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Abstract: With the rapid development of information technology, cybersecurity issues have 

become increasingly prominent, posing serious threats to national security, economic growth, 

and personal privacy. Intrusion detection systems have been widely applied to ensure network 

security and prevent malicious cyber-attacks. In intrusion detection, redundant and irrelevant 

features not only slow down the classification process but also hinder classifiers from making 

accurate decisions, resulting in decreased system performance. Addressing the problem of low 

accuracy in intrusion detection systems due to high-dimensional datasets, we propose a 

network intrusion detection method based on an enhanced Rime Optimization Algorithm for 

feature selection. Firstly, building upon the traditional Rime Optimization Algorithm, we 

introduce Cauchy mutation and differential mutation operations to improve both global and 

local search capabilities. Cauchy mutation introduces a heavy-tailed distribution to increase the 

probability of escaping local optima, while differential mutation, through the differential 

operator, further enhances solution diversity and algorithm convergence speed. Combining the 

two mutation operations, the optimization algorithm achieves a good balance between global 

search and local search, effectively avoids premature convergence and falling into local 

optimum, and effectively improves the feature selection results. Secondly, the improved Rime 

optimization algorithm (IRIME) was applied to the feature selection process of intrusion 

detection system, and it was combined with the decision tree classifier to construct a wrapper 

feature selection algorithm, which could directly optimize the classification task and avoid the 

mismatch between feature selection and classifier. The optimized algorithm can quickly select 

the most representative feature subset from the high-dimensional feature space, significantly 

reducing the computational cost. At the same time, the selected feature subset can more 

accurately reflect the inherent law of the data set, thereby improving the prediction accuracy 

of the classifier. Finally, NSL-KDD and UNSW-NB15 datasets were used for performance 

evaluation. Experimental results show that compared with several feature selection algorithms, 

the proposed method achieves the best binary classification performance after feature selection. 

Specifically, it is superior to other algorithms in terms of precision, accuracy, F1 score and 

recall of all evaluation metrics. 

Keywords: rime optimization algorithm; differential mutation; Cauchy mutation; feature 

selection; intrusion detection 

1. Introduction 

Cybersecurity issues are becoming increasingly prominent with the rapid 

development and widespread application of Internet technology. Network intrusion 

behaviors exhibit a trend towards diversity and complexity, rendering traditional 

security measures such as firewalls and intrusion prevention systems ineffective 

against new network attacks [1]. Intrusion detection technology, a proactive defense 

mechanism in cybersecurity, has garnered widespread attention and research in recent 
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years. IDS (Intrusion Detection Systems) use specific devices or application software 

to predict malicious traffic behaviors within networks. The primary function of IDS is 

to analyze network traffic or system logs deeply, identify potential abnormal behaviors, 

and promptly issue alerts so that administrators can take corresponding defensive 

measures. This proactive defense approach effectively supplements the shortcomings 

of traditional security measures like firewalls and intrusion prevention systems in 

combating new network attacks, thereby crucial in ensuring network security. 

Traditional intrusion detection methods mainly include signature-based detection 

and anomaly-based detection. Signature-based detection methods identify intrusion 

behaviors by matching predefined attack features or patterns. These signatures 

represent known attack characteristics or rules, typically created by security experts 

based on historical attack data. This method excels in accurately detecting known 

attacks with low false positive rates. However, its drawback lies in its inability to 

detect unknown or variant attacks not included in the predefined signature database. 

Anomaly-based detection methods establish a baseline of normal behavior and 

identify potential intrusions by detecting deviations from this baseline. While capable 

of detecting unknown and novel attacks, this method produces higher false positive 

rates because certain normal behavioral changes may be mistaken for attacks [2]. 

In the context of intrusion detection, high-dimensional data often contain 

numerous redundant or irrelevant features that may impede classification speed and 

diminish accuracy. Therefore, data dimensionality is a critical factor in intrusion 

detection. In the era of big data, reducing the dimensions of large datasets is crucial 

for improving the performance of classification systems [3,4]. Dimensionality 

reduction is a key challenge for any artificial intelligence system to overcome the so-

called “curse of dimensionality”. One approach to achieving dimensionality reduction 

is feature selection (FS), which involves eliminating unnecessary features such as 

irrelevant and redundant ones [5]. Thus, a fundamental preprocessing step in any data 

mining system is the feature selection process, aiming to obtain a minimal feature 

subset that maximizes classification performance. FS has been applied in various 

classification systems including medical diagnostics [6], malware detection [7], EEG 

signal denoising [8], biometrics [9], software defects [10], sports [11], and IDS [12]. 

Given that IDS (Intrusion Detection Systems) handle vast amounts of data, which 

may include false positives and unnecessary or repetitive features, a reliable feature 

selection method is crucial for boosting accuracy and speeding up training and testing 

processes. By selecting optimal features, IDS systems can lower processing expenses, 

cut down on storage needs, and enhance comprehension of test data. As emphasized 

by Mohammadi et al. [2], relevant features contain vital information that significantly 

aids in the classification task. 

