellular and molecular characteristics of this microorganism, 

providing significant technical references for ensuring food safety and efficient 

microorganism detection from a cellular and molecular biomechanics perspective. 

Keywords: biotechnology; computer vision; residual neural network; detection model; 

attention mechanism; cellular and molecular level 

1. Introduction 

Food safety issues are a hot and key concern for people, and food safety issues 

caused by microbial contamination have received widespread attention from society. 

At present, common harmful microorganisms in food include Escherichia coli, 

Salmonella, mold, etc. Harmful microorganisms can lead to the risk of food 

poisoning, death, and even cancer in humans [1]. Therefore, in recent years, 

strengthening microbial detection in food has been the key to ensuring food safety. 

Currently, there are many methods for microorganisms detection, including 

microbial culture method, biological color labeling method, etc. [2]. These aspects 

have problems such as low detection efficiency, small detection range, and high 

detection cost in practical applications. In recent years, computer vision technology 
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has made rapid progress, and through more advanced image recognition systems, it 

can quickly identify and determine the type of target, which has become an 

important development point in food microbiology detection technology [3]. To 

solve the problems of low efficiency and poor detection effect of traditional 

microbial detection technology, a rapid detection method of food microorganisms 

based on biotechnology and computer vision technology was proposed. There are 

two innovations in the research technology. One is based on biotechnology, which 

collects and makes microbial experimental samples, and combines computer vision 

technology for data training to ensure the reliability of the technology. At the same 

time, the transfer learning strategy, target detection algorithm and other technologies 

are introduced to enhance the image feature analysis, so as to further improve the 

effect of the technology in microbial recognition. This study provides an important 

technical reference for food safety management and efficient microbial detection. 

The research is structured into four parts. The part 1 illustrates common 

microorganisms detection technologies and computer vision technologies, and 

discusses their applications in the field of food safety. The part 2 is to analyze food 

microorganisms, prepare microbial samples, and construct detection models based 

on the scale of microorganisms. The part 3 is to apply the mentioned technology to 

specific scenarios and verify the practical application effects of the two 

microorganisms detection models in food detection. The part 4 summarizes and 

analyzes the entire text, and elaborates on the improvement direction of the research. 

2. Related work 

In recent years, food health issues have attracted people's attention, and more 

and more scholars are conducting research on food microbiological testing. Xing et 

al. [4] conducted research on food detection and introduced typical methods for 

pathogen capture, isolation, and detection to improve detection efficiency. Then, the 

key applications of rapid microorganisms detection based on microfluidic biosensors 

were introduced in detail, achieving the capture, recognition, and counting of 

bacteria. Comparing this technology with traditional food microbiology detection 

techniques, the research technology has higher sensitivity and detection effectiveness, 

and is suitable for more food safety detection scenarios. Xiao et al. [5] studied a 

color fluorescence synthesis detection technique to improve the detection efficiency 

of microorganisms. This technology could detect microorganisms in the food 

environment through probes, effectively identifying the degree of food spoilage and 

safety effects. Finally, this technology was compared with traditional food 

microbiology detection techniques, and compared to other technologies, the accuracy 

of the studied technology was higher and the detection effect was more outstanding. 

Guo et al. [6] found that with the development of the globalized economy, food 

pollution has become increasingly severe. To quickly and effectively detect food 

safety, research is being conducted on the detection of food microorganisms based 

on traditional microbiological techniques. A novel microorganisms detection 

technique using surface enhanced Raman spectroscopy was adopted and tested in 

different foods. The results showed that this technology could effectively detect food 

and aquatic organisms, and had good application prospects. 



Molecular & Cellular Biomechanics 2025, 9(1), 609.  

