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Abstract: In the field of biomechanics, the delicate structural layout of living organisms often 

brings many inspirations for engineering design. As in the case of aero-engine piping layout, 

the current single- and multi-tube layouts are ineffective and need to be optimised. Inspired by 

the efficient material transfer and space utilisation mechanisms of biological systems, we 

propose an automatic pipe layout method for aero-engine based on co-evolutionary algorithm 

and improved A* algorithm. Taking inspiration from how biological networks adapt and 

optimize their connections, we first construct an improved A* algorithm. Through optimizing 

node coordinate expression, enhancing the evaluation function, introducing a directional 

strategy, and improving the OPEN_LIST, it becomes a potent tool. When applied to single-

pipe layout in aero-engines and compared with the original A* algorithm, its advantages are 

evident. Subsequently, mimicking the collaborative evolution seen in ecological systems, we 

combine the co-evolutionary algorithm with a new evaluation function to develop a further 

improved A* algorithm for multi-pipe layouts. Finally, simulations confirm the feasibility and 

effectiveness of our proposed method. For single pipes, similar to nature's way of streamlining 

structures, our method significantly reduces pipe length and the number of elbows while 

effectively avoiding key equipment. The improved A* algorithm cuts pipe lengths by 12.8275% 

and 19.4843% respectively and boosts the computation speed by remarkable percentages. For 

multi-pipes, it enhances space utilization and reduces time cost. The improved algorithm 

reduces the number of traversing nodes from 3067 to 1968 and shortens the planning time from 

20.34 s to 7.26 s, demonstrating its great efficacy. 

Keywords: aero-engine; biomechanics; automatic layout; co-evolutionary algorithm; 

A*algorithm 

1. Introduction 

The pipe layout of aero-engine is an important part of aero-engine design, and its 
quality directly affects the performance, reliability, lifecycle, and economic cost of the 
aero-engine [1]. Automatic optimization of pipeline layout design is an important way 
to improve the quality of pipeline layout, shorten pipeline layout time, and reduce 
layout cost [2]. There are many challenges in the traditional aero-engine pipeline 
layout design. For example, the structure of aero-engine is complex, and the pipeline 
layout needs to consider the characteristics of limited internal space, numerous 
components and compact layout. How to realize the rational arrangement of the 
pipeline in the limited space, not only to ensure the performance of the engine, but 
also to meet the safety and reliability requirements, is the primary problem faced by 
the designer. 
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In order to achieve automation and intelligent design of pipes of aero-engine, 
many scholars have conducted extensive research in recent years. Some methods have 
been proposed, most of them can be classified into heuristic routing algorithms, cell-
based routing algorithms, and graph-based routing algorithms.  

For the heuristic routing algorithms, Jiao et al. [3] proposed a multi-objective 
pipeline routing method based on improved MOEA/D, which is used to automatically 
generate non dominated solutions for pipeline layout in three-dimensional space and 
aero-engine rotation space. In addition, this method can be extended to surface to meet 
the needs of paving pipes on rotating surfaces of aero-engine. Yuan et al. [4] proposed 
an automatic multi pipes layout method for aero-engine that emphasizes parallel 
arrangements. This method constructs an algorithm by compressing the visibility map 
to quickly determine the rough path and interference relationship of the pipeline to be 
layout. Based on the paths and co-evolutionary algorithm, the optimization problem 
of multi pipes layout was solved. The simulation results on aero-engine have verified 
the feasibility and effectiveness of the method. Wu et al. [5]and Liu et al. [6] both 
proposed an improved particle swarm algorithm to find the optimal route for pipelines 
and the algorithm showed good computational convergence. Liu and Tong [7] 
proposed a multi-objective pipe routing algorithm based on NSGA-II to consider the 
vibration performance of aircraft engines, while taking into account pipeline length, 
smoothness, and natural frequency. For cell-based routing algorithms, Wittmann et al. 
[8] used a genetic algorithm (GA) method to optimize interactive planning of pipeline 
routing paths. Park [9] developed an element generation method that satisfies 
geometric constraints to replace traditional methods such as element decomposition or 
network optimization. This method has been validated through multiple simulations. 
Ren et al. [10] carefully considered the spatial characteristics and major engineering 
constraints of aero-engine to improve the genetic algorithm, including improvements 
initiation and direction guideline. This method is used for pipeline routing in subspaces, 
which can effectively avoid local optimal solutions during the routing process. For 
graph-based routing algorithms, Kim et al. [11] designed an automatic pipeline routing 
system that takes into account factors such as the complexity of physical and 
operational limitations. Liu and Wang [12] proposed a graph-based routing algorithm 
to attempt to find the shortest collision free pipeline path in the circumferential space 
of the aero-engine between the hub and the shell. And by combining two adaptive 
strategies, the algorithm is extended from the visibility map of robot path planning in 
2D space to the 3D circumferential space of aero-engine. Qu et al. [13] developed a 
new method for routing straight branch pipes, which is used to automatically generate 
the optimal straight branch pipe routing in confined spaces. This method utilizes a 
novel concurrent Max-Min Ant System optimization algorithm, incorporating a 
concurrent search strategy and a dynamic update mechanism, to address the 
optimization problem of pipe layout. With the development of artificial intelligence, 
the pipeline layout methods based on A* algorithm and co-evolutionary algorithm have 
also been applied. Yao [14] improved the A* algorithm using the co-evolutionary 
algorithm and achieved automatic layout of a single pipeline. Wu et al. [15] also 
proposed an improved A* algorithm, which introduces exclusion terms and 
dynamically adjusts weights for heuristic terms to design a new evaluation function. 
However, to a large extent, the above research cannot simultaneously consider the 
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utilization of time and space for layout. The cost-effective pipeline routing algorithm 
that can automatically generate multi-objective solutions is still an open research field. 
Wu and Hao [16] applied Lee algorithm and Tabu search algorithm to optimize the 
layout order to complete the multi-tube layout design. Wu et al. [17] used the improved 
firefly algorithm to optimize the sequence of pipeline layout. Liu et al. [18] introduced 
the Kriging agent model when planning the pipeline laying sequence, which improved 
the calculation efficiency. In addition, another feasible idea for planning multi-pipe 
systems is swarm intelligent optimization algorithm based on the overall coding 
mechanism. Ando et al. [19] use the overall coding idea for pipeline layout. The 
existing pipe layout optimization methods have made a beneficial exploration to solve 
the layout design problem of multi-pipe pipe system. Due to the complexity of the 
multi-pipe layout design problem, a complete solution has not yet been formed. 

