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Abstract: In today’s rapidly evolving workplace environments, the integration of 

bioinformatics with occupational health data presents a unique opportunity to enhance 

employee well-being and optimize workplace safety, especially from the perspective of 

biomechanics. Existing systems often fail to account for individual genetic factors and the 

biomechanical aspects of the work environment when assessing occupational health risks, 

resulting in an increase in workplace-related health problems and less effective health 

treatments. The primary objective of this study is to develop a planning decision support 

model that integrates bioinformatics and occupational health data to recognize health risks 

and generate tailored interventions for employees. Incorporating biomechanics, we explore 

the impact of physical factors such as workstation ergonomics, repetitive motion patterns, 

and force exertion levels in the work environment on employee health, and analyze their 

relationship with genetic predispositions. For example, we study how specific genetic traits 

may interact with biomechanical stressors to increase the likelihood of musculoskeletal 

disorders. Initially, study data were collected from diverse sources, including bioinformatics 

databases and occupational health records, ensuring a comprehensive dataset for effective 

model training and validation. Data cleaning and Z-score normalization were used in the data 

preparation stage. Feature extraction was performed using Linear Discriminate Analysis 

(LDA) to reduce dimensionality from preprocessed data. Data fusion was accomplished by 

sharing information between bioinformatics and occupational health datasets, enabling a 

more comprehensive decision support model. The study proposed a Dynamic Bacterial 

Foraging fine-tuned Efficient Adaptive Boosting (DBF-EAdaBoost) method that integrates 

dynamic bacterial foraging optimization with adaptive boosting techniques to significantly 

enhance classification performance in bioinformatics and occupational health data analysis. 

The proposed algorithms offer high accuracy (0.93), precision (0.987), brier score (0.100), 

AUC (0.92), and log loss (0.314) in forecasting potential health issues based on workplace 

exposures, biomechanical factors, and genetic predispositions. To enhance the practicality of 

the research, a more detailed explanation of the implementation process and advantages of 

the proposed DBF-EAdaBoost algorithm is provided. Consider including real-world case 

studies to demonstrate the model’s application and the actual effectiveness of health 

interventions in real workplace environments. For instance, we can present a case where the 

model was applied in a manufacturing plant to predict and prevent musculoskeletal disorders 

among workers by analyzing their biomechanical workloads and genetic profiles, and 

implementing appropriate ergonomic interventions. The planning decision support model 

serves as a significant tool for public health officials, policymakers, and occupational health 

professionals, promoting data-driven decisions that enhance health outcomes. 
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1. Introduction 

Advances in healthcare are providing new options for developing and 

implementing patient-centered care (PCC) models across medical practices of all 

sizes [1]. Improved communication and ecosystems help the patients, which is very 

important for success. PCC bridges the gap between patients, their loved ones, and 

their medical conditions. It focuses on communication between healthcare 

professionals, patients, or caregivers [2]. It defines patient-centered care as 

“respectful and responsive to specific needs and desires of patients, with patient 

values guiding all clinical decisions [3].” PCC aims to improve care, and well-being, 

resolve disparities, provide value for money, promote individual freedom, and 

prevent abandonment. PCC attempts to provide tailored care by increasing patient 

involvement. Effective medical care involves bringing together patients with 

physicians on a single platform to monitor their health by analyzing daily activities 

[4]. It promotes collaboration between healthcare stakeholders, provides adequate 

services, informs decision-making, and optimizes the use of resources. Smart 

healthcare utilizes the Internet and portable Internet technology to constantly obtain 

data, link healthcare stakeholders, and intelligently manage and respond to medical 

requirements [5]. Personalized data in medicine offers the potential for treatment and 

diagnosis at the individual patient level. Computational models help identify illness 

causes and variables despite large and heterogeneous datasets [6]. Additionally, they 

allow for specific treatment plans that depend on crucial medical issues. 

Computational models can translate in-vitro, preclinical, and clinical outcomes, 

including uncertainty, into diagnostic or prediction expressions. 

Bioinformatics integrates the disciplines of biology, physics, chemistry, 

statistics, and computer science to address challenging biological phenomena. 

Informatics is a rapidly developing and versatile scientific discipline [7]. 

Bioinformatics aims to preserve, analyze, and retrieve information on creatures to 

better understand their dynamics. Bioinformatics is built on data that has been 

supplied and generated. The human body’s cells use deoxyribonucleic acid (DNA) to 

interpret data and anticipate illness risk. Genetics plays a crucial role in medical 

practice, allowing for the accurate identification of diverse disorders [8]. It improves 

disease prognosis and helps patients choose the best treatment options. The ability to 

analyze the human genome at several levels, including chromosomal and single-base 

alterations, adds to its current potential. The availability of massive digital medical 

datasets has enabled the application of informatics to medical care and research, 

opening up new avenues for discovery and exploration. Informatics aims to create 

effective strategies for processing information using technology [9]. Informatics is 

widely used in healthcare, from research to service delivery, with several 

specializations including bioinformatics, medical informatics, and biomedical 

informatics. 

Occupation and work status are key socioeconomic determinants of health. 