3 

With the continual advancement of computer vision technology, advanced and 

efficient intelligent microorganisms detection technology has been broadly utilized 

in the field of food safety. Yang et al. [7] found that traditional food microorganisms 

testing techniques cannot detect multiple types of food. A highly efficient 

microorganisms detection technology based on computer vision was proposed in this 

study. This technology utilized a pathogen identification system using a paper color 

array to identify and analyze pathogens in food. The color change numbers between 

different pathogens were input into a neural network system, and deep learning was 

used to identify and test different food microorganisms. Through model training, 

compared to traditional microorganisms detection techniques, the overall 

effectiveness of the research technology was more outstanding. Zhang et al. [8] 

raised a deep learning detection model with computer vision, which can quickly 

detect microorganisms through microscopic imaging systems by training various 

microorganisms, bacteria, parasites, and fungi. Compared with traditional 

microorganisms techniques, research techniques had better overall effectiveness and 

higher detection efficiency. Firouz et al. [9] found that traditional microorganisms 

detection techniques had low efficiency and limited adaptability to various scenarios, 

which cannot meet the requirements of agricultural food safety testing. So, 

combining computer vision technology, a deep learning food safety detection 

technology was proposed. This technology analyzed and detected food safety by 

detecting defects in food samples and classifying image data. Finally, the technology 

was applied to specific agricultural product safety testing processes, and it had 

excellent detection results. Finally, Martín et al. [10] proposed a novel method for 

counting bacteria and yeast in microbial biological products using digital image 

processing. A database method in Python language that utilizes basic digital image 

processing operations such as contour detection, morphological operations, and 

statistical analysis was proposed to achieve detection and evaluation of 

microorganisms. The application of this technology in food safety processes showed 

excellent performance. 

In summary, microorganisms detection plays a crucial role in food safety. At 

present, microorganisms detection technologies in food mainly include molecular 

microbial learning method, traditional technology method, etc., all of which have 

certain limitations and average detection results. In recent years, the usage of 

computer vision in the microorganisms detection has significantly promoted the 

development of food safety. Based on biotechnology and computer vision, an 

efficient food microorganisms detection method is proposed to meet the 

requirements of food safety detection. 

3. Materials and methods 

This section mainly analyzes the microorganisms in food and produces 

microbial image data. At the same time, classification detection models and object 

detection models are constructed based on the scale of microorganisms for 

microorganisms detection in different scenarios. 
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3.1. Materials 

Experimental equipment: Olympus CX31 scientific microscope, provided by 

Tokyo Olympus, Japan; Multi specification culture dishes produced by Zhejiang 

Runlan Technology Co., Ltd. in Taizhou, Zhejiang, China; Multi specification test 

tubes produced by Zhejiang Runlan Technology Co., Ltd., located in Taizhou, 

Zhejiang, China; Mettler ME balance, provided by Mettler Toledo, Shanghai, China; 

Multi specification measuring cups and culture dishes produced by Zhejiang Runlan 

Technology Co., Ltd. in Taizhou, Zhejiang, China; HEPA type sterile operating table, 

provided by Suzhou Bolanke Instrument Equipment Co., Ltd., Suzhou, Jiangsu, 

China; Thermo Scientific371 insulated box, provided by Thermo Scientific, 

Waltham, Massachusetts, United States; German GFL type constant temperature 

shaker provided by German GFL company, Borgweiler, Germany; Thermostatic box, 

provided by Grenier Precision, China, Jiangsu, Suzhou. 

Experimental materials: 400 grams of fresh pork, 250 grams of chicken, duck, 

and beef each, all provided by Sichuan New Hope Food Co., Ltd., Chengdu, Sichuan, 

China. 

Experimental reagent: sterile physiological saline, provided by Shanghai 

Yueteng Biotechnology Research Institute, Shanghai, China; Agar agar plate culture 

medium, provided by Shanghai Nordic Biotechnology Co., Ltd., Shanghai, China; 

Methylene blue indicator, provided by Sichuan Weiqi Biotechnology Co., Ltd., 

Chengdu, Sichuan, China; Experimental purified water, provided by Hangzhou 

Wahaha Beverage Co., Ltd. in Hangzhou, Zhejiang, China; Polyformaldehyde, 

provided by Shandong Aldehydes Chemical Co., Ltd., Linyi, Shandong, China; 

Ionized water, provided by Gaide Chemical, China, Jiangsu, Suzhou. 