Feature selection methods primarily fall into three categories: Filter Method, 

Wrapper Method, and Embedded Method. Each method has its unique characteristics 

and applications. The Filter Method selects features before model training, 

independent of any machine learning algorithm, by evaluating the importance of each 

feature using statistical and scoring criteria. This method is fast and simple, suitable 

for high-dimensional datasets. Common filter methods include variance thresholding, 

correlation coefficient, chi-square test, information gain, and mutual information. The 

Wrapper Method evaluates the effectiveness of feature sets using specific machine 
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learning algorithms, typically through iterative searching to find the optimal feature 

subset. Although computationally costly, this method often provides better 

performance. Common wrapper methods include recursive feature elimination, 

forward selection, backward elimination, and exhaustive search. The Embedded 

Method performs feature selection during the model training process, synchronously 

with feature selection. Embedded methods typically utilize the internal mechanisms 

of models to evaluate feature importance. Common embedded methods include Lasso 

regression, decision trees, random forests, gradient boosting trees, etc. 

Metaheuristic algorithms are predominantly employed in feature selection for 

intrusion detection systems, owing to their adaptive searching strategies and ability to 

explore the entire solution space [13]. Swarm Intelligence, drawing inspiration from 

insect and bee collective behaviors, represents a method of artificial intelligence 

tailored for tackling intricate problems. Examples commonly found in literature for 

delivering satisfactory solutions in feature selection include Particle Swarm 

Optimization (PSO) [14], Grey Wolf Optimization (GWO) [15], Harris Hawks 

Optimization (HHO) [16], Multi-Verse Optimization (MVO) [17], and Dual Throat 

Optimization (DTO) [18] algorithms. The Rime Optimization Algorithm (RIME) [19] 

used in this paper is a nature-inspired intelligent optimization algorithm that simulates 

the process of frost growth. It possesses excellent global search capabilities and 

adaptability, is simple to implement, and has robust parallel computing capabilities, 

thus offering significant advantages in solving complex optimization problems. 

However, all metaheuristic optimization algorithms must strike a balance between 

exploration and exploitation stages to avoid falling into local optima or failing to 

converge. The stochastic nature inherent in metaheuristic algorithmic solutions also 

poses challenges. To address this issue, this paper incorporates differential mutation 

and Cauchy mutation into the Rime Optimization Algorithm to avoid local optima. 

This paper presents a wrapper-based approach to address feature selection (FS) 

challenges in Intrusion Detection Systems (IDS). It employs an enhanced version of 

the Rime Optimization Algorithm to identify the optimal set of features and employs 

the Decision Tree (DT) algorithm, a popular machine learning tool for classification, 

to evaluate the effectiveness of the selected feature set. The organization of this paper 

is as follows: Section 2 discusses recent research on feature selection methods that 

utilize intelligent optimization algorithms. Section 3 details the proposed methodology. 

Section 4 analyzes experimental results to validate the effectiveness of the proposed 

method. Finally, Section 5 summarizes the main findings and suggests directions for 

future research. 

2. Literature review 

Feature Selection is a vital data mining technique [20], and in recent times, there 

has been a growing focus on FS methods aimed at identifying malicious network 

attacks [21]. This is due to the detrimental impacts of network attacks on diverse 

systems, which can affect businesses, organizations, and even society at large [22]. 

Among the various technologies and algorithms developed, the incorporation of 

swarm intelligence and machine learning (classification) algorithms has significantly 

improved the detection precision of these methods. 
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Xue et al. [23] introduced a strategy to tackle large and intricate datasets 

characterized by numerous noisy features and multiple local optima within the feature 

space. Their approach is rooted in the Multi-Classifier Adaptive Parameter Particle 

Swarm Optimization (SPS-PSO) algorithm. Within SPS-PSO, a specific solution 

format and five methods for generating individual candidate solutions (CSGS) are 

employed. This algorithm can modify the CSGS and their parameters when dealing 

with large-scale feature selection challenges. 

Chen et al. [24] proposed an innovative Particle Swarm Optimization (PSO) 

feature selection (FS) approach that iteratively enhances the quality of the population 

in each cycle. Guided by the relevance of current population information, an updated 

strategy is directed to generate superior solutions. Additionally, an agent-based 

solution selection strategy is employed to choose solutions with good convergence and 

diversity to form a new population. The results suggest that, in the majority of 

instances, this method is capable of choosing smaller feature sets while maintaining 

high classification accuracy. 

Bonab et al. [25] developed an IDS system that selects optimal features using a 

combination of the Fruit Fly Algorithm (FFA) and Ant Lion Optimization (ALO). 

Evaluations on datasets like KDDCUP99, NSL-KDD, and UNSW-NB15 showed 

impressive results in terms of accuracy and sensitivity. 

Zhou et al. [26] introduced a novel FS method, the Bat Algorithm (CFS-BA), 

based on ensemble learning and selecting relevant features. The CFS-BA algorithm 

determines the optimal feature subset by leveraging correlations between features. An 

ensemble classification system is built using classifiers like C4.5, RandomForest, and 

ForestPA.The results demonstrate accuracy levels of 99.8% for the NSL-KDD dataset, 

99.52% for the AWID (AI-based Wi-Fi intrusion dataset), and 99.52% for the CIC-

IDS2017 dataset. 

Fatani et al. [27] created a feature extraction technique utilizing Convolutional 

Neural Networks (CNN). They utilized the Aquila Optimization Algorithm (AQU) to 

select features across four well-known public datasets: CIC2017, NSL-KDD, BoT-

IoT, and KDD99. Comprehensive comparisons with various other optimization 

approaches, using diverse evaluation metrics, revealed that their method excelled in 

both multi-classification and binary classification contexts. 

