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Abstract: In recent years, advancements in technology have significantly transformed 

educational paradigms, particularly through the integration of biomechanics in teaching 

methodologies. The incorporation of biomechanical analysis in educational settings provides 

valuable insights into students' physical engagement and motor skills development. This study 

aims to leverage biomechanical data to enhance the effectiveness of physical education and 

sports training. Biomechanical sensors, such as motion capture systems and wearable devices, 

collect critical data on parameters like gait, balance, and muscle activity. By analyzing this 

data, educators can gain a deeper understanding of students' physical performance and identify 

areas for improvement. We propose a novel biomechanical optimization framework utilizing a 

multi-kernel support vector machine (MK-SVM) to assess students' physical strain levels 

during activities. In the preprocessing stage, a median filter is employed to eliminate noise 

from the motion data. Features are extracted using power spectral density (PSD) analysis to 

evaluate students' physical responses during instructional activities. The proposed method 

utilizes algorithms to create personalized training environments, identifying physical responses 

and facilitating real-time feedback for enhanced engagement in sports and physical education. 

The MK-SVM algorithm is applied for feature selection, effectively categorizing student strain 

levels to refine personalized learning strategies. Results indicate that our approach outperforms 

traditional methods, achieving high accuracy (92%), Recall (98%), precision (80%), and F1-

Score (88%) in assessing students' physical strain.   This study demonstrates how biomechanics 

and technology can revolutionize physical education, fostering more adaptive and responsive 

learning environments. 

Keywords: psycho-analysis; biosensing; ideological; political education, 

electroencephalography (EEG); advanced kookaburra optimizer with poly-kernel support 

vector machine (AKO-PSVM); biomechanics 

1. Introduction 

The role of ideological and political education has never been more critical in a 

progressively more complex and interconnected world. Educational institutions strive 

to cultivate informed citizens capable of engaging thoughtfully with societal issues, 

yet traditional methods often struggle to foster genuine interest and critical thinking. 

Students frequently disengage from ideological discussions, hampering the 

development of their political consciousness. As educators seek innovative solutions 

to enhance the effectiveness of their curricula, there is a growing need to explore new 

methodologies that can provide deeper insights into students’ emotional and cognitive 

engagement [1]. 

In the modern period, placing a strong emphasis on pupils’ daily political and 

ideological education and consistently advancing standards like scientific, 
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standardized, and student projects that are institutionalized help to enhance the 

relevance and potency of political and ideological guiding the youth and providing 

education at colleges and institutions in the modern period to go on a fresh adventure 

and make a fresh input in the modern age [2]. Psychoanalysis plays an important role 

in considering the underlying motivations and emotions that shape individuals’ beliefs 

and behaviors. By integrating biosensing technology within psychoanalytic 

frameworks, educators can better assess and address the psychological dynamics at 

play in ideological and political education. This integration not only enhances the 

understanding of students’ responses but also facilitates the development of strategies 

that cater to their unique psychological profiles [3,4]. 

Political and ideological education that develops pupils’ high levels of 

contemporary political and ideological knowledge. Surveys, interviews, and oral 

presentations by class informants are frequently used by college student management 

professionals to better understand the emotional conditions of their students [5]. The 

main problems with these methods are as follows: first, some students can be reluctant 

to tell the truth out of concern for unfavorable outcomes or for other reasons, which 

could result in the gathering of inaccurate data. Second, some students fill out the 

questions at random because they are either repelled by them or don’t want to spend 

the time reading them, which might provide inaccurate findings. Third, since some 

students conceal their emotions, it is hard to gather accurate information by watching 

professors and other pupils. Therefore, the ideal foundation for creating precise and 

useful emotional data is objective physiological data. The rising objectivity of these 

results has led to the expansion of additional biosensor-based physiological signal-

based emotion recognition systems throughout time [6]. These physiological signals 

are easily acquired, and safe, and reflect the effects of emotion on the autonomic 

nervous system. Electrocardiograms (ECGs), electromyograms (EMGs), Galvanic-

skin resonances (GSRs), respiratory rates (RRs), and electroencephalograms (EEGs) 

are commonly used in stress recognition often provide biomechanical data that can 

reflect physiological responses expression of stress states also plays a role. EEG 

signals are commonly used as physiological cues for stress recognition. EEG signals 

have been widely used in conjunction with biomechanical data in studies of 

swallowing, mental status assessment, and the diagnosis of neurological depression 

[7]. 

Blink rate, heart rhythm variability, cortisol levels, and EEG patterns all changed, 

suggesting that these data can be used in the diagnosis of stress and that multiple 

aspects should be carefully considered when using technology as they are worn to 

detect stress. Measurements such as electr-oculography (EOG) readings, EEG 

readings, EMG readings, plethysmography (PPG) readings, heart rate variability, 

blood pressure, respiratory rate, skin temperature, and GSR, can be used to measure 

stress quantitative and emotional Subject’s emotional development, employee 

motivation. The subject’s emotional growth, executive motivation, and present 

external circumstances may all be evaluated and interpreted with the aid of these 

physiological changes [8]. 

The information on biosensing technology, specifically as it relates to 

psychoanalysis and its application for improving political and ideological education 

effectiveness. The intend to solve this by enhancing the way biosensors, in conjunction 
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with EEG, GSR, and HRV, can offer real-time information on cognitive and emotional 

states during educational activities. In the of ideological education, this would enable 

a more sophisticated understanding of how biosensing might optimize engagement 

and learning outcomes. To properly demonstrate the capabilities of the biosensing 

technology. 