3.2. Method 

3.2.1. Sample preparation based on biotechnology 

Microorganisms detection technology plays a crucial role in areas such as 

healthcare, food safety, wastewater treatment, and biological research, and is one of 

the most direct and effective methods for evaluating food safety. In recent years, 

food safety has attracted much attention. Traditional microorganisms detection 

techniques are cumbersome, time-consuming, and have average detection results, 

which can no longer meet food safety requirements [11]. A smart food microbiology 

detection technology based on computer vision technology is proposed. This 

technology utilizes traditional biotechnology for microbial cultivation to produce 

food microbiological image data. Then, image data is recognized through computer 

vision models, and rapid detection of microorganisms is achieved through object 

classification and recognition [12]. The technical framework of the entire technology 

is shown in Figure 1. 
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Figure 1. Framework of food microorganisms detection technology. 

At present, common microorganisms in food include Escherichia coli, 

Salmonella, Staphylococcus aureus, etc. To effectively detect food microorganisms, 

microbial sample data will be produced based on microbial technology for 

subsequent model training. The main tools used in data production include 

incubators, which are German Thermo Scientific models, German GFL model 

constant temperature shaker, Olympus CX31 microscope image acquisition system, 

multi specification culture dishes and test tubes, Mettler ME scale and multi 

specification measuring cup and HEPA model sterile operating table. 

To establish an experimental training sample database, four major categories of 

food are selected as food research objects: meat, fresh fruits and vegetables, grains 

and flour, and drinking water. Firstly, four categories of food that need to be tested 

will be prepared, and all food samples will be provided by Sichuan New Hope Food 

Company [13]. The national standard method is used to test the four major categories 

of food, and the entire data production process is shown in Figure 2. 
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Figure 2. Sample data production process. 
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For producing training samples for bacterial cells, the following steps can be 

followed. Firstly, the preparation of the smear involves weighing 25 g of meat as a 

sample and placing it in 225 mL of sterile physiological saline. The sample is then 

prepared at 8000 r/min to form a 1:10 sample homogenization. If the sample is 

ordinary pure water during production, it is necessary to use a sterile straw to take 25 

mL of the sample and put it into 225 mL of sterile physiological saline. It stirs to 

make a 1:10 sample homogenization. Then it estimates the contamination of the 

sample, takes 1mL of the sample and places it in a sterile petri dish, which needs to 

be cooled to 46 ℃ for uniform shaking. Until the agar solidifies, it places the plate in 

a constant temperature incubator at 36 ℃ for cultivation, and forms colonies. Finally, 

it inoculates onto sterile plates for refrigeration. 

Finally, it is necessary to stain the microorganisms sample. Considering its high 

moisture content, the living dye methylene blue is used for staining. The stained 

smear is placed on the microscope slide and it is covered with a glass cover to fix the 

bacteria on the slide. Finally, it takes pictures and places the prepared slide under the 

lens of a microscope, using image capture equipment to capture images of bacterial 

cells. Finally, the collected microbial characteristic images will be processed for 

clarity and data preprocessing, and the final experimental sample data will be 

obtained. 

3.2.2. Construction of microbial classification model based on computer vision 

To effectively detect microorganisms in food, a computer vision-based 

microbial classification detection technology is proposed. Compared to manual 

methods, computer vision is more efficient in microbial detection and has higher 

recognition accuracy through extensive training in microbial image recognition. In 

the study, an improved Residual Neural Network (ResNet50) model was used as a 

visual recognition technique, which has the advantage of effectively solving the 

degradation problem of deep neural networks. It can extract richer image features, 

with suitable depth for relatively efficient training, high accuracy in various visual 

recognition tasks such as classification and detection, and wide applicability [14]. In 

addition, the study introduced transfer learning strategies to improve the ResNet50 

model parameters and enhance the model's ability to extract edge contour details 

from images. In the ResNet50 model, it is assumed that the input image being 

studied is 𝑋𝑜, which is a three-dimensional tensor of H×W×C, where 𝐻 represents 

the height of the image, 𝑊  refers to the width of the image, and 𝐶  denotes the 

number of channels in the image. The input expression of the image is shown in 

Equation (1). 