Mojtahedi [28] and colleagues introduced a method for selecting features by 

integrating the Whale Optimization Algorithm (WOA) with the Genetic Algorithm 

(GA), tailored for sample-centric classification approaches in network intrusion 

detection systems. Standard datasets such as KDDCUP1999 were used, and 

experimental results demonstrated higher accuracy than previous methods. The Whale 

Optimization Algorithm and Genetic Algorithm are capable of efficiently identifying 

features associated with class labels, whereas the KNN method is utilized to detect 

anomalous behavior nodes within wireless network intrusion detection datasets. 

Nazir and Khan [29] introduced an FS method that combines Tabu Search with 

Random Forest (TS-RF). When tested on the UNSW-NB15 dataset, their method 

demonstrated enhanced classification accuracy, fewer selected features, and lower 

false positive rates. 

Maazalahi [30] and his team introduced a two-stage hybrid approach that 

combines machine learning techniques with metaheuristic algorithms. In the initial 
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stage, data preprocessing was conducted using population-based metaheuristic 

algorithms, namely Atomic Search Optimization (ASO) and Equilibrium 

Optimization (EO), for selecting features aimed at achieving global optimization. The 

subsequent stage focused on detecting attacks by employing K-means clustering along 

with the Firefly Algorithm (FA). The performance of the proposed method was 

evaluated on the NSL-KDD, UNSW-NB15, and KDD CUP99 datasets, demonstrating 

superior accuracy and efficiency compared to alternative methods. 

In summary, it is worth noting in the literature that there is no uniform feature or 

feature subset in the literature, and most papers only use performance metrics to define 

the fitness function, ignoring the number of features. Second, another challenge of 

using optimization problems for feature selection is the time complexity. Among other 

swarm intelligence algorithms, the Rime optimization algorithm is considered to be 

the best globally convergent algorithm. RIME algorithm is an innovative metaheuristic 

optimization technique, which ingeniously simulates the growth process of frost and 

ice in nature, especially the different formation mechanism of soft frost and hard frost, 

and constructs its unique search strategy based on it. In this process, the soft frost 

search strategy is designed to simulate the slow and uniform diffusion of frost and ice 

in the low temperature environment, which enables the algorithm to explore the 

solution space extensively in the initial stage to ensure that no potential high-quality 

solution regions are missed, while the hard frost piercing mechanism simulates the 

rapid and deep solidization of frost and ice under specific conditions. It enables the 

algorithm to accurately focus on those outstanding solution regions after exploring a 

certain depth, and perform deep mining and optimization. Furthermore, RIME 

innovates the traditional metaheuristic selection mechanism by introducing a positive 

greedy selection mechanism. The core of this mechanism is that it can dynamically 

evaluate the quality of the current solution and the possible improvement space in the 

future during the running of the algorithm, so as to avoid the premature convergence 

of the algorithm to the local optimal solution, the so-called “local optimum trap”. This 

mechanism not only enhances the global search ability of the algorithm, but also 

ensures that the algorithm can maintain a high degree of stability and robustness in the 

face of complex and multimodal optimization problems. Compared with classical 

algorithms such as Particle Swarm Optimization (PSO), Whale Optimization 

Algorithm (WOA), Harris Hawk Optimization (HHO) and Moth Flame Optimization 

(MFO), RIME algorithm shows significant advantages. Its fast convergence speed 

enables it to find high-quality solutions in a shorter time. At the same time, RIME 

achieves a more skillful balance between exploration and utilization of resources, 

which means that it cannot only fully explore the solution space to discover new 

possibilities, but also effectively use the existing information to refine and optimize 

the solution. Therefore, when facing complex and high-dimensional optimization 

problems, RIME algorithm not only shows stronger optimization ability, but also 

shows higher stability and reliability. These characteristics make RIME algorithm 

have broad application prospects and potential value in many fields such as feature 

selection, parameter optimization, function optimization and so on. 

Therefore, this paper introduces a feature selection approach tailored for intrusion 

detection systems, leveraging real-time optimization algorithms. The goal of this 

method is to enhance the precision and efficiency of intrusion detection by refining 
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the selection of feature subsets. Subsequently, a detailed description of the proposed 

method will be provided, encompassing data set collection and preprocessing, as well 

as the implementation of the RIME optimization algorithm and other crucial steps. 

3 Methodology 

3.1. Dataset collection 

3.1.1. NSL-KDD 

The KDD Cup 99 dataset originated from the 1999 International Knowledge 

Discovery and Data Mining Tools Competition (KDD Cup 1999) and is rooted in the 

DARPA 1998 intrusion detection evaluation initiative. Due to the excessive size and 

redundancy of the original dataset, researchers proposed an improved version, the 

NSL-KDD dataset. The NSL-KDD dataset removes duplicate records from the 

original KDD dataset, ensuring that classifiers do not achieve unfairly high accuracy 

due to repeated data. The NSL-KDD dataset is of moderate size, allowing researchers 

to conduct experiments without requiring substantial computational resources. The 

NSL-KDD dataset consists of 148,517 data records, with 125,973 records in the 

training set and 22,544 in the testing set. Each record contains 41 attributes, and the 

dataset labels indicate whether the network traffic record is normal or a type of attack. 

The number of normal and attack data is shown in Table 1. 

Table 1. Data distribution of the NSL-KDD dataset. 