Work impacts money, relationships, and access to education, housing, food, and 

healthcare. Work-related information is often intertwined with other health 

determinants like race, ethnicity, gender, and citizenship status, making it difficult to 

guide clinical decision-making and population health activities [10]. It is also 
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understudied as an essential aspect of health. Many health data collection systems, 

such as certificates of death, cancer databases, and provincial health department case 

reports, require employment and industry information. These systems include paper, 

digital distribution of paper, web-based forms, and upcoming compatible information 

technology (IT) systems. 

The study’s purpose is to develop a decision-support tool that uses 

bioinformatics with occupational health data to detect workplace health risks. Its 

goal is to provide data-driven insights into wellness interventions and policies to 

enable individualized health planning, increase workplace security, and optimize 

decision-making. The suggested model, DBF-EAdaBoost, combines bioinformatics 

and health data to improve prediction accuracy for health hazards. Using this 

paradigm, the project aims to provide more accurate and effective health 

interventions, eventually building a safer and healthier workplace environment 

through customized, data-driven methods. 

Key contributions of the study 

⚫ The work uses a variation of databases, with bioinformatics databases and 

occupational health records, to ensure a huge dataset for efficient model training 

and validation. 

⚫ The study uses data cleaning and Z-score normalization throughout the data 

preparation phase to improve data quality. 

⚫ Linear Discriminant Analysis (LDA) is used to extract features, reduce 

dimensionality, and preserve class discriminant qualities. 

⚫ The Dynamic Bacterial Foraging fine-tuned Efficient Adaptive Boosting (DBF-

EAdaBoost) approach enhances classification performance when assessing 

health data. 

⚫ A comparison analysis is maintained to assess the presentation of the proposed 

DBF-EAdaBoost approach versus existing algorithms, demonstrating its 

superior precision and effectiveness in health risk prediction. 

⚫ The decision-support approach improves health outcomes by combining 

bioinformatics with occupational health data. This allows public health officials 

and politicians to make data-driven decisions that increase occupational health 

risk assessments and interventions. 

The paper is divided into eight phases: Phase 1 offerings the subject matter, 

Phase 2 examines related works, Phase 3 describes the methodology used, Phase 4 

presents the decision support model, phase 5 is the experimental setup for the model, 

Phase 6 discusses the findings of the study, Phase 7 provides the discussion, and 

Phase 8 summarizes the study’s conclusion and future directions. 

2. Related work 

Study [11] analyzed two Bayesian models, Unigram (UNB) and Bigram (BNB) 

Naïve Bayes, to autocode severe injury narratives from OSHA data. The dataset 

included reports of injuries from January 2015 through February 2021. Data 

preprocessing entailed selecting cases according to model agreement and forecast 

probability criteria. The results show that the UNB model has a sensitivity of 
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75.21%, slightly higher than BNB’s 75.17%. The combined filtering strategy 

increased sensitivity to 88.17%, identifying 31% for human evaluation and achieving 

an F1-score of 55% for top predictions. 

Paper [12] described an intelligent clinical decision support system for breast 

cancer prevention that addresses variability in diagnostic process interpretation. By 

combining trained systems with fuzzy logic, exploratory analysis of factors, 

augmenting data, and algorithmic classification, the system examined patients’ 

medical data and created a cancer risk alert level. Initial performance testing on a 

130-case database from the University of Wisconsin-Madison yielded ROC curve 

areas of 0.95 to 0.97, indicating substantial diagnostic and preventative potential for 

clinical use. 

The present research [13] looked at the difficulties that mental health 

practitioners encounter when identifying diseases such as depression and anxiety, 

which frequently require sophisticated and time-consuming assessments. To improve 

effectiveness and precision, a decision support system (DSS) based on advanced 

analytics and AI was built. The DSS used the Networked Probabilistic Pattern 

Recognition (NEPAR) algorithm to shorten the evaluation procedure, which requires 

only 28 targeted questions from participants. Machine learning models undergo 

training to predict mental diseases with an 89% accuracy rate. This method increased 

participation rates and improved clinical decision-making for psychological 

practitioners. 

The goal developed by [14] examined the intelli-Omics was to provide an 

adaptable decision support system for multi-omics analysis of data, allowing 

personalized medicine through rapid data integration, research, and analytics. Data 

was collected using high-throughput technology and analyzed in Hadoop, with 

Apache Hive translating it into a knowledge base. Apache Spark &MLlib handle the 

extraction of features and ML, respectively. The method facilitated clinical decision-

making, notably in non-small cell cancers of the lung therapy, by providing 

personalized reports. While scalable and configurable, it necessitated technical 

knowledge and large computational resources. 

Author [15] addressed the contemporary advances in workplace technologies 

that improve worker health, security, and productivity. It used data from various 

mobile devices and connected employee solutions to track workplace dangers and 

injuries. Preprocessing ensured consistency by integrating several data sources, 

whereas feature extraction found crucial safety and health measures. The 

methodologies entail examining the functionality of these advances and their real-

world implementations. The results show that wearables were useful for monitoring 

ergonomic practices and tiredness, as well as predictive analytics that improve 

making decisions and risk management in workplace situations. 

According to the author of [16], the Human Health Exposure Analysis Resource 

(HHEAR) improved knowledge about exposure to the environment and its effects on 

human health across the life cycle. It solved difficulties in including evaluations of 

exposure to research on health, such as restricted researcher expertise and laboratory 

access. HHEAR promoted collaborative research by providing free scientific data 

analysis and processing expertise. Its capacity to link biological specimens and 

environmental samples allows for more advanced analyses that link exposures to 
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health consequences, which benefits the entire scientific community. 