𝑋𝑜 = 𝐻 ×𝑊 × 𝐶 (1) 

The study first extracts image features through convolutional layers. It assumes 

the convolution kernel size used in the study is 𝐾 × 𝐾 and the step size is 𝑆. By 

using convolution operation, the feature map 𝐹1 is obtained, and its dimension 𝐾𝑑 is 

shown in Equation (2). 

𝐾𝑑 = (
𝐻

𝑆
) × (

𝑊

𝑆
) × 𝐷1 (2) 
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In Equation (2), 𝐷1 denotes the channels in the feature map. In the model, each 

residual block consists of two paths, the backbone path and the skip connection path. 

Assuming there are 𝐿 residual blocks in the study, the input of the 𝑙 residual block is 

𝐹𝑙−1 , and the output is 𝐹𝑙 . The backbone path consists of two consecutive 

convolutional layers and a batch normalization layer, where each convolutional layer 

has a 1 × 1 convolution kernel and a 3 × 3 convolution kernel [15]. The relationship 

between the output and input of each residual block is shown in Equation (3). 

𝐹𝑙 = 𝐹𝑙−1 +𝐻𝑙(𝐹𝑙−1) (3) 

In Equation (3), 𝐻𝑙  represents the mapping function of the residual block. 

Finally, the study connects the output of the global average pooling layer to a fully 

connected layer that maps feature vectors to the probability distribution of microbial 

categories. Assuming the weight matrix of the fully connected layer is 𝑊𝑖 and the 

bias vector is 𝑏, then the output of the fully connected layer is shown in Equation (4). 

𝑌𝑜 = 𝑊𝑖𝑋𝑜 + 𝑏 (4) 

In Equation (4), 𝑌𝑜 is a vector of 1 × 𝐾, representing the probability distribution 

of microbial categories. Considering that the ResNet50 model needs to handle 

texture and edge details during training, which increases the computational 

complexity of the model, a Transfer Learning (TL) strategy is introduced for 

parameter optimization to improve model efficiency [16]. Assuming the study has a 

pre trained model 𝑀1 , the study can use the parameters of 𝑀1  as the initial 

parameters of the ResNet50 model. For the previous convolutional layers and 

residual blocks, research can fix their parameters unchanged and only train the 

parameters of the final fully connected layer. By using a dataset to fine tune the 

model, it can better adapt to microbial classification tasks [17]. 

In addition, considering the lack of attention to important features in the 

ResNet50 model, a visual attention mechanism (VAM) is introduced for 

optimization. Assuming that the input image of the study is segmented to obtain 𝑈𝑅 

regions, each region's feature is represented as 𝑋𝑖, as shown in Equation (5). 

𝑈𝑅 = {𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑖} (5) 

In Equation (5), 𝑖 = 1,2, . . . , 𝑅 . The study uses a mapping function 𝐴  to 

calculate attention weights for each region, namely 𝐴(𝑋𝑖). The mapping function can 

be a convolution operation or a fully connected layer. To obtain a normalized 

attention weight vector 𝑊𝑖, the study can use the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function to normalize the 

mapped weights, and the weight vector expression is shown in Equation (6). 

𝑊𝑖 = softmax(𝐴(𝑋1), 𝐴(𝑋2), . . . , 𝐴(𝑋𝑅)) (6) 

The attention weight vector 𝑊𝑖 obtained from the study will be multiplied by 

the feature vectors of each region to obtain the weighted feature representation, as 

shown in Equation (7). 

𝑋𝑖
′ = 𝑊𝑖 ⊙𝑋𝑖 (7) 

In Equation (7), ⊙  represents element wise multiplication operation. The 

research will fuse the weighted feature representations, and the final feature 
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representation can be obtained through summation or concatenation operations, as 

shown in Equation (8). 