Type Normal DoS Probe U2R R2L 

Training set 67,343 45,927 11,656 52 995 

Test set 9711 7458 2421 200 2754 

3.1.2. UNSW-NB15 

The UNSW-NB15 dataset was developed in 2015 by the University of New 

South Wales (UNSW) and the Australian Defence Force Academy (ADFA) 

specifically for network intrusion detection. This dataset was generated in a simulated 

network environment that included realistic modern user activities and various 

malicious attack behaviors. Tools used included IXIA Perfect Storm, which can 

generate network traffic. The UNSW-NB15 dataset covers various modern network 

attack types and includes rich feature information that can be used for the development 

and evaluation of intrusion detection systems. The UNSW-NB15 dataset comprises 

49 features per record and encompasses nine types of attacks along with normal traffic, 

as illustrated in Table 2. 

Table 2. Data distribution of the UNSW-NB15 dataset. 

Type Normal Fuzzers Analysis Backdoors DoS Exploits Generic Reconnaissance Shellcode Worms 

Training Set 56,000 18,184 2000 1746 12,264 33,393 40,000 10,491 1133 130 

Test Set 37,000 6062 677 583 4089 11,132 18,871 3496 378 44 

3.2. Dataset preprocessing 

Before proceeding with the training and testing process, several preprocessing 
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steps need to be applied to the dataset. First, class and data transmission are required 

to convert symbolic values into numerical ones. In the CLASS column, two types are 

designated: 0 for normal network traffic and 1 for malicious attack traffic. Data 

normalization, another crucial preprocessing step, adjusts or scales the data values of 

each feature to a certain range, thereby preventing any bias towards features with 

larger values within the dataset. Data normalization is performed using Equation (1) 

to normalize the datasets used to the range [0,1] [31]. 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑖𝑛𝑚𝑎𝑥
 (1) 

3.3. Rime optimization algorithm 

In 2023, Su et al. [19] were inspired by the frost growth mechanism in nature and 

proposed the Rime Optimization Algorithm, drawing inspiration from the natural frost 

growth mechanism. The algorithm uses the randomness of soft frost and the regularity 

of hard frost for searching, enhancing the algorithm’s performance through soft frost 

search strategies and hard frost puncture mechanisms. An active greedy selection 

mechanism is also applied to population updates to improve the quality of the global 

solution. 

3.3.1. Soft rime search strategy 

In a breeze-like setting, soft frost formation exhibits significant randomness, with 

frost particles freely covering a large portion of the substrate’s surface but growing 

slowly in a uniform direction. Drawing inspiration from this phenomenon, this study 

introduces a soft frost search strategy that capitalizes on the randomness and extensive 

coverage of frost particles. This allows the algorithm to efficiently explore the entire 

search space during initial iterations, avoiding local minima traps. The condensation 

of frost particles into soft frost agents is simulated, with the process of a single 

particle’s condensation illustrated in Figure 1a. The positions of these frost particles 

are determined using Equation (2). 

𝑅𝑖,𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗 + 𝑟1 ⋅ 𝑐𝑜𝑠 𝜃 ⋅ 𝛽(ℎ ⋅ (𝑈𝑏𝑖𝑗 − 𝐿𝑏𝑖𝑗) + 𝐿𝑏𝑖𝑗), 𝑟2 < 𝐸 (2) 

where
new

i , jR is the updated position of the particle, i and j represent the ith frost agent’s 

j-th particle.
best , jR is the j-th particle of the best frost agent in the frost population R. 

The parameter 1r  is a random number in the range (−1,1), which, together cos , 

controls the particle’s movement direction and changes with the number of iterations, 

as shown in Equation (3). 

𝜃 = 𝜋 ⋅
𝑡

10 ⋅ 𝑇
 (3) 

where t is the current number of iterations and T is the maximum number of iterations 

of the algorithm. 

 is an environmental factor that varies with the number of iterations to simulate 

the influence of external conditions, ensuring algorithm convergence, as shown in 

Equation (4). 
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𝛽 = 1 − [
𝑤 ⋅ 𝑡

𝑇
] /𝑤 (4) 

h represents adhesion and is a random number within the range (0,1); 
i , jUb and

i , jLb  denotes the upper and lower limits of the escape space, respectively; 2r  is a 

random number which E with co-controls whether the particle position is updated or 

not. 

E is the attachment coefficient, the expression shown in Equation (5), which 

affects the cohesion probability of an individual and increases with the number of 

iterations. 

𝐸 = √(𝑡/𝑇) (5) 

3.3.2. Hard rime puncture mechanism 

In high wind conditions, hard frost growth tends to be straightforward and 

predictable, whereas soft frost growth remains more unpredictable. Hard frost agents 

accumulate like snowballs in a uniform direction but are susceptible to penetration. 

Drawing from this penetration phenomenon, this study introduces a hard frost 

penetration mechanism designed for agent-to-agent updates within the algorithm. This 

mechanism facilitates particle exchange, enhancing the algorithm’s convergence 

speed and capacity to avoid local minima. The penetration phenomenon is illustrated 

in Figure 1b, and the equation governing particle substitution is provided in Equation 

(6). 

𝑅𝑖,𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗, 𝑟3 < 𝐹𝑛𝑜𝑟𝑚𝑟(𝑆𝑖) (6) 

where ( )normr

iF S [?] denotes the normalized value of the current agent fitness value, 

which indicates the probability that the ith rime agent is selected 3r , it is a random 

number in the interval (−1, 1). 

θ
D1

D2

D3

D4

θ
Z

X

0

Y

Sbest

 

D1

D2

D4

Z

X

0

Y

D3

 
(a) (b) 

Figure 1. Two stages of the rime optimization algorithm (a) soft frost search strategy; (b) hard frost puncture 

mechanism. 