The use of advanced technology in educational frameworks offers new prospects 

for improving the efficacy of ideological and political education. Among these 

advancements, bio-sensing technology provides a transformative strategy by offering 

real-time insights into college students’ emotional and cognitive states, overcoming 

constraints inherent in traditional techniques. These technologies enable educators to 

understand subtle physiological changes that are frequently difficult to detect via 

interviews, delivering more objective and comprehensive images of college students’ 

participation. Using biosensors such as electroencephalograms (EEGs), galvanic skin 

response (GSR), and heart rate variability (HRV), educators can evaluate stress, 

motivation, and emotional responses, adjusting their tactics to stimulate critical 

thinking and active engagement [9,10]. 

The use of biosensing technology supports psychoanalytic frameworks by 

bridging the gap between internal mental processes and observable behaviors in 

ideological education. For example, emotional responses to political discourse or 

ideological can be quantitatively assessed, allowing instructors to adjust coaching 

strategies in real time. This integration of psychoanalysis and technology opens up 

possibilities for addressing underlying emotional barriers to increasing political 

awareness, such as indifference, anxiety, or resistance to ideological issues [11]. 

Aim and contribution of the study 

This study aims to integrate biosensing technology into psychological research 

to improve the study of ideological and political education. The main contribution is 

the extension of the Kookaburra optimizer with a multi-kernel support vector machine 

(KO-PSVM), which enables accurate analysis of student stress levels and improves 

individual learning strategies. 

2. Related works 

Combining machine learning with increased sensitivity, selectivity, and accuracy 

to improve biosensor performance was developed by Anapanani [12]. The 

examination covers a variety of machine learning methods in addition to data pre-

processing, feature extraction, and classification. The result highlights challenges to 

data availability and sensor performance while also offering a prediction of new 

advancements like artificial intelligence and deep learning for bio-sensing systems of 

the future. 

Williamson [13] investigated the collections that include social, material, and 

institutional components and attempted to conceive academic neuroscience and 

genomics as bio-informational schooling technical know-how. It demonstrated the 

integration of biological and virtual technologies in influencing educational research, 

coverage, and exercise by examining neural and genetic techniques to determine how 

biodigital method generate knowledge about academic problems. 
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Sethia and Indu [14] examined to identify real-time stress detection using a 

wearable system and evaluate how well meditation audio reducing stress following 

exposure to instruction. The approach combined Bayesian optimization for machine 

learning hyperparameter tuning with Genetic Algorithm and Mutual Information for 

function selection. The results demonstrated the importance of electrodermal activity 

(EDA), Blood Volume Pulse (BVP), and HRV for stress identification and emphasized 

the strain-relieving effects of meditation. They also indicated great type accuracy 

(98.28%). 

Bakker and Schumacher [15] encourage the upcoming creation of political 

psychology researchers to self-reports and embrace ideas and methodologies that 

improve understanding of the affective-cognitive, unconscious processes that lead to 

political judgments. A summary of research utilizing eye tracking, neuroimaging, and 

psychophysiological metrics was presented. 

Pao and Yan [16] examined the effect of political and ideological education on 

college students’ mental health. A separate convolutional neural network (CNN) was 

utilized to identify faces in images, and a deep learning (DL) student emotion detection 

model was created. The findings indicated that while social practices and campus 

society had a beneficial collision on political entity individuality, demographic 

features had a substantial impact. When compared to conventional machine learning 

(ML) techniques, the strategy increased classification accuracy by 8.036%. 

Juárez Varón et al. [17] examined the effects of both in-person and online 

university instruction on learning process factors using neurotechnology. Using 

galvanic skin response, eye tracking, and EEG were used and indicated that students 

who attended in-person sessions had more emotional intensity, higher positive brain 

activity, and lower stress levels. 

Mukherjee and Halder [18] introduced a DL-based method for measuring human 

stress levels based on pulse rate and EEG. The method detects mental stress levels 

using a CNN-tanh long short-term memory (CNN-TLSTM) model based on 

anconsiderationmethod. To improve classification accuracy, the model incorporates 

an attention layer. 

Chen and Lee [19] carried out several tests to assess students’ stress levels. 

Physiological signals gathered such as ECG, PPG, and EEG were examined to 

evaluate stress levels, through improved models like self-supervised CNN and Long-

term Recurrent Convolutional Network (LRCN). 

Pabreja et al. [20] used information from 650 respondents to examine stress 

among students. A forecast of stress level was produced with an R-squared value of 

0.8042 after 15 important elements were found using the revelation method and the 

random forest regressor (RFR) model. 

Tang et al. [21] cautioned a Spatial-Temporal Information Learning Network 

(STILN) to extract discriminative traits from EEG-based total emotion popularity. The 

community employed a Bidirectional Long Short-Term Memory Network (Bi-LSTM) 

for sequential context mastering and 2-dimensional (2D) strength topographic maps 

to document electrode dependencies. 

Sharma et al. [22] examined the effectiveness of ML procedures in decreasing 

the chance of pressure prediction and better early remedy. The researchers hired 
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category algorithms together with Naive Baye’s (NB), MLP, Linear Regression (LR), 

Bayes Net, J48, and RF on more than 2 hundred college student statistics.  