𝑋′ =∑𝑋𝑖
′

𝑅

𝑖=1

 (8) 

By constructing the above mathematical model, research can achieve effective 

classification and detection of food microorganisms. The construction process of 

microbial classification model is shown in Figure 3. 
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Figure 3. Construction process of microbial classification model. 

3.3. Construction of microbial object detection model based on improved 

computer vision 

In food microbiology detection, the microbial classification detection model is 

suitable for microbiology detection in small field environments. For complex 

scenarios with large microbial populations, it is not possible to use microbial 

classification models for effective detection. Therefore, based on the fourth 

generation object detection system You Only Look Once version 4 (YOLOv4), an 

object detection model suitable for complex and large-scale microbial scenes is 

proposed [18]. It assumes the input image for the study is X ∈ ℝHr×Wr×Cr, where Hr 

represents the height of the image, Wr  represents the width of the image, and Cr 

represents the number of channels in the image. In YOLOv4, a backbone network is 

used to extract image features. Backbone networks typically use operations such as 

convolutional layers and pooling layers to gradually extract advanced features from 

images. The research assumes that the output of the backbone network is shown in 

Equation (9). 

𝑓 ∈ ℝ𝐻
′×𝑊′×𝐶 ′

 (9) 

In Equation (9), H′ denotes the height of the feature map, W′ denotes the width 

of the feature map, and C′ denotes the amounts of channels in the feature map. In 

YOLOv4, a Neck part is introduced to further adjust the dimensionality of feature 

maps to adapt to object detection tasks. The output of the research hypothesis Neck 

is shown in Equation (10). 
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𝑓 ′ ∈ ℝ𝐻
″×𝑊″×𝐶″

 (10) 

In Equation (10), H″ denotes the height of the adjusted feature map, W″ denotes 

the width of the adjusted feature map, and C″ denotes the amounts of channels in the 

adjusted feature map. In YOLOv4, a head section is used to complete the object 

detection task. The research assumes that the output of the head part is shown in 

Equation (11). 

𝑌 ∈ ℝ𝑆×𝑆×(𝐵×5+𝐶
′) (11) 

In Equation (11), S represents the size of the output detection map, B represents 

the amounts of bounding boxes detected by each detection box, and C′ represents the 

amounts of categories. In the head section of YOLOv4, research is conducted on 

using convolutional layers to detect the position and category of targets. For each 

bounding box, four coordinates (𝑥, 𝑦, 𝑤, ℎ) are used to represent its position, where 

(𝑥, 𝑦) means the center coordinate of the bounding box and (𝑤, ℎ) means the width 

and height of the bounding box [19]. Considering the complexity of microbial 

feature extraction, MobileNet is used to replace the CSPDarknet 53 network for 

feature extraction in the study. At the same time, depthwise separable convolution is 

used to replace the 3x3 ordinary convolution of the model, thereby reducing the 

training parameters of the model [20]. The principle of depthwise separable 

convolution is to perform convolution operations on each input channel separately, 

which can effectively extract features within the channel. Its impact on the model 

includes improved computational efficiency: the number of parameters and 

computational complexity of depthwise separable convolutions are significantly 

reduced compared to ordinary 3 × 3 convolutions [21]. Secondly, it is important to 

prevent overfitting: reducing parameters can also help alleviate overfitting issues and 

improve the model's recognition accuracy on new data. The principle of depthwise 

separable convolution is indicated in Figure 4. 

3*3 Depthwise Conv

ReLU6

ReLU6Ordinary convolution

After replacement

Depthwise separable convolution

BN layer

BN layer

1*1 Conv

BN layer

Leaky ReLU

3*3 Conv

 

Figure 4. Depthwise separable convolution. 

In Figure 4, ordinary convolution has 9 times the computational complexity of 

depthwise separable convolution. A separable convolution kernel size of 3 × 3 is 
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used to cut down the computational complexity, and the RELU6 activation function 

is used to optimize the output parameters to ensure image output accuracy [22]. The 

width and height of the feature matrix is DG, the amount of input channels is M, the 

size of the convolution kernel is DK, the amount of output channels is N, and the 

width and height of the output feature matrix is DF . Therefore, the ordinary 

convolution operation is shown in Equation (12) [23]. 