3.3.3. Proactive greedy selection mechanism 

In metaheuristic optimization algorithms, the active greedy selection mechanism 
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is employed for updating the population. The core concept involves comparing the 

fitness value of an agent after an update with its fitness value before the update. If the 

updated fitness value surpasses the pre-update value, the updated agent takes the place 

of the pre-update agent. Subsequently, the fitness value of the current agent is 

compared to the optimal fitness value; if the current agent’s fitness value is superior, 

it replaces the optimal agent, and the optimal fitness value is accordingly updated. This 

mechanism is intended to bolster the algorithm’s ability to explore and exploit the 

global solution space while preserving its inherent strengths. Specifically, it focuses 

not only on the optimal result after a single update but also on potentially retaining 

some non-optimal individuals that help further discover potential good solutions, thus 

achieving better global optimization results. 

3.4. Improved rime optimization algorithm 

The key to obtaining high-quality global optimal solutions with the Rime 

Optimization Algorithm is whether the algorithm can escape local optima. To address 

the Rime Optimization Algorithm’s tendency to get stuck in local optima, a mutation 

strategy is employed to enhance population diversity, boost the algorithm’s ability to 

search globally, and broaden the exploration scope. 

The Cauchy distribution function features a narrow peak at the center and extends 

widely on both sides, making it suitable for data perturbation due to its heavy-tail 

characteristics. Therefore, this paper integrates the Cauchy operator to perturb the 

position of the optimal individual in the Rime Optimization Algorithm, fully utilizing 

the effects of mutation at both ends of the Cauchy distribution function to optimize the 

algorithm’s optimal individual, allowing the algorithm to achieve better global optima. 

This perturbation strategy not only maintains population diversity but also enhances the 

algorithm’s ability to escape local optima in global search. After obtaining the current 

optimal solution, the mutation operation is performed on the current global optimal 

solution using the update Equation (7) shown below. 

𝑅𝑏𝑒𝑠𝑡,𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗 + 𝑅𝑏𝑒𝑠𝑡,𝑗 ⋅ 𝑓(𝛼) (7) 

where ( )f   is calculated using the Cauchy distribution, as shown in Equation (8): 

𝑓(𝛼) =
1

𝜋
⋅

1

(1 + 𝛼2)
, 𝛼 ∈ (0,1) (8) 

To further enhance the algorithm’s exploration capability and avoid early 

convergence, this paper integrates the differential evolution algorithm into the algorithm. 

After applying the active greedy selection mechanism, the population undergoes 

mutation, crossover, and selection operations to increase diversity. This strategy not only 

helps the algorithm escape local optima but also explores a broader solution space during 

a global search. 

The way new individuals are generated by performing the mutation operation is 

shown in Equation (9): 

𝑆𝑖,𝑗 = 𝑅𝑟1,𝑗 +𝑀𝑅 ⋅ (𝑅𝑟2,𝑗 − 𝑅𝑟3,𝑗) (9) 

where subscripts r1, r2, r3 are randomly selected distinct integers from i; 1r , 2r , 3r ∈
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[0,N−1] and 
1r ≠

2r ≠
3r ; MR represents the mutation probability. 

The way new individuals are generated by performing the crossover operation is 

shown in Equation (10): 

𝑅𝑖,𝑗
𝑛𝑒𝑤 = {

𝑆𝑖,𝑗, 𝑅 ≤ 𝐶𝑅

𝑅𝑖,𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

where 
i , jS represents the value of the jth dimension of the new individual generated by 

the crossover mutation operation of the ith individual; i , jR represents the value of the jth 

dimension of the ith individual; CR is the crossover mutation probability; R is a random 

number between [0,1]. 

The individual is saved according to the greedy strategy, as shown in Equation 

(11): 

𝑅𝑖,𝑗 = {
𝑅𝑖,𝑗
𝑛𝑒𝑤 , 𝑓𝑖𝑡(𝑅𝑖,𝑗

𝑛𝑒𝑤) < 𝑓𝑖𝑡(𝑅𝑖,𝑗)

𝑅𝑖,𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

where ( )fit   is the fitness value calculation function. 

The process of intrusion detection feature selection by the improved optimization 

algorithm is as follows: First, the initial population is generated by the frost ice 

optimization algorithm, and each individual represents a feature selection scheme. 

According to the characteristics and requirements of the intrusion detection system, a 

fitness function is set to evaluate the pros and disadvantages of each feature selection 

scheme. In the mutation step, a new individual is created by adding the difference in 

vectors between any two individuals in the population to a third individual. In the 

crossover step, the parent individual and the experimental individual are crossed with 

a certain crossover probability to generate a new offspring individual. In the selection 

step, the fitness function is used to evaluate the advantages and disadvantages of the 

new individual and the parent individual, and the better individual is selected into the 

next generation population. Cauchy distribution is introduced into the mutation step 

of differential evolution operation to enhance the diversity and robustness of search. 