In this paper, an automatic pipe layout method for aero-engine based on co-
evolutionary algorithm and improved A*algorithm is proposed. To address the 
shortcomings of the above research, this method considers the optimization of 
evaluation functions and state tables. The coordinate representation and directional 
guidance of the pipeline are also considered. The remainder of this paper is organized 
as follows: Section 2 gives the problem description of pipe layout for aero-engine; 
Section 3 gives the improved description of the A*algorithm and conducts simulation 
verification; Section 4 concludes this paper. 

2. Problem description of pipe layout for aero-engine 

2.1. Spatial representation 

Figure 1 shows a simplified model of the layout space of the aircraft engine 
piping system. This space is a revolving space between the inner casing and the nacelle, 
and there are obstacles such as fuel system, hydraulic system, air system, etc. [20,21]. 
The outer surface of the inner casing and the inner surface of the nacelle can be 
considered as the rotational surface or approximate rotational surface generated by a 
certain curve rotating around a certain straight line. Therefore, the study of automatic 
pipe layout for aero-engine is of great significance. 

 
Figure 1. Simplified model of the layout space of the aircraft engine piping system. 

Assuming lc and ln are the generatrixes of the outer surface of the inner casing 
and the inner surface of the nacelle, they can be expressed as: 
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𝑙௖: ቄ
𝐹௖(𝜌, 𝑧) = 0 (0 ≤ 𝑧 ≤ ℎ଴)
𝜃 = 0

 (1) 

𝑙௡: ቄ
𝐹௡(𝜌, 𝑧) = 0 (0 ≤ 𝑧 ≤ ℎ଴)
𝜃 = 0

 (2) 

where h0 is the axial length of engine casing. 

For ease of representation, the lc and ln are denoted as the 𝜌௖ = 𝑓௖(𝑧) and 𝜌௡ =

𝑓௡(𝑧), respectively. Therefore, the layout space can be expressed as: 

൝

𝑓௖(𝑧) < 𝜌 < 𝑓௡(𝑧),
0 ≤ 𝜃 < 2𝜋,
0 < 𝑧 < ℎ଴

 (3) 

Additionally, the obstacles in the pipe space based on the principle of minimum 
fan ring containment box can be expressed as: 

min max

min max

min max

,

,

  
  
  

 
  
  

 (4) 

where min max min max min max( , ) ( , ) ( , )z z     is the range of value for obstacle 

containment box in cylindrical coordinate system. 

2.2. Mathematical model of layout 

When arranging pipelines in three-dimensional space, the path can be viewed as 
a series of connected polylines, with the intersection points of these polylines 
representing the corresponding nodes, as shown in Figure 2. 

 
Figure 2. Pipeline simplified model. 