Author [17] investigated Convolutional Neural Networks (CNN) for assessing 

complex medical information in spine surgery. It focused on gathering data from 

genetic, radiological, and therapeutic sources. Preprocessing entailed transforming 

non-imaging information into images for CNN input, allowing feature extraction. 

The strategy integrated multi-input data using hybrid deep learning models. The 

findings indicate promising advances in the recognition of patterns, with benefits 

such as improved decision-making and individualized patient care, while obstacles 

include the complexity of data and a requirement for multisensory interaction. 

Article [18] emphasized the transformation in medicine from restricted clinical 

data to huge, diversified data streams, which require new tools for physicians. It 

outlined the creation of a medical bioinformatics program to assist with the shift to a 

teaching health system by offering training and demonstrating informatics functions. 

Good criticism of educational programs indicated increased involvement. The result 

underlined the significance of doctors assessing data quality and usefulness, as well 

as comprehending AI along with predictive analytics, to adapt to the massive data 

era, as demonstrated by initiatives such as Wake Forest’s program. 

The study aimed [19] to enhance the forecasts of unplanned hospital 

readmissions by integrating the “Unplanned Readmission Model version 1” with the 

Epic electronic health record. Data was obtained over two years, demonstrating 

predictive skills with AUC/C statistics for all patients and general medical patients. 

The model’s positive value for prediction ranged from 0.217 to 0.248. The paper also 

described how to evaluate trends and solutions for reducing readmissions caused by 

predictive scores. 

Based on [20] examined Turkey’s National Health Information System (NHIS-

T) in terms of genetic data interoperability for improved molecular diagnosis and 

individualized treatment. It underlined the relevance of data security and privacy 

rules by contrasting Turkey’s “Law on the Protection of Personal Data” to worldwide 

norms. The authors address the importance of a national standard database and IT 

infrastructure for integrating genetic data with health information. Established 

terminology, government direction, and clear guidelines for moral structures and 

public interaction were all critical success elements. 

3. Methodology 

The process involves collecting a variety of data in occupational health records 

from bioinformatics databases. Data are first processed using Z-score normalization 

to standardize the values. Feature extraction uses linear discriminant analysis (LDA) 

to reduce dimensionality, ensuring that the system focuses on relevant attributes for 

advanced health risk assessment and personalized treatment, as shown in Figure 1. 



Molecular & Cellular Biomechanics 2025, 22(1), 528.  

6 

 

Figure 1. Basic concept of the proposed research framework. 

3.1. Data collection 

Table 1. Dataset description of the employee health and occupational data. 

Employee ID Age Gender 

Employment 

duration 

(Years) 

BMI 

Blood 

pressure 

(mmHg) 

Cholestero

l (mg/dl) 

Fasting blood 

sugar (mg/dl) 
SNP data 

Job stress 

level (1–10) 

Health 

outcome 

01 37 M 10 24.5 190 220 85 
rs123456 

A/G 
8 None 

02 28 M 5 22.1 180 210 98 
rs789012 

C/T 
5 

Mild 

Respiratory 

Issues 

03 44 F 7 30.1 210 180 110 
rs345678 

T/C 
6 Back Pain 

04 48 M 15 28.5 200 195 95 
rs456789 

G/A 
7 None 

05 35 F 12 27.2 170 215 120 
rs567890 

C/G 
8 Fatigue 

06 35 F 15 29.6 200 186 80 
rs678901 

T/G 
6 

Respiratory 

Issues 

07 26 M 5 24.3 180 208 112 
rs890123 

C/A 
5 None 

... ... ... ... ... ... ... ... ... ... ... 

n n n n n n n n n n n 

The database includes health records for 500 employees who receive monthly 

assessments to identify risk factors within the organization. This collection 

emphasizes bioinformatics and occupational health data, including data on various 

health indicators, genetic data, and occupational exposures. The data collection seeks 

to reveal potential health problems by studying the relationship between individual 

health considerations and the work environment. This approach ensures proactive 

planning to address health risks within the facility, as displayed in Table 1. It 

captures demographic, genetic (SNP data), employment duration, and occupational 

details like job stress, alongside health metrics such as BMI, blood pressure, and 
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cholesterol. This data aims to reveal correlations between health outcomes and 

workplace exposures, supporting proactive health management within the 

organization. 

3.2. Data preprocessing using Z-score normalization 

Z-score standardization is used to translate healthcare-related information into a 

single scale, making it easier to compare diverse data points for 500 employees. The 

Z-score equation using raw data value  𝑌 , is used as shown in Equation (1) to 

normalize attributes, such as age, gender, blood groups, glucose level, and test 

outcomes, rendering them easier to analyze and understand across variables between 

models. 

𝑤𝑗𝑖 = 𝑌(𝑤𝑗𝑖) =
𝑤𝑗𝑖 − 𝑤𝑖

𝜎𝑖
 (1) 

Deviation from the j-th feature will be corrected using Z-score standardization. 

The consequent variable will have a median of 0 and a variance of 1, but its location 

and scale will be lost. This strategy is only applicable to global standardization; 

hence, it can’t be efficiently employed for particular healthcare subgroups or 

clusters. Thus, while Z-score standardization is good for general analysis, it could not 

capture variances within specific patient categories. 