3. Methodology 

This section explains the dataset used in this study and explains the pre-

processing technique using a median filter for noise reduction, extracting features 

using Power spectral density (PSD), and the proposed method KO-PSVM in detecting 

the psycho-stress level of students. The methodology framework is given in Figure 1. 

 
Figure 1. Overall process of KO-PSVM method. 

3.1. Dataset 

In this study Mental Stress PPG dataset from Kaggle is used to detect the 

students’ emotional and cognitive engagement during educational activities [23]. 

Mental stress is a typical response to life’s experiences. However, both acute and 

long-term stress can cause psychological and cardiac problems. Heart rate variability 

(HRV) is thought to be a gauge of stress levels and physical fitness. Usually, HRV is 

calculated by timing the separation of two consecutive R-peaks on an 

Electrocardiogram (ECG). Photoplethysmogram (PPG), which employs pulse rate 

variability (PRV), or the time between two consecutive PPG peaks, is another 

technique for identifying mental stress. This study gathered 27 healthy bachelor’s 

students (15 men and 12 women, ages 21 ± 2) who participated in two phases: A 

baseline phase and a Stroop test phase. The baseline phase involved participants sitting 

comfortably in a controlled classroom environment while a sensitive, low-power, 

RoHS-compliant PPG sensor was attached to their earlobe to monitor PRV for a 

specific amount of time and record baseline coronary heart rate data. The Stroop test 

phase had participants using an Android app to engage in a color-word association 

task that was intended to cause mental stress. During this phase, the equal PPG sensor 

recorded PRV data to evaluate changes brought on by stress. The data collection 

included continuous PRV monitoring, followed by analysis to determine the effect of 

stress on heart rate variability, providing information about the physiological response 
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to cognitive stress. To ensure a comprehensive assessment of physiological reactions, 

the data were subsequently processed using specialized software to compute PRV and 

examine variations in heart rate variability before and after the Stroop task. 

3.2. Noise removal using a median filter 

The median filter is well-suited for preprocessing psycho-stress level data, 

particularly ECG signals, as it effectively removes noise while preserving important 

features. By maintaining the integrity of signal characteristics, this technique enhances 

the accuracy of subsequent analyses, enabling more reliable assessments of students’ 

psycho-stress levels. 

Figure 2 illustrates the operation of the median filter, which replaces a point in a 

segment with the median value of the series. The whole date series is denoted as 

𝑊0~𝑊𝐾−1, and the segment (𝑊𝑚−(2𝑀+1)/2~𝑊𝑚+2(2𝑀+1)/2
) subjected to a window of 

length 2N + 1. Sorting segment (𝑊𝑚−(2𝑀+1)/2~𝑊𝑚+2(2𝑀+1)/2
) in either ascending or 

descending order yields the temporary array 𝑧0~𝑧2. The temporary array’s middle 

point is denoted by  𝑍𝑚 . 𝑍𝑚 replaces the center point 𝑊𝑚 in the segment 

(𝑊𝑚−(2𝑀+1)/2~𝑊𝑚+2(2𝑀+1)/2
) . When the next temporary array 𝑍𝑚  is received, the 

median filter is continued by deleting the earliest point and adding the most recent 

(new) point to the proper location of the first temporary array. 𝑍0~𝑍2𝑀. This reduces 

the amount of time needed to compute the subsequent sorting process. The window 

travels across the complete data series 𝑊0~𝑊𝐾−1 to smooth out ECG.  

 
Figure 2. Visual representation of Median filtering steps. 

3.3. Feature extraction using PSD 

Feature extraction using PSD is highly suitable for analyzing psycho-stress levels 

in students. Quantifying the power distribution of HRV signals facilitates the 

identification of stress-related patterns and enhances the accuracy of subsequent 

analyses, leading to a more reliable assessment of students’ psychological states. 

The assessment of a power distribution of signal over frequency is known as the 

PSD. Equation (1) can be used to describe the PSD of a stationary random process 𝑤𝑛. 

𝑂𝑤𝑤(𝑒) = ∑ 𝑄𝑤𝑤(𝑛)𝑓−2𝑚𝑖𝑓𝑚/𝑒𝑡

𝑛==∞

𝑛=−∞
 (1) 
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In this case, 𝑒𝑡  is the sampling frequency, and 𝑄𝑤𝑤(𝑛)  is the signal’s 

autocorrelation. One may determine the signal’s power in a specific frequency range 

by integrating over both positive and negative frequencies (Equation (2)). 

𝑂(𝑒1, 𝑒2) = ∫ 𝑂𝑤𝑤(𝑒)𝑐𝑒 + ∫ 𝑂𝑤𝑤(𝑒)𝑐𝑒
−𝑒2

−𝑒1

𝑒2

𝑒1

 (2) 

For every one-minute segment, the HRV signal was a series of RR intervals. For 

feature extraction, every epoch with fewer than 30 data points was disqualified. It was 

examined after elimination. The beat number was the signal’s index. All signals were 

normalized by computing their z-score (i.e., (𝑤 − µ)/𝜎, where µ is the average of the 

signal and 𝜎 is its standard deviation to remove the bias of the signal’s mean and 

variance on feature extraction. Welch’s method for calculating PSD. 