Therefore, the path is represented using the variable length node position 
encoding: 

𝑝𝑎𝑡ℎ = [(𝑥௦, 𝑦௦, 𝑧௦), … , (𝑥௜, 𝑦௜ , 𝑧௜), … , (𝑥் , 𝑦் , 𝑧்)] (5) 

where ( , , )i i ix y z is the spatial coordinates of the i-th node. 

The mathematical model of pipeline layout which aims to optimize the shortest 
pipeline path can be expressed as: 

𝑚𝑖𝑛 𝑓 (𝑙ଵ, … , 𝑙௜, … , 𝑙௡) = 𝑚𝑖𝑛 ෍ 𝑙௜

௡

௜ୀଵ

 (6) 

where li is the length of the i-th section of the pipeline, 𝑙௜ =

ඥ(𝑥௜ − 𝑥௜ାଵ)ଶ + (𝑦௜ − 𝑦௜ାଵ)ଶ + (𝑧௜ − 𝑧௜ାଵ)ଶ; n is the number of main pipe segments in 

a pipeline. 
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3. Theoretical backgrounds 

3.1. A* algorithm 

The A* algorithm is a typical heuristic search algorithm [22,23]. It can incorporate 
heuristic information and guidance paths related to the problem during the algorithm 
search process to reduce problem complexity and improve algorithm solving speed. 
At the same time, it combines the advantages of DFS algorithm (Depth First Search) 
and BFS algorithm (Breadth First Search), which improves the efficiency of algorithm 
while determining the optimal path that can be searched [24,25]. The algorithm 
principles of the DFS and BFS are shown in Figure 3. 

 
(a) Algorithm principle of the DFS. 

 
(b) Algorithm principle of the BFS. 

Figure 3. Algorithm principles. 

The pathfinding idea of A* algorithm consists of the following steps: 
(1) Initialization. Add the start node to the open List and set its heuristic function 

estimate (usually denoted as F value) to 0 and the actual path length (usually denoted 
as G value) of the start node to 0; 

(2) Circular search. When the open list is not empty, repeat the following steps: 
1) Select the node with the smallest F-value in the open list as the current node; 
2) Remove the current node from the open list and add it to the closed list (close 

List). 
(3) Traverse the neighbor node. For each neighbor of the current node: 
1) If the neighbor node is already in the close list, it is skipped. 
2) Calculate the actual path length (G value) from the start node through the 

current node to the neighbor node: 
G value = G value of the current node + the actual distance between the current 

node and the neighbor node; 
3) If the neighbor node is not in the open list, add it to the open list and set its 

parent node as the current node; 
4) If the neighbor node is already in the open list and the actual path length of the 

new path is smaller than the known path length, update the parent node to the current 
node and recalculate its actual path length. 
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(4) Update node information. For each node in the open list, update its heuristic 
function estimate (F Value): 

1) F value = G value + H value, where G value is the actual path length from the 
node to the start node, and H value is the estimated heuristic function from the node 
to the target node; 

2) The estimated value of the heuristic function can be Manhattan distance, 
Euclidean distance, etc., but it should be an optimistic estimate, that is, the actual path 
length should not be underestimated. 

(5) Termination conditions. When the target node is added to the closed list or 
the open list is empty, the algorithm terminates. 

(6) Backtracking path. If the destination node is found, the shortest path from the 
start node to the destination node can be reconstructed by retracing the nodes in the 
shutdown list. 

The A* algorithm selects the node with the smallest evaluation function value 
among the adjacent nodes of the current node for expansion at each iteration, and its 
evaluation function can be expressed as: 

( ) ( ) ( )f n g n h n   (7) 

where 𝑓(𝑛) is the sum of actual cost value and estimated cost value; 𝑔(𝑛) is the actual 
cost value from starting node to node n; ( )h n is the inspiration factor, which is used to 

estimate the cost value from node n to the target node. 
Assuming the ( )h n  is the actual cost value from node n to the target node: 

a) If ( ) 0h n  , the A*algorithm will degrade to the Dijkstra algorithm due to the loss 

of heuristic information. At this point, the algorithm will perform a blind search. 
Although it can ensure finding the optimal path, it will greatly reduce the 
execution efficiency of the algorithm. 