3.3. Feature extraction using linear discriminate analysis (LDA) 

After the Z-score normalization, Linear Discriminant Analysis (LDA) was used 

to extract features. LDA assisted in transforming the dataset into a lower-

dimensional space, increasing the separation of classes by minimizing within-class 

variation and decreasing between-class variance. This technique ensured that critical 

data structures were preserved while refining the characteristics for improved 

accuracy in classification in the evaluation. We use the following Equations (2)–(9). 

𝑇𝑥 = ∑ 𝑇𝑥𝑗

𝑑

𝑤∈𝐶𝑗

 (2) 

𝑇𝑥𝑗 = (𝑤𝑗 − 𝜇𝑗)(𝑤𝑗 − 𝜇𝑗)𝑆 (3) 

𝜇 =
1

𝑀
∑ 𝑤𝑗

𝑀

𝑗=1

 (4) 

𝑇𝑎 = ∑ 𝑀𝑗𝑇𝑎𝑗

𝑑

𝑗=1

 (5) 

𝑇𝑎𝑗 = (𝑛𝑗 − 𝑛)
2
 (6) 

(𝑛𝑗 − 𝑛)
2

= 𝑋𝑆(𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)
𝑆

𝑋 (7) 
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𝑇𝑎 = ∑ 𝑀𝑗(𝑛𝑗 − 𝑛)(𝑛𝑗 − 𝑛)
𝑆

𝑚

𝑗=1

 (8) 

𝑁𝑗 =
1

𝑚
∑ 𝑊𝑙

𝑚

𝑤𝜖𝐶

 (9) 

𝑇𝑎  Indicates the between-class variance with  𝑇𝑥 , 𝑤  representing the within-

class variance, 𝑑 as the total number of unique courses, as the input value, 𝑀 as the 

number of samples in a given class 𝑙. To compute the mean (𝑁) of each input (𝑊) for 

each class (𝑙), divide the average of numbers by the total amount of samples. The 

eigenvalue of the transformation matrix X is employed for the extraction of features 

in LDA to ensure optimal class separation. The feature extraction strategy based on 

the data collection improves the model’s capacity to distinguish across classes, 

increasing classification accuracy and lowering dimensionality while maintaining 

critical information. 

3.4. Health risk prediction using dynamic bacterial foraging fine-tuned 

efficient adaptive boosting (DBF-EAdaBoost) 

Dynamic Bacterial Foraging Fine-Tuned Efficient Adaptive Boosting (DBF-

EAdaBoost) is an optimization method that improves classification performance in 

the designed decision-support model. It uses bacterial foraging principles to 

dynamically adjust sample weights based on classification incorrect rates, thereby 

increasing the accuracy of the health risk prediction and the effortless integration of 

occupational health information leads to more informed decision making. In this 

phase, this optimization framework is used to fine-tune the model, demonstrating the 

effectiveness of combining adaptive amplification with naturally occurring 

mechanisms to generate better health outcomes of the prediction. 

3.4.1. Efficient adaptive boosting (EAdaBoost) 

In this study, the Efficient AdaBoost algorithm is used to efficiently categorize 

health hazards based on bioinformatics and occupational health datasets from 500 

employees. These databases include genetic information, health measures, including 

occupational exposure data. AdaBoost improves model performance by iteratively 

modifying sample weights, focusing on examples that are difficult to classify. By 

integrating weak learners, the predictive capability of the planned decision support 

model is improved, allowing for more accurate evaluations of health hazards and 

better decision-making for employee well-being and workplace safety. The database 

is represented as  𝑇 = {(𝑤1, 𝑧1), (𝑤2, 𝑧2) … (𝑤𝑀 , 𝑧𝑀)} , which refers to the total 

amount of datasets used in the training phase. This structured strategy ensures that 

the algorithm efficiently uses the data acquired from Linear Discriminant Analysis 

(LDA) to improve accuracy in classification when forecasting potential hazards 

based on working conditions with genetics. Initialize the weights of all the samples 

in the initial training data (vector D). Every specimen has an identical gravity (1 over 

N). The training was carried out using an inadequate learning algorithm called h1. 

After training, the mistake rate was computed using Equation (10). 𝑀𝑒𝑟𝑟Represents 
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the amount of erroneously classified observations. 

𝜀 =
𝑀𝑒𝑟𝑟

𝑀
 (10) 

Determine the relative importance of the weak learning method. The amount of 

weight of the weak learner technique is determined by the mistake rate and 

expressed in the vector𝛼 using Equation (11). 

𝛼 =
1

2
𝐼𝑛 (

1 − 𝜀

𝜀
) (11) 

Update the weight of each sample. If this is another instance of 

misclassification, Equation (9) will be triggered. In some circumstances, the 

conventional weight updating procedure will continue to be applied. Following t-

round learning, the weight and results of each weak predictor are determined. 

Equation (12) shows the method’s outcome. 

𝐺(𝑊) = 𝑠𝑖𝑔𝑚 (∑ 𝛼𝑗𝑔𝑗(𝑊)
𝑠

𝑗=1
) (12) 

By initializing equal weights for all samples and employing a weak learning 

algorithm, we iteratively update sample weights based on misclassification rates, 

allowing the model to focus on challenging instances. 