𝐶𝑐 = 𝐷𝐾 × 𝐷𝐾 × 𝑁 × 𝐷𝐹 × 𝐷𝐹 (12) 

Depthwise separable convolution is introduced to replace traditional 

convolution, and its computational complexity is shown in Equation (13). 

𝐶𝑑 = 𝐷𝐾 × 𝐷𝐾 ×𝑀 × 𝐷𝐹 × 𝐷𝐹 (13) 

In deep convolution operations, each feature map channel is relatively 

independent and requires pointwise convolution calculation, as shown in Equation 

(14) [24]. 

𝐶𝑝 = 𝑀 ×𝑁 ×𝐷𝐹 × 𝐷𝐹 (14) 

The total computational cost of the final depthwise separable convolution is 

shown in Equation (15). 

𝐶𝑑𝑠 = (𝐷𝐾 × 𝐷𝐾 +𝑁) ×𝑀 × 𝐷𝐹 × 𝐷𝐹 (15) 

In addition, in complex and large-scale microbial identification, to enhance the 

model's ability to extract microbial features, attention mechanisms are introduced to 

promote the model's attention to microbial features. The attention mechanism is 

added as shown in Figure 5. 

Input (416 × 

416 × 3)

Convolution+

BN+Mish (208 

× 208 × 32)

Depthwise 

separable 

convolution (64 × 

64 × 256) × 5

Attention mechanism

Attention mechanism

Attention mechanism
Depthwise separable convolution 

(16 × 16 × 1024) × 2

Depthwise separable convolution 

(32 × 32 × 512) × 6

 

Figure 5. Schematic diagram of adding attention. 

Through the above optimization, the construction of the object detection model 

has been completed. This model adopts YOLOv4 as the foundation, introduces 

MobileNet as the backbone feature extraction network, and uses attention 

mechanism to promote the model's ability to extract microbial features, ensuring 

better feature extraction ability and improving detection performance. 
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4. Experimental analysis of food microbiology detection 

This section will analyze the model performance and actual detection results of 

the two proposed food microorganism detection models. The main evaluation 

indicators include precision, recall rate, detection accuracy, loss value, and other 

indicators. 

4.1. Experimental analysis of microbial classification model 

To assess the effectiveness of the raised classification model, self-made food 

microorganism samples were selected as experimental sample data, including 25 

types of microorganisms, 15632 image data, and a ratio of 7:3 between the training 

and testing sets. Experimental analysis was conducted on the Pytorch platform. The 

initial parameters of the improved ResNet50 model are indicated in Table 1. 

Table 1. Model initial parameters. 

Parameter indicator type Numerical value 

Requires_grad true 

Learning rate 1e-3 

EPOCHS 30 

BATCH_SIZE 16 

CNN and Gradient Boosting Decision Tree (GBDT) optimized ResNet50 were 

introduced as the testing benchmark. The Precision Recall (P-R) curve, detection 

accuracy, and loss value were introduced as evaluation indicators. The larger the area 

under the P-R curve, the better the model detection. The comparison of loss 

performance among different models is shown in Figure 6. 
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Figure 6. Performance loss comparison under different models. 

Figure 6a showcases the model loss results under low-density microorganisms. 

Among the three models, the traditional CNN model had the highest loss and showed 

significant fluctuations in 50 iterations. Overall, the research model performed the 

best and converged the fastest. After 50 iterations, the loss of the research model, 

CBDT ResNet50, and CNN were 0.48, 0.24, and 0.08, respectively. Figure 6b 

shows the model loss results under high-density microorganisms. The results still 

showed the fastest convergence of the research model and the lowest loss. The loss 
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value of the research model was 0.09 after 50 iterations. Figure 7 shows the P-R 

curves of different models. 
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Figure 7. Comparison of P-R curves for different models. 