b) If ( ) ( )h n h n ,smaller value of ( )h n increases the search range and expands the 

number of nodes, which in turn leads to lower execution efficiency. 
c) If ( ) ( )h n h n , the algorithm will perform strict path optimization and maintain a 

certain level of efficiency. 
d) If ( ) ( )h n h n , although the algorithm can maintain a small search range and 

fewer expansion nodes, it cannot guarantee the search for the optimal path. 
And there are three common heuristic factors: Chebyshev distance, Manhattan 

distance, and Euclidean distance, which are expressed as follows [26]: 
(1) The Chebyshev distance represents the maximum difference in coordinate 

distance between the current and target nodes: 

h(𝑛) = 𝑚𝑎𝑥( |𝑥௡ − 𝑥ଵ|, |𝑦௡ − 𝑦ଵ|, |𝑧௡ − 𝑧ଵ|) (8) 

(2) The Manhattan distance represents the sum of the distances between the 
current node and the target node on the horizontal and vertical axes: 

h(𝑛) = |𝑥௡ − 𝑥ଵ| + |𝑦௡ − 𝑦ଵ| + |𝑧௡ − 𝑧ଵ| (9) 

(3) The Euclidean distance represents the straight-line distance between the 
current node and the target node: 
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h(𝑛) = ඥ|𝑥௡ − 𝑥ଵ|ଶ + |𝑦௡ − 𝑦ଵ|ଶ + |𝑧௡ − 𝑧ଵ|ଶ (10) 

The Chebyshev distance, Manhattan distance, and Euclidean distance are shown 
in Figure 4. 

 
(a)                                           (b)                                         (c)  

Figure 4. Types of distance calculation. (a) Chebyshev distance; (b) Manhattan 
distance; (c) Euclidean distance. 

Additionally, the execution of the A* algorithm requires the introduction of two 
state tables (i.e., the OPEN_LIST and the CLOSE _LIST). During the search process, 
the starting node is added to the CLOSE_LIST table, and the 8 nodes around the 
starting node are added to the OPEN_LIST table. The cost value f of each node is 
calculated, and the node with the smallest cost value, which is the yellow node in the 
Figure 5. Then the algorithm will update the OPEN_LIST table to the position of the 
CLOSE_LIS table, and use the node with the lowest cost as the new starting node until 
it reaches the target node. And the flow chart of A*algorithm is shown in the Figure 
6. 

 
Figure 5. Schematic diagram of node selection for the A* algorithm. 

 
Figure 6. Flow chart of the A* algorithm. 
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3.2. Improved A* algorithm 

Figure 7 shows a simplified structural layout of the aero-engine. From Figure 6, 
it can be seen that the internal structure of the aero-engine is complex. In the design 
of aircraft engine piping layout, the length of the pipes should be as short as possible, 
the number of bends should be minimized, and the pipes should avoid interference 
with other obstacles. Sometimes, pipelines should also be distributed orthogonally as 
much as possible. However, the traditional A* algorithm has a simple principle and 
relies heavily on evaluation function, directional strategy, and state tables, which is 
not conducive to solving complex aviation engine pipeline layout problems. Therefore, 
it is necessary to improve the traditional A* algorithm. 

 
Figure 7. Simplified structural layout of the aero-engine. 

3.2.1. Improvement of node coordinate expression method 

The use of Cartesian coordinate system in pipeline layout using the A* algorithm 
may lead to inaccurate evaluation functions, low efficiency in accessing state tables, 
and inability to effectively handle the complexity and directionality of path. Therefore, 
the spatial position of grid nodes has been improved to convert Cartesian coordinate 
system into three-dimensional array coordinate system. The three-dimensional array 
coordinate system represents the row, column, and layer positions where the grid 
nodes are located. The Cartesian coordinate system and three-dimensional array 
coordinate system are shown in Figure 8. 

 
(a)                                                                   (b)  

Figure 8. Cartesian coordinate system and three-dimensional array coordinate 
system. (a) Cartesian coordinate system; (b) Three-dimensional array coordinate 
system. 

In the three-dimensional layout space, the range of values for the x-axis, y-axis, 
and z-axis of the Cartesian coordinate system are [0, L], [0, B], and [0, H], respectively. 
The space is divided into grid combinations using the grid method, with each grid 
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being a cube with a side length of a. So, the grid node [1, 1, 1] can be composed of 
point (0, 0, 0), (a, 0, 0), (a, a, 0), (0, a, 0), (a, 0, a), (a, a, a), and (0, a, a). Therefore, 
for every change of a unit on the x-axis, y-axis, and z-axis in the Cartesian coordinate 
system, the row, column, and layer coordinates in the three-dimensional array change 
by 1 unit accordingly. The three-dimensional array coordinate of the grid node is 
shown in Figure 9. 

 
Figure 9. Three-dimensional array coordinate of the grid node. 