3.4.2. DBF 

The DBF optimize technique is applied within the planning decision support 

model to enhance the identification and management of workplace health concerns. 

The DBF method employs a bio-inspired search strategy with a complex framework 

that enables iterative optimization, resulting in optimal or near-optimal solutions. 

The improved version of DBF focuses on increasing optimization efficiency while 

preserving the cooperative and competitive dynamics inherent in the three-layer 

Bacterial Foraging Optimization (BFO) structure. By integrating these advanced 

optimization techniques, data-driven insights inform wellness interventions and 

policies, ultimately promoting better health outcomes in the workplace. 

Step 1: The BFO variables (a maximum number of movement times  𝑀𝑑 , 

reproductive times 𝑀𝑞𝑓, elimination-dispersal durations 𝑀𝑓𝑐, population size 𝑁, and 

number of swimming times 𝑀𝑡) were established. 

Step 2: Bacterial position is initialized using Equation (13), and the initial 

fitness value is specified as  𝑊 , where Rand is a random number that is evenly 

distributed between 0 and 1. 

𝑊 = 𝑤𝑚𝑖𝑛 + 𝑅𝑎𝑛𝑑(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) (13) 

Step 3: Consists of the elimination-dispersal cycle. 

𝑐𝑦𝑐𝑙𝑒𝑘 = 1: 𝑀𝑒𝑐 , 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑐𝑦𝑐𝑙𝑒𝑙 = 1: 𝑀𝑞𝑓 , 𝑎𝑛𝑑𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠𝑐𝑦𝑐𝑙𝑒𝑖 = 1: 𝑀𝑑 

Step 4: Chemotaxis illness is conducted. 

Step 5: The reproduction process occurs. Bacteria with low fitness values were 

killed, while those with high fitness values were duplicated extensively. 

Step 6: The elimination-dispersal procedure is undertaken. Every bacterium 
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produces an O represents a random probability. This phase compares 𝑂 to a pre-

arranged movement possibility 𝑂𝑓𝑐. If 𝑂 < 𝑂𝑓𝑐  the elimination-dispersal technique is 

done. 

Step 7: Termination circumstances are tested. If the requirements are satisfied, 

the outcome is output. Otherwise, it goes back to step 4. 

Step 8: Chemotaxis action involves two primary operators such as tumble and 

swim. Swimming means a constant motion towards optimal fitness. Equation (14) 

indicates the bacterial adaption value (𝐼𝑑𝑑). The following is a description of the 

equation: The product of 𝑑(𝑗) and 𝛥(𝑗) is added to determine the updated value of 

𝜃𝑗(𝑖 + 1, 𝑙, 𝑘), standardized by the square of the root of the average of 𝛥𝑆(𝑗) and 

𝛥(𝑗) . This update reflects an iterative modification to the variable 𝜃𝑗  in the 

subsequent iteration (𝑖 + 1), depending on the scaling variables involved and the 

present values of 𝜃𝑗 (𝑖, 𝑙, 𝑘). 

𝐼𝑑𝑑(𝜃, 𝑂(𝑖, 𝑙, 𝑘)) = ∑ 𝐼𝑑𝑑
𝑗

𝑇

𝑗=1

(𝜃, 𝜃𝑗(𝑖, 𝑙, 𝑘))

= ∑ [−𝑐𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑒𝑥𝑝 (−𝜔𝑎𝑡𝑡𝑟𝑎𝑐𝑡 ∑(𝜃𝑛 − 𝜃𝑛
𝑗
)

2
𝐶

𝑛=1

)]

𝑇

𝑗=1

+ ∑ [𝑔𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑒𝑥𝑝 (−𝜔𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡 ∑(𝜃𝑛 − 𝜃𝑛
𝑗
)

2
𝐶

𝑛=1

)]

𝑇

𝑗=1

 

(14) 

where 𝑑(𝑗) indicates the starting paddling length in the selected direction and applies 

to any orientation. The ideas of attraction and repulsion are measured by factors that 

characterize their relative effects: the degree of attraction reveals the way a target is 

drawn in, while the breadth of attraction defines the range of influence. In contrast, 

the height and width of attraction determine the extent to which the repellent force 

operates. Together, these factors increase the method of optimization by allowing for 

subtler exploration in the answer space, resulting in greater efficiency in the resulting 

assistance for the decision model. 

The Dynamic Bacterial Foraging Fine-Tuned Efficient Adaptive Boosting 

(DBF-EAdaBoost) hybrid method improves the performance of weak learners in 

EAdaBoost by constantly modifying sample weights and learner variables using a 

fitness function obtained from the Dynamic Bacterial Foraging (DBF) optimization 

technique. The major goal is to improve categorization performance in decision-

making models used for health risk prediction. The technique makes use of data from 

500 employees, including DNA sequences, biometrics, occupational health records, 

and demographic information. The DBF-EAdaBoost method uses swarm intelligence 

principles with adaptive boosting to achieve optimal or near-optimal solutions, 

increasing the model’s ability to properly classify health risks while enhancing 

decision-making processes in workplace wellness situations. Algorithm 1 shows the 

hybrid model. 
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Algorithm 1 DBF-EAdaboost 

1: Step 1: Initialize Sample Weights: Allocate a comparable weight to all observations in the dataset using Equation (16). 