Specifically, a Cauchy distribution based random number can be introduced into the 

mutation operation to adjust the mutation step size and direction, which can make the 

algorithm easier to jump out of the local optimal solution in the search process and 

improve the global search ability. According to the results of the differential evolution 

strategy and the evaluation of the fitness function, the parameters and search strategy 

of the Frost ice optimization algorithm were constantly adjusted and optimized. The 

memory ability and dynamic tracking characteristics of the Frost ice optimization 

algorithm were used to adjust the search direction according to the current search 

situation to improve the search efficiency, and the differential evolution operation and 

the adjustment steps of the frost ice optimization algorithm were repeated. Until the 

preset number of iterations is reached or the fitness function value meets certain 

stopping conditions, the optimal feature selection scheme is output for the practical 

application of intrusion detection system. The pseudocode of the algorithm is shown in 

Algorithm 1. 
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Algorithm 1 Pseudo-code of IRIME 

1: Input: maximum number of iterations T, population size 𝑛𝑢𝑚, solution length 𝑑𝑖𝑚 

2: Output: Global Solution Rbest 

3: Initialize the rime population R 

4: Get the current optimal agent and optimal fitness 

5: While t T=  

6:     Perform Cauchy mutation on the optimal agent 

7:     Coefficient of adherence ( )E t / T=  

8:         If 
2r E  

9:            Update the position of the rime agent by the soft-rime search strategy 

10:       End If 

11:       If r3 < Normalize fitness of iS  

12:          Cross-updating between agents by the hard-rime puncture mechanism 

13:       End If 

14:       If ( ) ( )new

i iF R F R  

15:          Select the optimal solution and replace the suboptimal solution using the positive greedy selection mechanism 

16:      End If 

17:      Perform differential mutation on the entire population and perform a greedy strategy to select the new optimal agent 

18:   1t t= +  

19: End While 

3.5. The proposed feature selection approach 

The fitness or cost function is used to assess the quality of a solution. Feature 

selection methods aim to maximize classification accuracy while reducing the number 

of selected features and error rates. Thus, the fitness function evaluates the selected 

feature subset based on accuracy and the number of features. Equation (12) represents 

the fitness function used in this algorithm’s optimization process. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡1 ⋅ (1 − 𝐴𝐶𝐶) + 𝑤𝑒𝑖𝑔ℎ𝑡2 ⋅
𝑆𝐹

𝑇𝐹
 (12) 

where fitness represents the fitness function value; ACC represents the accuracy; SF 

represents the number of selected features, and TF represents the total number of 

features; The sum iweight must equal 1, and the values of the weights are set to weight1 

= 0.99 and weight1 = 0.01. 

The initial RIME algorithm was designed for ongoing optimization tasks. 

However, feature selection works within a binary context, requiring specific operators 

to modify the RIME algorithm for binary optimization. The proposed RIME feature 

selection algorithm defines a solution as a fixed-length vector (matching the number 

of features), with initial values at each position randomly assigned between 0 and 1. 

To determine the optimal set of features, an S-shaped function is commonly utilized 

to convert the obtained optimal solution into binary values of 0 or 1. Specifically, a 

value of 0 means the corresponding feature is not chosen, while a value of 1 means it 

is selected. The S-shaped function is detailed in Equation (13). 

𝑋𝑖,𝑗
𝑡 = {

0, 𝑆(𝑋𝑖,𝑗
𝑡 ) < 𝑅

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

where R is a random number between [0, 1]; The definition ( )S  is shown in Equation 
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(14): 

𝑆(𝑥) =
1

1 + 𝑒−𝑥
 (14) 

After the binarization operation, the fitness function proposed above is used to 

evaluate the current solution (i.e., the feature subset). In feature selection problems, 

the fitness function is usually defined based on the performance of the selected features 

on tasks such as classification, regression, or clustering. RIME algorithm performs 

global search in the search space by simulating the growth mechanism of rime. In each 

iteration, the algorithm will perform crystal growth, selection, crossover and mutation 

operations on the individuals in the population to generate new individuals. These 

operations aim to retain excellent feature combinations while exploring new feature 

combination space. The algorithm ends and outputs the optimal solution. 

In the RIME feature selection algorithm, the importance of different features can 

be analyzed in the following way: 

A. Final selected features: 

After the algorithm, the final selected feature subset is usually the most important 

set of features. These features have a high contribution in tasks such as classification, 

regression or clustering. 

B. Feature frequency: 

During the running of the algorithm, it is possible to record how often each 

feature is selected. Features with higher frequencies are generally more important 

because they are preserved across different solutions. 

C. Feature contribution: 

Model-based feature importance evaluation methods can be used to quantify the 

contribution of each feature. These methods provide more specific measures of feature 

importance that help to understand the impact of each feature on model performance. 

D. Key feature identification: 

By analyzing the final selected feature subset and feature contribution, the 

features that play a key role in improving the detection accuracy can be identified. 

These features usually have high contribution and selection frequency, and show good 

performance across different datasets and tasks. 

Figure 2 shows the feature selection mechanism based on the improved binary 

RIME. 
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Figure 2. Feature selection mechanism based on improved binary RIME. 

4. Experimental results 

4.1. Experimental setup 

The experiments took place on a Windows 11 laptop equipped with a 2.60GHz 

Intel Core i5 processor and 16 GB of RAM, using Python as the programming tool. In 

this paper, a Decision Tree (DT) model was utilized to train and evaluate the feature 

subset suggested by the proposed feature selection approach. Additionally, the 
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proposed feature selection algorithms were compared against several others derived 

from recent related research. 

4.2. Evaluation results 

4.2.1. Performance test of IRIME 

To experimentally verify the effectiveness of the proposed IRIME algorithm, six 

internationally commonly used benchmark test functions were selected for simulation 

experiments, as shown in Table 3: 

Table 3. Test function parameter design table. 