3.4. Proposed method KO-PSVM 

The combination of the KO and PSVM is explained in this section to analyze the 

psycho-stress level of students. The KO combined with PSVM provides an effective 

framework for analyzing students’ psycho-stress levels. KO optimizes PSVM 

hyperparameters, enhancing classification accuracy by exploring and exploiting 

potential solutions. 

3.4.1. Poly-kernel support vector machine (PSVM) 

The PSVM is suitable for forecasting psycho-stress levels in students by 

effectively handling non-linear relationships within complex data. Its integration of 

polynomial kernels enhances model accuracy and adaptability, making it ideal for 

evaluating individual stress responses based on various input features, thereby 

improving personalized intervention strategies. 

SVM 

The fundamental theories of SVM are introduced in this part. SVM maximizes 

the distance between positive and negative instances to create an ideal separating 

hyper-plane as the decision plane. With a training dataset 𝑅 = {𝑤𝑖, 𝑧𝑖}𝑖=1
𝑚 , (𝑤𝑖 ∈

𝑄𝑚, 𝑧𝑖 ∈ 𝑄),𝑊𝑖 is the 𝑖 − 𝑡ℎ input feature vector, 𝑧𝑖 is the class label of 𝑤𝑖 and 𝑚 is 

the whole numeral of samples.  

Following the completion of the training sample, the following ideal hyper-plane 

may be determined (Equation (3)). 

𝑜(𝑤) = 𝑥𝑆 × ∅(𝑤) + 𝑎 (3) 

Where 𝑥 is a hyper-plane vector, 𝑎 is a bias term, and the input characteristic vector is 

mapped into high-dimensional characteristic space using the function of ∅(𝑤). The 

following quadratic programs can be solved to determine the estimated values of 𝑎 

and𝑥. The quadratic program’s Varangian in Equations (4)–(6) is given in Equation 

(7). 

min 𝑆(𝑥, 𝑎, 𝜀) =
1

2
||𝑥||2 + 𝐷 ∑ 𝜀𝑖

𝑚

𝑖=1
 (4) 

𝑠. 𝑡. 𝑧𝑖(𝑥
𝑆 × ∅(𝑤𝑖) + 𝑎) ≥ 1 − 𝜀𝑖𝑖 = 1, . . , 𝑚 (5) 
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𝜀𝑖 ≥ 0, 𝑖 = 1, . . , 𝑚 (6) 

𝐾(𝑥, 𝜀, 𝑎; 𝛼) = 𝑆(𝑥, 𝜀, 𝑎) − ∑ 𝛼𝑖{𝑧𝑖(𝑥
𝑆∅(𝑤𝑖) = 𝑎) + 𝜀𝑖 − 1}

𝑚

𝑖=1
∑ 𝜇𝑖

𝑚

𝑖=1
𝜀𝑖 (7) 

For the dual formulation of the SVM (Equations (8)–(10)), partial derivatives of 

𝐾(𝑥, 𝜀, 𝑎; 𝛼)  concerning the primal variables are taken, and the results are then 

substituted into 𝐾(𝑥, 𝜀, 𝑎; 𝛼) in Equation (7). 

𝑚𝑎𝑥𝐾(𝑥, 𝜀, 𝑎; 𝛼) = ∑ 𝛼𝑖 −
1

2
∑ 𝛼𝑗𝛼𝑖𝑧𝑗𝑧𝑖𝐿(𝑤𝑗, 𝑤𝑖)}

𝑚

𝑗,𝑖=1

𝑚

𝑖=1
 (8) 

𝑠. 𝑡.∑ 𝑧𝑖𝛼𝑖 = 0
𝑚

𝑖=1
 (9) 

0 ≤ 𝛼𝑖 ≤ 𝑑𝑖 = 1, . . , 𝑚 (10) 

Where the kernel function is the inner product function  𝐿(𝑤𝑗,  𝑤𝑖), and 𝛼𝑖  is the 

Lagrange multiplier of observation 𝑖. The dual optimization problem is solved to get 

the linear decision function, and the SVM problem may be made simpler as in 

Equation (11). 

𝑜(𝑤) = 𝑠𝑔𝑛 ∑ 𝛼𝑧𝑖𝐿(𝑤𝑖, 𝑤) + 𝑎)
𝑚

𝑖=1
 (11) 

PSVM 

The choice of the model’s kernel function is crucial. Different prediction 

models will be created by using SVM with various kernel functions, leading to varying 

prediction efficiency and accuracy. Global and local kernels are the two kinds of kernel 

functions that are frequently utilized in SVM. One common type of local kernel is the 

radial basis function (RBF) kernel. Equation (12) is the definition of its mathematical 

form. The kernel’s parameter is denoted by𝜎. One common type of global kernel is 

the polynomial kernel, which has the following Equation (13). The kernel parameter 

is denoted by where𝑐. 

𝐿RBF(𝑤𝑗, 𝑤𝑖) = exp (−
1

2𝜎2
||𝑤𝑗 − 𝑤𝑖||

2) (12) 

𝐿𝑝𝑜𝑙𝑦(𝑤𝑗, 𝑤𝑖) = (𝑤𝑗
𝑆𝑤𝑖 + 1)𝑐 (13) 

To increase SVM’s prediction accuracy and generalization capacity, aPSVM is 

suggested. Both the local and global kernel functions make up the PSVM kernel 

function (Equation (14)). 