Figure 7a,b show the detection results of low-density and high-density 

microorganisms, respectively. At low density, the CBDT ResNet50 model, which 

has the largest surrounding area and performs second, had better model detection 

performance. Compared to CBDT ResNet50 and CNN, the research model showed a 

detection performance improvement of 8.65% and 14.65%. At high density, the 

overall performance of the research model was still the best, with a detection 

performance improvement of 6.65% and 10.35% compared to CBDT ResNet50 and 

CNN. Figure 8 shows the microorganisms detection results under different models. 
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Figure 8. Comparison of detection accuracy under different models. 

Figure 8a,b show the detection accuracy under low-density and high-density 

microorganisms, respectively. According to the test results, the accuracy of 

microorganisms detection decreased in high-density compared to low-density, but 

the best performing model was the research model. Meanwhile, traditional CNN had 

the worst detection performance, with significant detection fluctuations in both low-

density and high-density detection. At high and low densities, the detection accuracy 

of the research model was 98.65% and 97.25%, respectively, which was better than 

the other two models. 
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4.2. Experimental analysis of microorganisms object detection model 

In large-scale and complex food microorganisms detection, the proposed object 

detection model was used for microorganisms testing experiments. The Batch size 

value was set to 48 and the amounts of iterations to 100. At the same time, YOLOv4 

was introduced, which replaced the backbone feature network MOBile-YOLOv4 

model as the testing benchmark. The comparison of losses under multiple models is 

shown in Figure 9. 
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Figure 9. Comparison results of multiple model losses. 

Figure 9a,b show the loss results for large-scale scenes and multi feature large-

scale scenes, respectively. Compared to YOLOv4 and MOBile-YOLOv4, the 

research model had significant advantages in loss performance in both scenarios. In 

large-scale microbial scenarios, the loss value at model convergence was 0.12, while 

YOLOv4 and MOBile-YOLOv4 were 8.65 and 1.56, respectively. In more complex 

multi feature large-scale scenes, the loss value after convergence was 3.56, while 

MOBile-YOLOv4 and YOLOv4 were 8.65 and 11.25, respectively. The comparison 

outcomes of multiple model detection accuracy are denoted in Figure 10. 
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Figure 10. Comparison results of multiple model detection accuracy. 
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Three scenarios were selected for comparison, including multi feature scenes, 

large-scale scenes, and multi feature large-scale scenes as well as microbial invisible 

scenes, as shown in Figure 10a–d, respectively. In multi feature detection, when the 

number of microbial features is between 10 and 25, it is most advantageous for 

model detection. However, as the number of features exceeds 20, the accuracy of 

YOLOv4 detection significantly decreases. Overall, in complex feature 

environments, the research model shows a 12.25% and 19.52% improvement in 

detection performance compared to YOLOv4 and MOBile-YOLOv4. In the 

comparison of large-scale and multi feature large-scale scenes, the research model 

still has the highest detection accuracy, with detection accuracies of 98.65% and 

97.58%, respectively, which are better than other models. In the scenario where 

microorganisms are not visible, the recognition performance of different 

technologies is studied. According to the test results, the overall performance of the 

research model is the best, with the highest recognition accuracy of 97.25% during 

convergence, while MOBile-YOLOv4 and YOLOv4 are 89.25% and 79.24%, 

respectively. The research model incorporates transfer learning strategies to enhance 

the capture and analysis of image edge contour details, enabling clearer detection of 

microorganisms in scenes that are invisible to ordinary people, resulting in better 

overall performance. Finally, common microorganisms in food were selected for 

detection, and microorganisms detection methods were added for comparison, as 

denoted in Table 2. 

Table 2. Comparison of different microorganisms detection methods. 