2: 𝐶1(𝑗) =
1

𝑁
           (15) 

3: Where N is the entire amount of samples. 

4: Step 2: Train Weak Learner and Calculate Error Rate: Using incorrectly classified examples, train an ineffective  

5: classifier & calculate the mistake rate in Equation (17) 

6: 𝜖𝑠 =
𝑁𝑒𝑟𝑟

𝑁
           (16) 

7: Where Nerris the quantity of misclassified models. 

8: Step 3: Modify the Weak Learner’s Value: Change the amount of weight of the weak learner depending on its error  

9: rate in Equation (18) 

10: 𝛼𝑠 =
1

2
𝐼𝑛 (

1−𝜀𝑠

𝜀𝑠
)          (17) 

11: Step 4: This process is used to update the position of bacteria. To modify the position, execute optimization with  

12: the bacterial foraging algorithm. 

13: 𝜃𝑖(𝑗 + 1) = 𝜃𝑖(𝑗) + 𝑐(𝑖)
∆(𝑖)

√∆(𝑖)∆(𝑖)
        (18) 

14: Where c(i) is the step size and ∆(i) is the direction vector. 

15: Step 5: Merge Weak Learners for Ultimate Output: Combine the weak learners to produce the final classification  

16: result in Equation (19) 

17: 𝐻(𝑋) = 𝜎(∑ 𝛼𝑖ℎ𝑖
𝑡
𝑖=1 (𝑋))         (19) 

18: Where σ(. )is the sigmoid function, and hi(X) are the weak classifiers. 

This structure shows the steps in the DBF-EAdaBoost example, with 

calculations for each step in the process. This DBF-EAdaBoost algorithm improves 

the accuracy of health risk prediction classification by combining optimal mouse 

foraging and Efficient Adaptive Boosting (EAdaBoost) methods. It uses bio-inspired 

optimization to constantly change sample weights and refine model parameters, 

focusing on complex issues. This hybrid approach enhances decision support models 

by combining vulnerable learners with improving virus coverage, resulting in 

accurate prediction of occupational health and bioinformatics ultimately improving 

the prediction of clinical outcomes. 

4. Decision support model 

The decision-support approach of this study focuses on the integration of 

bioinformatics with occupational health data to improve workplace health risk 

prediction. It uses a broad set of data including health markers, including employee 

contacts, for everyone in the company. Using this diverse set of data, the model 

hopes to identify future health problems posed by a workplace environment, 

providing a proactive approach to employee well-being. The model is constructed on 

the DBF-EAdaBoost approach, which dramatically increases classification 

performance. This innovative strategy combines dynamic bacterial foraging 

optimization with adaptive enhancement methods to enable the model to reliably fit 

health risk prediction based on individual genetic exposure at work. Furthermore, it 

speeds up the health risk assessment process, but it also promotes the sector to make 

data-driven decisions. Integrating multiple data sources helps provide a 

comprehensive picture of employee health, enhancing workplace safety and well-

being. Implementation of the model could lead to more effective healthcare products 

and ultimately a healthier workforce. Furthermore, it highlights the value of a strong 

company culture that prioritizes employee well-being and paves the way for better 
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health outcomes and increased productivity in a rapidly changing workplace 

environment. 

5. Experimental result 

The experimental setup for the work includes Windows 11, Python 3.10, and 

PyTorch 2. x, which provide a stable environment for model development. The 

Ryzen 7 5800 X CPU is used for demanding calculations, while the Radeon RX 

7900 XTX GPU speeds up data preparation, and feature extraction using Linear 

Discriminant Analysis (LDA), and model training. This high-performance 

architecture enables to effectively handle and evaluate bioinformatics and 

occupational health datasets from 500 employees, considerably improving the 

accuracy of health hazard categorization and facilitating effective workplace safety 

decisions.  

Python 3.10 was utilized in the study to carry out the suggested methodology, 

and Python 3.10 is compatible with Pytorch 2.0 and incorporates the Windows 10 

system setup. The experimental results reveal that classic models such as Random 

Forests or else, SVM, Decision Trees [21], and XGBoost [22,23] provide reasonable 

accuracy but face limitations such as poor generalization, noise sensitivity, and 

difficult parameter tweaking. Logistic Regression [23] issues linear assumptions in 

complicated datasets, and while CNN [23] is effective for image tasks, they are 

highly computational and require huge datasets.  

ROC: The ROC (Receiver Operating Characteristic) curve is used to assess the 

efficiency of a classification algorithm. It compares the true positive rate (sensitivity) 

to the false positive rate (1-specificity) at various threshold levels, showing the trade-

off between accurately recognizing ideal conditions and limiting false positives. This 

curve is critical in determining the model’s capacity to differentiate between health 

hazards. By incorporating this review into the goal of creating a decision-support 

model utilizing bioinformatics along with occupational health data, both the 

precision and the accuracy of health risk forecasts can be improved, thus improving 

decision-making processes are seen in Figure 2. 

 

Figure 2. ROC-AUC Curve for DBF-EAdaBoost proposed method. 