𝐿𝑛𝑒𝑤 = 𝜏𝐿𝑅𝐵𝐹 + (1 − 𝜏)𝐿𝑝𝑜𝑙𝑦(0 < 𝜏 < 1) (14) 

Where 𝜏 is the coefficient of weight. Mercer’s theorem must be satisfied by the kernel 

function for it to be utilized as the SVM kernel. Mercer’s theorem is also satisfied by 

the poly-kernel function 𝐿𝑛𝑒𝑤, which is created by the convex arrangement of 𝐿𝑅𝐵𝐹 

and 𝐿𝑝𝑜𝑙𝑦 . The poly-kernel function offers better distribution performance across 

various datasets and combines all the features of a conventional single kernel. 
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3.4.2. Kookaburra optimizer (KO) 

The KO is well-suited for optimizing psycho-stress evaluation methods in 

students. Its dual-phase approach, combining exploration and exploitation, enhances 

the search for effective parameters. This adaptability allows KO to efficiently identify 

optimal solutions in complex problem spaces, improving stress assessment accuracy 

and intervention strategies. 

Inspiration of KOA 

Kookaburras are carnivorous birds found in Australia and New Guinea, weighing 

300 g and 28–47 cm. They feed on mice, insects, snakes, frogs, reptiles, and birds. 

Their open beak allows them to dive and seek prey, and they repeatedly strike victims 

to ensure their safety. The KOA strategy was designed to protect prey. 

Initialization of the algorithm 

Using a population of kookaburras, the KO methodology is an iterative 

optimization technique that finds appropriate solutions for optimization issues. Based 

on where it is located in the problem-solving space, each kookaburra chooses its 

decision variables, creating a matrix that may be represented by a vector. At the start 

of the KO implementation, the kookaburras’ positions are initialized at random 

(Equations (15) and (16)). 

𝑊 =

[
 
 
 
 
𝑊1

⋮
𝑊𝑗

⋮
𝑊𝑀]

 
 
 
 

𝑀×𝑛

=

[
 
 
 
 
𝑊1,1

⋮
𝑊𝑗,1

⋮
𝑊𝑀,1

⋯
⋱
⋯
⋰
⋯

𝑊1,𝑐

⋮
𝑊𝑗,𝑐

⋮
𝑊𝑀,𝑐

⋯
⋰
⋯
⋱
⋯

𝑊1,𝑛

⋮
𝑊𝑗,𝑛

⋮
𝑊𝑀,𝑛]

 
 
 
 

𝑀×𝑛

 (15) 

𝑤𝑗,𝑐 = 𝑘𝑎𝑐 + 𝑞. (𝑣𝑎𝑐 − 𝑘𝑎𝑐) (16) 

The KO population matrix, 𝑊𝑗, represents the 𝑗th kookaburra, 𝑤𝑗,𝑐 represents its 

𝑐th dimension in search space, 𝑀 represents the numeral of kookaburras, 𝑛 represents 

the numeral of decision variables, 𝑞 is a random number, and 𝑢𝑏𝑑 and l𝑏𝑑 represent 

the upper and lower bounds of the 𝑐th decision variable. The problem’s function can 

be assessed using Equation (17). 

𝐸 =

[
 
 
 
 
𝐸1

⋮
𝐸𝑗

⋮
𝐸𝑀]

 
 
 
 

𝑀×1

=

[
 
 
 
 
𝐸(𝑊1)

⋮
𝐸(𝑊𝑗)

⋮
𝐸(𝑊𝑀)]

 
 
 
 

𝑀×1

 (17) 

The superiority of potential explanation and inhabitants members is gauged by 

the assessed objective function, 𝐸, which is a vector based on the 𝑗th kookaburra. The 

greatest member is represented by the best-assessed value, while the worst member is 

represented by the worst-estimated value. The goal function is reassessed and the best 

member is updated in tandem with the kookaburras’ shifting locations. 

KO mathematical modeling 

• Phase1: Exploration (hunting strategy) 
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As carnivorous birds, kookaburras consume a wide range of creatures, such as 

frogs, insects, mice, reptiles, and birds. Their powerful necks help them hunt, which 

causes them to shift positions a lot. To avoid being mired in local optimal, this method 

embodies global inquiry and exploration. To replicate their hunting technique, the KO 

design uses the position of other kookaburras with superior objective function (OF) 

values as prey locations. Equation (18) determines each kookaburra’s accessible prey 

set. 

𝐷𝑂𝑗 = {𝑊𝑙: 𝐸𝑙 < 𝐸𝑗𝑎𝑛𝑑𝑙 ≠ 𝑗}, 𝑤ℎ𝑒𝑟𝑒𝑗 = 1,2, . . , 𝑀𝑎𝑛𝑑𝑙𝜖{1,2, . . , 𝑀} (18) 

Here, 𝐷𝑂𝑗 is the set of potential prey for the 𝑗th bird 𝑊𝑙 is the bird that has a 

higher OF value than the 𝑗th bird, and 𝐸𝑙 is the OF value. The KO proposes to assume 

that every bird chooses a victim at random and attacks it. Equation (19) is used to 

calculate the kookaburra’s new position foundation on the imitation of its movement 

towards the prey in the hunting strategy; if the OF value in the new position is 

improved, Equation (20). 