Function number function expression dimensionality Variable Range Values optimum value 

F1 

 

30 [-100,100] 0 

F2 

 

30 [-10,10] 0 

F3 

 

30 [-100,100] 0 

F4 
 

30 [-10,10] 0 

F5 ( ) ( ) ( )
1

2 22

5 1

1

100 1
n

i i i

i

f x x x x
−

+

=

 = − + −
  

 

30 [-30,30] 0 

F6 ( )  
2

6

1

0 5
n

i

i

f x x .
=

= +
 

30 [-100,100] 0 

Figure 3 shows the comparison of convergence curves between RIME and 

IRIME on six test functions. It can be seen from the figure that the IRIME algorithm 

quickly finds the global optimal solution, converging faster and with higher search 

accuracy than the RIME algorithm, demonstrating superior performance. The IRIME 

algorithm has significant advantages, accelerating global convergence to some extent, 

quickly focusing on the optimal region for exploration, and easily bypassing the 

stability of the algorithm in local optima, ensuring fast convergence speed and high 

precision.  

( ) 2

1

1

n

i

i

f x x
=

=

( )2 1

1
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n

i i i

i

f x x x=

=
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( )

2

3

1 1

n i

j

i j

f x x
= −

 
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 
 

( )  4 max ,1i if x x i n=  
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Figure 3. Comparison of algorithm convergence curves. 

4.2.2. Performance test of IRIME feature selection method 

In this section, we evaluate the IRIME feature selection algorithm using two 

datasets: NSL-KDD and UNSW-NB15. Our initial tests on these datasets involved 

applying a Decision Tree (DT) classifier without feature selection (FS). Table 4 shows 

the performance of the DT classifier without FS on both datasets. The NSL-KDD 

dataset, used first to assess the proposed FS algorithms, is an improved version of the 

KDDCUP 99 dataset and retains its feature set. Table 4 outlines the feature sets 

selected from the NSL-KDD dataset by various FS algorithms, including our proposed 

method. As noted in Table 4, each FS algorithm picks a varying number of features. 

Table 4. Performance of DT without feature selection on two datasets. 

Dataset accuracy precision recall f-score 

NSL-KDD 0.797 0.812 0.813 0.797 

UNSW-NB15 0.895 0.874 0.913 0.886 

The algorithm was benchmarked against the Particle Swarm Optimization and 

Harris Hawk Optimization algorithms, which are frequently employed in network 

intrusion detection systems. The assessment of all feature selection algorithms was 

conducted using the Decision Tree (DT) classifier from Python’s sci-kit-learn library, 

given DT’s superior handling of feature interactions compared to other basic 

classifiers. To maintain consistency, identical data preprocessing steps were applied 
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across all algorithms under investigation. It’s important to note that the experimental 

outcomes may vary from those reported in prior research. 

The NSL-KDD dataset, used as the primary dataset for assessing the proposed 

feature selection algorithm, is an improved version of the KDDCUP 99 dataset that 

retains its original features. Table 5 lists the feature sets selected by various feature 

selection algorithms, including the proposed method, from the NSL-KDD dataset. As 

shown in Table 5, each algorithm picks a different number of features. 

Table 5. Selected feature subsets of different algorithms on the NSL-KDD Dataset. 

Reference Technique Number Selected set of features 

[32] Hybrid association rules 11 [2, 5, 6, 7,12, 16, 23, 28, 31, 36, 37] 

[33] IGFS 8 [5, 3, 6, 4, 30, 29, 33, 34] 

[34] PSOFS 37 
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17,18, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41] 

[35] CosinePIOFS 5 [2, 6, 10, 22, 27] 

[36] CossimMFOFS 4 [2, 6, 10, 22] 

Proposed approach RIMEFS 18 [0, 2, 5, 8, 10, 12, 14, 17, 19, 20, 21, 22, 24, 25, 28, 31, 37, 39] 

Proposed approach IRIMEFS 17 [0, 2, 4, 5, 7, 8, 12, 13, 18, 22, 23, 26, 28, 29, 30, 31, 38] 

Table 6 displays the mean outcomes of training and testing the DT classifier 30 

times, utilizing the features picked by each algorithm as shown in Table 5 on the NSL-

KDD dataset. It compares the accuracy, precision, recall, and F-Score metrics. As 

shown in Table 6, the proposed IRIME algorithm achieves the highest recall, while 

the Hybrid Association algorithm achieves the lowest. Accuracy and F-Score are good 

indicators for comparing the algorithms being tested, with IRIME achieving the best 

results with accuracy and F-Score values of 0.901 and 0.900, respectively. RIME 

achieves the second-best results with values of 0.895 and 0.895, respectively, while 

CossimMFO ranks third in accuracy and F-Score compared to other algorithms listed 

in Table 6. 

Table 6. Performance comparison of various feature selection algorithms based on 

decision trees on the NSL-KDD dataset. 

Approach Accuracy Precision Recall f-score 

Hybrid association rules 0.796 0.758 0.665 0.795 

IGFS 0.808 0.706 0.707 0.808 

PSOFS 0.782 0.774 0.637 0.781 

CosinePIOFS 0.883 0.873 0.866 0.882 

CossimMFOFS 0.897 0.892 0.891 0.892 

RIMEFS 0.898 0.894 0.902 0.895 

IRIMEFS 0.901 0.899 0.907 0.900 

UNSW-NB15 serves as the second dataset in this paper for evaluating the 

proposed IRIME feature selection algorithm. Table 7 presents the feature subsets 

selected from the UNSW-NB15 dataset by five different feature selection algorithms, 

including the proposed IRIME algorithm. Each row details the number of chosen 
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features, their respective indices, and the selection method used. The indices can be 

matched to the corresponding feature names listed in Table 7. 