Accuracy and loss curve: The accuracy metric measures the rate of true 

predictions made by a model throughout training, which typically increases as the 
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model evolves. A rising accuracy graph demonstrates effective learning, but the loss 

meter measures error in sampling, with lower values indicating better model 

performance. Analyzing these graphs gives useful information on the model’s 

advancement in academia, enabling performance improvements and assuring 

effective generalization of novel data. This method is critical to the goal of 

developing a strong decision-support framework that uses informatics and workplace 

health data to conduct reliable illness testing are displayed in Figure 3a,b. 

 

Figure 3. Proposed method DBF-EAdaBoost established. (a) accuracy curve; (b) Loss curve. 

Figure 3a,b demonstrate the accuracy and loss of the DBE-EAdaBoost method 

during training. The accuracy curve (3a) illustrates the model’s improving capacity 

to produce real prediction, whereas the loss curve (3b) shows a decrease in 

forecasting error. These curves operate together to analyze the model training 

development, ensuring that it is effectively generalized to new data and performs 

consistently for illness testing in occupational health contexts. 

Accuracy: Table 2 and Figure 4 compare the accuracy of different models in 

classification tasks. Random Forests (0.890) and Decision Trees (0.880) excel at 

ensemble learning, whereas Support Vector Machine (0.884) achieves high 

classification accuracy using hyperplanes. XGBoost (0.866), a powerful boosting 

algorithm, has a slightly lesser accuracy, whilst Logistic Regression was (0.844) 

after, indicating its simpler linear approach. CNN (0.868) applies machine learning 

to difficult data but does not outperform classic algorithm design. The proposed 

DBF-EAdaBoost model achieves the best accuracy (0.93), demonstrating its 

improved capacity to refine predictions over traditional techniques. 
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Figure 4. Comparison accuracy values of various predictive models vs. proposed 

method. 

Table 2. Model performance comparison based on accuracy. 

Models Accuracy 

RF [21] 0.890 

SVM [21] 0.884 

XGBoost [23] 0.866 

DT [21] 0.880 

Logistic [23] 0.844 

CNN [23] 0.868 

DBF-EAdaBoost [Proposed] 0.93 

Precision: Table 3 compares the precision of several models in forecasting 

health risks using datasets. Figure 5 compares the levels of precision among various 

predictive models while highlighting the suggested DBF-EAdaBoost technique. 

Precision indicates that a model forecasts positive health results (true positives). 

Precision, which evaluates the accuracy of positive predictions, is high for models 

such as Support Vector Machine (0.984) and Decision Tree (0.980), implying that 

they accurately predict true positives. Random Forests (0.978) performs as well, 

however, XGBoost (0.633) has lesser precision, most likely because of model tuning 

or dataset features. The proposed model DBF-EAdaBoost has the highest precision 

(0.987), suggesting its greater capacity to consistently identify problems with health, 

minimize false positives, and improve prediction accuracy in health-related datasets. 
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Table 3. Model performance comparison based on precision. 

Models Precision 

RF [21] 0.978 

SVM [21] 0.984 

XGBoost [22] 0.633 

DT [21] 0.980 

DBF-EAdaBoost [Proposed] 0.987 

 

Figure 5. Comparison of precision values of various predictive models vs. proposed 

method. 

Brier score: The Brier scores for several models assess the accuracy of their 

statistical predictions; lower numbers indicate greater performance. Both Random 

Forests were 0.107, and XGBoost has scores of 0.144, indicating that the likelihood 

of their predictions is similarly accurate. Logistic regression shows marginally 

increased performance, with a score of 0.121. In comparison, the Convolutional 

Neural Network (CNN) has the score (0.194), indicating less accurate probability 

forecasts. Particularly, the proposed model, DBF-EAdaBoost, has the best Brier 

score of 0.100, demonstrating its superior capacity to generate correct estimations of 

probability for health risk assessments, which is seen in Table 4 and Figure 6 

compares the Brier scores for different models with suggested DBF-EAdaBoost 

approach. A lower Brier score indicates improved model effectiveness in probability 

determination. 

Table 4. Comparison analysis of Brier score for various predictive models vs. 

proposed method. 

Models Brier score 

RF [22] 0.107 

XGBoost [22] 0.144 

Logistic [23] 0.121 

CNN [23] 0.194 

DBF-EAdaBoost [Proposed] 0.100 
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Figure 6. Classification of Brier scores for predictive models vs. proposed method. 

AUC: The Area Under the Curve (AUC) ratings of various models indicate their 

ability to differentiate between positive and negative categories in binary 

classification problems. A higher AUC indicates improved model performance. The 

Support Vector Machine dominates with an AUC of 0.91, followed by the proposed 

model, DBF-EAdaBoost, which has an AUC of 0.92, proving that it’s successful in 

classifying health concerns. Random Forests and Decision Trees both get a score of 

0.90, showing high predictive skills. Whereas XGBoost (0.789), Logistic Regression 

(0.734), and CNN (0.724) have lower AUC values, indicating less effective 

classification performance, as shown in Table 5 and Figure 7 demonstrates the Area 

Under the Curve (AUC) evaluations for various methods and proposed technique, 

which assess their ability to correctly identify both positive and negative 

classifications. A greater AUC suggests improved performance. 

 

Figure 7. Classification of AUC for predictive models vs. proposed method. 
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Table 5. Performance finding of AUC for the proposed method. 