𝑤𝑗,𝑐
𝑂1 = 𝑤𝑗,𝑐 + 𝑞. (𝑆𝐶𝑃𝑗,𝑐 − 𝐽.𝑤𝑗,𝑐), 𝑗 = 1,2, . . , 𝑀, 𝑎𝑛𝑑𝑐 = 1,2,…𝑛 (19) 

𝑊𝑗 = {
𝑊𝑗

𝑂1, 𝐸𝑗
𝑂1 < 𝐸𝑗

𝑊𝑗 , 𝑒𝑙𝑠𝑒
 (20) 

The text describes a KO model with  𝑊𝑗
𝑂1𝑊𝑗,𝑐

𝑂1 , 𝐸𝑗
𝑂1 , r, 𝑆𝐶𝑃𝑗,𝑐 , J, and M, as 

decision variables, based on a random number from sets 1, and 2. 

• Phase 2: (Exploitation) Making certain the prey is dead 

When attacking, kookaburras repeatedly strike their prey against a tree before 

crushing and devouring it. This activity, which is similar to local search with 

exploitation, causes minor shifts in their location close to hunting sites. The 

algorithm’s capacity to adjust to local conditions is demonstrated by its goal of 

achieving better solutions close to achieved solutions and promising locations. 

The KO design uses Equation (21) to determine a random location to emulate 

kookaburra behavior. The displacement takes place in a neighborhood whose radius, 

originally set to the maximum value, is equal to 
(𝑣𝑎𝑐−𝑘𝑎𝑐)

𝑠
. To increase the accuracy of 

local searches, the radius gets smaller as iterations go on. Equation (22) states that 

each kookaburra’s new position replaces its old one if it increases the objective 

function value. 

𝑤𝑗,𝑐
𝑂2 = 𝑤𝑗,𝑐+)(1 − 2𝑞).

(𝑣𝑎𝑐 − 𝑘𝑎𝑐)

𝑠
, 𝑗 = 1,2, … ,𝑀, 𝑐 = 1,2,… , 𝑛, 𝑎𝑛𝑑𝑠 = 1,2, … , 𝑆 (21) 

𝑊𝑗 = {
𝑊𝑗

𝑂2, 𝐸𝑗
𝑂2 < 𝐸𝑗

𝑊𝑗, 𝑒𝑙𝑠𝑒
 (22) 

𝑊𝑗
𝑂2 represents the new recommended location of the 𝑗th bird based on stage 2 

of KO, where 𝑤𝑗,𝑐
𝑂2 is its 𝑐th element, 𝐸𝑗

𝑂2 is it OF value, 𝑠 is the algorithm’s iteration 

timer, and 𝑆 is the most numeral of iterations. 

KO-PSVM: This hybrid approach captures complex relationships in the data, 

yielding robust predictions and actionable insights to support interventions in 
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educational settings. The KO-PSVM algorithm 1 initializes a population of 

kookaburras and iteratively updates their positions based on exploration and 

exploitation strategies to optimize the objective function. After training a PSVM using 

the optimized parameters, it predicts the psycho-stress levels of new student data. 

Algorithm 1 KO-PSVM 

1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐾𝑂 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
2:   𝐼𝑛𝑝𝑢𝑡: 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 𝑀,𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑛,𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑆 
3:   𝑊 =  𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 
4: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 
5:   𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘𝑜𝑜𝑘𝑎𝑏𝑢𝑟𝑟𝑎 𝑊𝑗  𝑖𝑛 𝑊: 

6: 𝐸𝑗 =  𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊_𝑗) 

7:𝐹𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 =  1 𝑡𝑜 𝑆: 
8:    𝑎. 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑃ℎ𝑎𝑠𝑒 (𝐻𝑢𝑛𝑡𝑖𝑛𝑔 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦) 
9:       𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘𝑜𝑜𝑘𝑎𝑏𝑢𝑟𝑟𝑎 𝑊𝑗: 

10: 𝐷𝑂𝑗 = {𝑊𝑙: 𝐸𝑙 < 𝐸𝑗𝑎𝑛𝑑𝑙 ≠ 𝑗}, 𝑤ℎ𝑒𝑟𝑒𝑗 = 1,2, . . , 𝑀𝑎𝑛𝑑𝑙𝜖{1,2, . . , 𝑀} 

11:           𝐶ℎ𝑜𝑜𝑠𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑟𝑒𝑦 𝑊𝑗𝑓𝑟𝑜𝑚 𝐷𝑂_𝑗 

12:           𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑝𝑟𝑒𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

13: 𝑤𝑗,𝑐
𝑂1 = 𝑤𝑗,𝑐 + 𝑞. (𝑆𝐶𝑃𝑗,𝑐 − 𝐽.𝑤𝑗,𝑐), 𝑗 = 1,2, . . , 𝑀, 𝑎𝑛𝑑𝑐 = 1,2, … 𝑛 

14:           𝐼𝑓 𝐸𝑗
𝑂1 <  𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊𝑗

𝑂1): 

15: 𝑊𝑗 = 𝑊𝑗
𝑂1 

16:   𝑏. 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑃ℎ𝑎𝑠𝑒 (𝐸𝑛𝑠𝑢𝑟𝑖𝑛𝑔 𝑃𝑟𝑒𝑦 𝐼𝑠 𝐾𝑖𝑙𝑙𝑒𝑑) 
17:       𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘𝑜𝑜𝑘𝑎𝑏𝑢𝑟𝑟𝑎 𝑊_𝑗: 

18: 𝑤𝑗,𝑐
𝑂2 = 𝑤𝑗,𝑐+)(1 − 2𝑞).