Table 7. Selected feature subsets of different algorithms on the UNSW-NB15 dataset. 

Reference Technique Number Selected set of features 

[32] Hybrid association rules 11 [6, 10, 11, 19, 20, 27, 34, 37, 42, 44, 46] 

[34] PSOFS 19 
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17,18, 20, 21, 22, 23, 24, 25, 26, 27, 

28, 29, 31,32, 33, 34, 35, 36, 37, 38, 39, 40, 41] 

[37] Rule-based 13 [5, 8, 9, 10, 13, 14, 32, 41, 42, 43, 45, 46, 47] 

[35] CosinePIOFS 5 [2, 6, 10, 22, 27] 

[36] CossimMFOFS 4 [3, 4, 8, 12] 

Proposed approach RIMEFS 10 [1, 2, 3, 6, 10, 14, 26, 29, 31, 34] 

Proposed approach IRIMEFS 8 [1, 2, 4, 6, 14, 29, 31, 34] 

Table 8 presents the average training and testing results of the DT classifier, 

which was run 30 times using the features selected by each algorithm from the UNSW-

NB15 dataset as shown in Table 7. The results indicate that the proposed IRIME 

algorithm outperforms other feature selection methods, achieving the highest precision 

(0.912) and recall (0.943). Additionally, IRIME yields the best accuracy (0.942) and 

F-Score (0.923) among all the algorithms. 

Table 8. Performance comparison of various feature selection algorithms based on 

decision trees on the UNSW-NB15 dataset. 

Approach  Accuracy Precision Recall f-score 

Hybrid association rules 0.792 0.758 0.721 0.784 

PSOFS 0.895 0.852 0.863 0.886 

Rule-Based 0.884 0.831 0.889 0.870 

CosinePIOFS 0.924 0.876 0.921 0.942 

CossimMFOFS 0.917 0.865 0.894 0.909 

RIMEFS 0.923 0.903 0.935 0.915 

IRIMEFS 0.942 0.912 0.943 0.923 

When dealing with NSL-KDD and UNSW-NB15 datasets, IRIME algorithm 

significantly enhances its global search ability by incorporating Cauchy mutation 

technology, while maintaining efficient search performance. As a heuristic search 

strategy, Cauchy mutation uses Cauchy distribution to generate larger mutation step 

size, which effectively broaden the search range of the algorithm. In the feature 

selection task, this property enables the IRIME algorithm to easily jump out of local 

optimal solutions and explore more potential feature combinations. At the same time, 

IRIME algorithm also uses differential evolution strategy to generate and screen out 

better solutions by simulating the mutation, crossover and selection mechanism in the 

process of biological evolution. This strategy not only maintains the diversity of the 

population, but also promotes the algorithm to approach the global optimal solution 

gradually. Differential evolution, as a population-based global optimization algorithm, 

provides powerful optimization capabilities for IRIME algorithm. 
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Combining Cauchy mutation and differential evolution strategy, IRIME 

algorithm can quickly locate the optimal feature combination in the broad search space. 

This advantage makes the IRIME algorithm perform well when dealing with large-

scale data sets, and can obtain better results in a limited time. At the same time, the 

combination of these two strategies also gives the IRIME algorithm a stronger global 

search ability to avoid falling into the dilemma of local optimal solutions, so as to 

screen out a better feature subset. 

By selecting these better feature subsets, IRIME algorithm constructs intrusion 

detection models with better performance, which show higher accuracy, accuracy and 

F1 score and other evaluation indicators on classification, regression or clustering 

tasks. The experimental results show that the IRIME algorithm is superior to other 

algorithms in all evaluation indicators on NSL-KDD and UNSW-NB15 datasets, 

which fully verifies the effectiveness of the improvement of the algorithm. 

Specifically, the IRIME algorithm significantly improves the prediction precision and 

accuracy of the model by optimizing the feature selection process, making the model 

perform well in identifying intrusion data. At the same time, the IRIME algorithm 

further reduces the false positive and false negative by improving the F1 score and 

recall rate, thereby improving the reliability and practicability of the intrusion 

detection model. In summary, IRIME algorithm successfully improves the global 

search ability and search efficiency of the algorithm by combining Cauchy mutation 

and differential evolution strategy, which provides strong support for processing large-

scale data sets and building high-performance intrusion detection models. 

5. Conclusion 

This paper introduces a IRIME-based feature selection algorithm designed for 

Intrusion Detection Systems (IDS). The objective of the IRIME algorithm is to reduce 

the number of features required for building a reliable IDS, while maintaining high 

detection rates, accuracy, and minimizing false positives. By applying the IRIME 

algorithm, the number of features is reduced from 41 to 17 for the NSL-KDD dataset 

and from 49 to 8 for the UNSW-NB15 dataset. This reduction maintains high precision 

and accuracy while significantly shortening the model construction time. 

Future research can explore further improvements to the Rime Optimization 

Algorithm to adapt to more complex datasets and application scenarios. Additionally, 

combining other optimization algorithms or considering multi-objective optimization 

problems is an interesting direction. 
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