Models AUC 

RF [21] 0.90 

SVM [21] 0.91 

XGBoost [22] 0.789 

DT [21] 0.90 

Logistic [23] 0.734 

CNN [23] 0.724 

DBF-EAdaBoost [Proposed] 0.92 

Log loss: Log loss, also known as logistic loss, measures a classification 

model’s performance in terms of expected probabilities. Reduced log loss values 

indicate improved model performance. Random Forests and XGBoost both have a 

log loss of 0.448, demonstrating comparable predictive accuracy when calculating 

probabilities. Convolutional Neural Networks (CNN) have a somewhat larger log 

loss (0.442), indicating less accurate predictions. Logistic regression is superior with 

a log loss of 0.398, while the recommended model, DBF-EAdaBoost, surpasses all 

others with a log loss of 0.314. This illustrates its superior capacity to provide a 

reliable estimate of the probability for safety evaluations, which is displayed in 

Table 6 and Figure 8 shows the Log Loss values of the traditional model with the 

suggested DBF-EAdaBoost method, where lower scores suggest greater performance 

in forecasting probabilities. 

Table 6. Performance comparison result of log loss for the proposed method. 

Models Log loss 

RF [22] 0.340 

XGBoost [22] 0.448 

Logistic [23] 0.398 

CNN [23] 0.442 

DBF-EAdaBoost [Proposed] 0.314 

 

Figure 8. Comparison Log loss score values of various predictive methods vs. 

proposed method. 
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6. Discussion 

It encompasses the integration of bioinformatics and occupational health data 

using advanced analytical techniques that can optimize the management of 

workplace health. Conventional techniques like RF, SVM, DT, XGBoost, logistic, 

and CNN have certain drawbacks when used in the context of a planning decision 

support model utilizing bioinformatics and occupational health data. RF [21,22] 

model was often referred to as a “black-box” model, which makes it challenging to 

completely understand how decisions are made, particularly in a high-risk industry 

such as occupational health. The SVM [21] is sensitive to large datasets since the 

entire dataset has to be stored in and operated upon to produce the desired 

hyperplane—which often means high memory and computation requirements, 

especially on bioinformatic datasets with many features. DT [21] was sensitive to 

overfitting, particularly if the tree is deep or if the dataset has noisy features. Various 

pruning techniques are employed with the risk of also limiting the model’s ability to 

capture complex patterns. While XGBoost [22,23] performed well in many such 

cases, it was still prone to overfitting problems, especially if the model is highly 

complex and noisy data are used. Careful tuning of hyperparameters would be 

required; for example, the learning rate, tree depth, and subsampling of the general 

algorithm to reach the optimal performance of XGBoost, and this could indeed be 

quite expensive in terms of computation time. Logistic [23] assumed linear 

relationships between the features and the outcome. When the true relationship 

between features and outcome is non-linear, this could be limited, especially in 

datasets as complex as bioinformatics and health data. Training CNN [23] required a 

large number of labeled examples. Data might be scarce and difficult to label, limited 

the utilization of CNNs in bioinformatics and occupational health. The problems 

overcome in this study introduce the DBF-EAdaBoost algorithm proposed here to 

improve classification accuracy due to the effective integration of dynamic bacterial 

foraging optimization with adaptive boosting toward the enhancement of 

performance within both bioinformatics and occupational health data analysis. It has 

shown high precision and reliability, an approach that is qualified to produce 

forecasts regarding potential health problems based on both exposures at the 

workplace and genetic factors. It provides a more personalized and data-driven 

decision support model that further facilitates better-targeted interventions as well as 

better health outcomes among employees. 

7. Conclusion 

The planning decision support model effectively translates informatics and 

environmental data to address health issues in the contemporary workplace. 

Employing the enhanced version of the DBF technique, namely, the DBF-

EAdaBoost, the model enhances the accuracy and precision of disease risk estimates 

essential to direct treatments like glucose level, blood pressure, etc. These novel 

approaches allow for a greater awareness of the way specific genetic features affect 

or are influenced by employment situations, resulting in more effective health 

interventions. The proposed DBF-EAdaBoost achieves the significant outcomes of 

accuracy (0.93), AUC (0.92), log loss (0.314), Brier score (0.100), and precision 



Molecular & Cellular Biomechanics 2025, 22(1), 528.  

19 

(0.987). The research involves more than one performance measure and assesses the 

model against standard techniques in predicting potential health challenges, critical 

for health management. This capability facilitates the decision-making of public 

health officials and occupational health specialists for staff health and workplace 

safety improvement. Moreover, the integrated use of bioinformatics allows for the 

constant updating of information in the model to account for changes in conditions at 

work or new pathological threats. From there, that approach can be tailored and 

applied in all kinds of industries, making it a very versatile model for health risk 

assessment and management. Lastly, it helps to have a healthy workforce because it 

assists regarding the current standards for the kind of wellness programs needed in 

organizations. 

Limitation and future scope 

The main limitation of the developed model is its dependency on acquiring and 

utilizing high-quality comprehensive bioinformatics and occupational health data. 

Such data are not often available or standardized, which limits the use of such 

models. Future work will include incorporating real-time data streams, further 

improvement in adaptability, and integration with broader genetic, environmental, 

and lifestyle factors to further improve the precision and applicability of work-

related health interventions. 
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