(𝑣𝑎𝑐−𝑘𝑎𝑐)

𝑠
, 𝑗 = 1,2, … ,𝑀, 𝑐 = 1,2, … , 𝑛, 𝑎𝑛𝑑𝑠 = 1,2, … , 𝑆) 

19:           𝐼𝑓 𝐸𝑗
𝑂2 <  𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊𝑗

𝑂2): 

20: 𝑊𝑗  =  𝑊𝑗
𝑂2 

21: 𝑇𝑟𝑎𝑖𝑛 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 
22:    𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑅 =  {𝑊𝑖 , 𝑍𝑖}  
23:   𝑆𝑜𝑙𝑣𝑒 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑎 𝑎𝑛𝑑 𝑥  
24:   𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑢𝑎𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
25: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑝𝑠𝑦𝑐ℎ𝑜 𝑠𝑡𝑟𝑒𝑠𝑠 𝑙𝑒𝑣𝑒𝑙 𝑢𝑠𝑖𝑛𝑔 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑃𝑆𝑉𝑀 𝑚𝑜𝑑𝑒𝑙 
26:   𝐼𝑛𝑝𝑢𝑡: 𝑁𝑒𝑤 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑑𝑎𝑡𝑎 
27:   𝑂𝑢𝑡𝑝𝑢𝑡: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑠𝑦𝑐ℎ𝑜 − 𝑠𝑡𝑟𝑒𝑠𝑠 𝑙𝑒𝑣𝑒𝑙 

4. Experimental result 

This section discusses the system configuration for detecting mental stress, 

evaluation metrics, and performance results of the proposed KO-PSVM model. It also 

compares the KO-PSVM with existing methods highlighting its superior performance.  

4.1. System configuration 

The system designed for detecting mental stress through Pulse Rate Variability 

(PRV) analysis features an Intel Core i7-1200K processor with 32 GB of DDR4 RAM 

and a 1 TB NVMe SSD, supported by a 2 TB HDD for data storage. It utilizes an 

NVIDIA RTX 3080 GPU to accelerate ML tasks and operates on Ubuntu 22.04 LTS. 

Key software includes Python 3.10, along with libraries like NumPy, pandas, and sci-

kit-learn for data processing and ML. 
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4.2. Evaluation metrics 

The performance of the suggested methods in detecting the psycho-stress level 

of students is estimated using various metrics including F1-Score, precision, accuracy, 

and recall. 

• Accuracy: It represents the ratio of every result to precisely anticipated 

observations. The whole sample size is separated by the sum of the True negative 

(TN) and True positive (TP) values to regulate accuracy (Equation (23)). False 

Positive (FP) and False Negative (FN). 

Accuracy =
TP + TN

TP + TN + FN + FP
 (23) 

• Precision: The measure expresses the degree of accuracy of the positive forecast 

as the proportion of TP to the whole of FP and TP. This is crucial for applications 

where false positives can lead to significant issues (Equation (24)). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (24) 

• Recall: It is calculated to assess a model’s capacity to recognize all pertinent 

cases. It is essential for applications where missing a positive occurrence is 

critical. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (25) 

• F1-Score: It is the precision and recall’s harmonic mean considering, that a single 

score stability both objectives. It is available in extremely helpful while working 

with unbalanced datasets. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (26) 

4.3. Output phase 

The KO-PSVM model demonstrated strong performance in stress detection, with 

a superior accuracy of 92%. It achieved 80% precision, indicating a reliable proportion 

of TP predictions. The recall rate was high at 98%, indicating its ability to identify 

nearly all stress cases. The F1-Score of 88% balanced precision and recall, making the 

KO-PSVM a highly effective model for identifying emotional and cognitive states in 

educational contexts (Table 1). 

Table 1. Output of the proposed method. 

Method Precision (%) Accuracy (%) F1-Score (%) Recall (%) 

KO-PSVM [Proposed] 80 92 88 98 

4.4. Comparison phase 

The suggested method is compared with the traditional methods including Naïve 

Bayes [18] and Sequential Minimal Optimization (SMO) [19] in detecting the psycho-

stress level of students. 
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Table 2 and Figure 3 present a comparison of the accuracy of three different 

methods used in the study. They NBattained an accuracy of 90.00%, demonstrating a 

strong performance in correctly classifying instances. The SMO method, however, 

performed significantly lower, with an accuracy of 69.23%, indicating its limitations 

in this context. In contrast, the proposed KO-PSVM surpassed both; attaining an 

impressive accuracy of 92%. This result indicates the effectiveness of the KO-PSVM 

method in accurately detecting stress levels based on the data, positioning it as a 

superior choice compared to the other methods evaluated. 

Table 2. Accuracy comparison. 

Method Accuracy (%) 

Naïve Bayes [24] 90.00 

SMO  69.23 

KO-PSVM [Proposed] 92 

 
Figure 3. Comparison of model performance in terms of accuracy. 

Table 3 and Figure 4 compare the precision of the three classification methods. 

Precision measures the ratio of TP results between all positive forecasts, which is 

crucial for assessing the reliability of the classifiers. The NB achieved a precision of 

78.41%, indicating that it properly identified an important number of positive cases 

but still had room for improvement. The SMO method lagged with a precision of 

69.20%, suggesting the rate of false positives. Conversely, the proposed KO-PSVM 

achieved a precision of 80%, representing its enhanced capability to correctly identify 

TP cases while minimizing false positives, thereby reinforcing its effectiveness in 

stress detection tasks. 