Type Bioluminescence detection method (%) YOLOv4 (%) MOBile-YOLOv4 (%) Research model (%) 

Staphylococcus aureus 90.45 94.44 97.58 99.54 

Salmonella 89.34 93.45 96.68 99.58 

Escherichia coli 91.54 94.58 96.45 99.75 

Shigella 90.24 93.45 95.54 98.54 

Mould 91.54 94.84 94.56 99.24 

Enterobacter 91.45 94.45 96.45 98.54 

Erwinia 89.41 92.64 93.54 97.45 

Escherichia coli 91.12 91.54 95.64 99.85 

Flavobacterium 88.45 92.15 96.45 98.65 

Enterococcus 89.56 93.45 97.45 99.85 

Aeromonas 90.21 91.25 94.54 97.75 

Table 2 shows the comparison results of different microorganisms detection 

methods. Among the four detection methods, the traditional luminescence detection 

method had the longest detection time and the lowest accuracy. In the comparison of 

Escherichia coli detection, the accuracy of bioluminescence detection method was 

91.54%, YOLOv4 was 94.58%, and MOBile-YOLOv4 and the research model were 

96.45% and 99.75%, respectively. It can be seen that computer vision-based 

microorganisms detection technology had better performance in food detection and 

met the requirements of food safety detection. In addition, the study compared the 

memory resource usage requirements of different technologies, as shown in Table 3. 
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Table 3. Comparison of memory resource utilization among different technologies. 

Scene YOLOv4 (%) MOBile-YOLOv4 (%) Research model (%) 

Detection accuracy under different features 82.58 83.4 82.45 

Large scale scenarios 83.15 84.45 83.45 

Multi feature large-scale scenes 82.45 83.45 82.45 

Microbial invisible sample scene 91.45 92.45 90.45 

Multi microbial scene 87.45 89.45 86.45 

According to the results in Table 3, the study selected five scenarios to analyze 

the memory resource occupation of different technologies. According to the results 

of the test volume, mobile-yolov4 has the highest memory resource occupation. For 

example, in the scene where microorganisms are invisible, the highest resource 

occupation rate is 92.45%, which is higher than 91.45% of yolov4 and 90.45% of the 

research model. In other scenarios, the research model has the same resource 

occupation as yoyov4, and is better than mobile-yoyov4. The main reason is that the 

research model optimizes the parameters of resnet 50 model, and strengthens the 

calculation of image edge details, so as to reduce the consumption of resources. 

5. Conclusion 

Traditional microorganisms detection technologies have low efficiency and 

average detection results. Therefore, a rapid microorganisms detection method 

combining computer vision and biotechnology was proposed in this study. Firstly, 

biotechnology was used to cultivate bacterial strains and create image sample data. 

Secondly, a microorganisms classification model was constructed based on 

ResNet50, and TL strategy was used for parameter learning optimization. 

Considering the difficulty of detecting large-scale complex scenes, a object detection 

model based on YOLOv4 was proposed, which replaced the feature extraction 

network with MobileNet and introduced an attention mechanism to enhance the 

attention of important features, thereby improving the detection effect on 

microorganisms. In the analysis of classification models, the loss of the research 

model, CBDT ResNet50, and CNN in low-density microorganisms detection were 

0.48, 0.24, and 0.08, respectively, indicating better effectiveness of the research 

model. In the analysis of microorganisms detection effectiveness, the research model 

had a detection accuracy of 98.65% and 97.25% in the detection of high-density and 

low-density microorganisms, respectively, which was superior to other models. In 

the analysis of object detection models, common microorganisms detection effects 

were compared, and the accuracy of the research model in detecting Escherichia coli 

was 99.75%, while bioluminescence detection, YOLOv4, and MOBile-YOLOv4 

were 91.54%, 94.58%, and 96.45%, respectively. The microorganisms detection 

technology proposed by the research had better adaptability and detection 

effectiveness in food safety detection. In summary, the technology proposed in this 

study has good application effects in practical scenarios. Compared with traditional 

manual detection, it has higher efficiency, multi scenario advantages, and higher 

detection accuracy, meeting the requirements of food safety and medical and health 

fields. However, this study also has limitations as it only analyzed common food 
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microorganisms. In the future, more microbial samples need to be added to improve 

the effectiveness of technical testing. At the same time, continue to optimize 

computer vision technology and enhance its application in more microbial 

recognition fields. 
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