Table 3. Precision comparison. 

Method Precision (%) 

Naïve Bayes [24] 78.41 

SMO  69.2 

KO-PSVM [Proposed] 80 
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Figure 4. Comparison of model performance in terms of precision. 

Table 4 and Figure 5 outline the recall rates of the three classifiers, which 

measure the ratio of definite positive cases that were properly recognized. The NB 

demonstrated a high recall of 97.18%, suggesting it was very effective in detaining 

most of the TP instances. In contrast, the SMO method exhibited a much lower recall 

of 69.20%, indicating it missed a considerable number of TP cases. The proposed KO-

PSVM outperformed both, achieving a recall rate of 98%, which indicates its 

exceptional ability to identify nearly all actual stress cases in the dataset. This 

performance emphasizes the KO-PSVM’s effectiveness in scenarios where detecting 

as many true positives as possible is critical. 

Table 4. Recall comparison. 

Method Recall (%) 

Naïve Bayes [24] 97.18 

SMO  69.2 

KO-PSVM [Proposed] 98 

 
Figure 5. Comparison of model performance in terms of recall. 

Table 5 and Figure 6 offer a contrast of the F1-Scores for the different category 

techniques. This metric is especially functional for comparing models whilst there may 

be an uneven class distribution. The NB classifier recorded an F1-Score of 86.79%, 
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reflecting a very good balance between precision and recall. The SMO approach, 

however, demonstrates a lower F1-Score of 81.8%, highlighting its weaknesses in both 

precision and recall. The proposed KO-PSVM performed the highest F1-Score of 

88%, illustrating its strong overall performance in preserving a high stage. This 

superior F1-Score suggests that the KO-PSVM no longer excels at identifying real 

positives but also does so reliably, making it a distinctly powerful approach for stress 

detection. 

Table 5. F1-Score comparison. 

Method F1-Score (%) 

Naïve Bayes [24] 86.79 

SMO  81.8 

KO-PSVM [Proposed] 88 

 
Figure 6. Comparison of model performance in terms of F1-Score. 

5. Discussion 

There are many limitations with the Sequential Minimal Optimization (SMO) and 

Naïve Bayes (NB) methods. Although SMO works well for training, Support Vector 

Machines (SVM) have struggled with large, noisy datasets that are typical of 

biosensing applications. This results in higher computing costs and slower processing 

speeds. Its total performance also depends heavily on selecting the appropriate kernel, 

which can be challenging when dealing with complex biosensing data. In difference, 

NBassumes feature independence, which is unrealistic in psychoanalytical data since 

physiological signals (e.g., skin conductivity, heart rate) are often interdependent. 

Naïve Bayes makes the improbable assumption that features are conditionally 

unbiased in many real-world situations, which could severely reduce its predicting 

accuracy when features are correlated. Although NB is effective for categorical data, 

it has trouble with non-stop variables until they are roughly represented by a 

distribution such as Gaussian, which may not always accurately reflect reality. 

Additionally, NB suffers from poor performance on minority training due to its 

sensitivity to elegance imbalances, which frequently favor the greater approach in 

imbalanced datasets. Lastly, given short datasets, either strategy may exhibit poor 

generalization, with SMO perhaps failing to identify an effective decision boundary 
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because of constrained data and Naïve Bayes failing to accurately estimate 

probabilities. The limitations of NB and SMO in biosensing applications are addressed 

by the KOO-PK-SVM. In addition to SVM optimization, the Kookaburra Optimizer 

improves computing performance and handles larger, noisier datasets than SMO. 

Because of its independence assumption, Naïve Bayes is unable to recognize the 

distinctive interdependencies in biosensing data that the Poly-Kernel addresses. 

Additionally, KOO-PK-SVM effectively manages class imbalances, enhancing the 

overall performance of minority classes. It improves psychoanalytical predictions in 

education by providing greater generalization on limited datasets, ensuring precise 

decision boundaries, and providing reliable possibility estimation. 

6. Conclusion 

This examination highlights the transformative function of the biosensing era in 

psychoanalysis, specifically in the context of enhancing ideological and political 

training. By utilizing the KO-PSVM, the studies efficiently recognized and analyzed 

students’ emotional and cognitive states, accomplishing excessive performance 

metrics, which include 92% accuracy, 98% recall, 80% precision, and 88% F1-Score. 

These findings underscore the potential of biosensing devices to create greater 

personalized and powerful learning surroundings, facilitating deeper engagement with 

complicated ideological content material. The integration of real-time statistics 

analysis not only enriches educational methodologies but also additionally educators 

to reply greater dynamically to students’ psychological needs. Ultimately, this 

examination paves the way for destiny improvements in instructional practices that 

leverage the era to foster meaningful learning reviews. 

Limitation and future work: The limitations include an undersized sample size of 

27 participants, which affects the generalizability of the result, and the reliance on a 

single biosensor type, probably overlooking different physiological signs. Future 

research must aim to amplify the pattern size and contain numerous biosensing 

technologies, such as EEG and ECG, to create a more comprehensive expertise on 

mental pressure. Additionally, exploring the mixing of actual-time information 

processing and system mastering strategies should decorate the adaptability of 

instructional techniques, fostering a greater responsive mastering environment tailored 

to male or woman pupil desires. 
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