3.2.2. Optimization of evaluation function 

The evaluation function directly affects the efficiency and accuracy of path search 
in the A* algorithm [27]. The difference between estimated value and actual value is 
crucial for the performance of the algorithm. To balance the relationship between the 
two and implement the path planning algorithm more reasonably, an optimized 

inspiration factor ℎ(𝑛) is introduced. 
This study optimizes the distance to obtain heuristic factors through dynamic 

weighting, and selects weighting values based on the actual situation of the path. The 

improved inspiration factorℎ(𝑛) can be expressed as: 

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 2

( ), , 1
( )

( ), ,0 1

n n n n n n

n n n n n n

x x y y z z x x y y z z
h n

x x y y z z x x y y z z

  

  

              
             

 (11) 

where x1, y1, z1 are the coordinates of the current node; xn, yn, zn are the coordinates of 
the target node; λ is the threshold; ω1 and ω1are the weight, respectively. 

Specifically, the weight increases and the algorithm search speed become faster 

when the original heuristic factor ℎ(𝑛) exceeds the threshold λ. On the contrary, the 
weight decreases and the optimal path is given priority consideration when it is below 
the threshold. The threshold is dynamically selected based on the factors such as 
computer computing performance and map size, and the weight values are adjusted 
according to the size and complexity of the set map. 

To highlight the effectiveness of the improved inspiration factor, it is compared 
with Chebyshev distance, Manhattan distance, and Euclidean distance on the same 
map. Set the optimized distance parameters λ = 16, ω1 = 4, and ω2 = 0.7 during the 
comparison process. The comparison results are shown in Figure 10. 
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(a)                                  (b)                                  (c)                                  (d)  

Figure 10. Three-dimensional array coordinate of the grid node. (a) Optimized distance; (b) Chebyshev distance;(c) 
Manhattan distance; (d) Euclidean distance. 

From Figure 10, it can be seen that the paths using four heuristic factors can all 
avoid obstacles and reach the target node. Compared with other distance calculation 
methods, the nodes of optimized distance in this study are significantly reduced. 
Compared to Chebyshev distance and Euclidean distance, path of the optimized 
distance has fewer corners, which is more in line with the actual situation. The specific 
comparison information is shown in Table 1. 

Table 1. Specific comparison information. 

ℎ(𝑛) Number of nodes Computing time/ms Number of corners 

Optimized distance 325 293.2 7 

Chebyshev distance 746 311.8 8 

Manhattan distance 652 398.5 7 

Euclidean distance 719 354.2 14 

From Table 1, it can be concluded that the number of nodes of optimized distance 
nodes is only 325, with a calculation time of 293.2 ms. The simulation results 
demonstrate that the optimized heuristic factor significantly reduces the time required 
for path search and greatly enhances the efficiency of path planning while maintaining 
the accuracy of the path length. 

3.2.3. Adjustment of directional strategy 

When designing pipeline layout, it is also necessary to consider the demand 
relationship between pipelines and equipment. The pipelines should leave a certain 
safe space between equipment as much as possible. Meanwhile, the pipeline should 
avoid bypassing the equipment. Therefore, a directional strategy is introduced into A* 
algorithm to make the pipeline layout more in line with actual needs. 

The key node method is an important method for achieving directional guidance 

in pipeline layout. In the evaluation function, the actual distance g(𝑛) represents the 
actual path length from the starting node to the current node. Direction guidance can 

be achieved by setting key nodes to adjust the value of g(𝑛). 
For equipment that requires tight fitting of pipelines, two key nodes are set near 

the equipment to appropriately reduce the value of g(𝑛). At this point, the evaluation 
function for two key nodes is also relatively optimal. At this point, the evaluation 
function for key nodes is also relatively optimal. If the constraint rule of pipeline 
layout is converted into a length index, the algorithm will prioritize selecting these two 
nodes to attract pipeline layout, as shown in Figure 11. The adjustment formula for 

g(𝑛) is as follows: 
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𝑔(𝑛) = 𝑔(𝑛 − 1) + (1 − 𝛾) × 𝑑(௡ିଵ,௡)  𝛾 ∈ (0,1) (12) 

where d(n−1,n) is the actual distance from node n−1 to node n; γ is the length index, 

which can adjust the numerical value of g(𝑛). 

 
Figure 11. Key node attraction strategy. 

For the equipment to be avoided, two key nodes are also set to increase g(𝑛) and 

evaluation function f(𝑛). In the process of pipeline layout, the A*algorithm will discard 
these two nodes to avoid equipment, as shown in Figure 12. The adjustment formula 

for g(𝑛) is as follows: 

𝑔(𝑛) = 𝑔(𝑛 − 1) + (1 + 𝛾) × 𝑑(௡ିଵ,௡) 𝛾 ∈ (0,1) (13) 

 
Figure 12. Key node exclusion strategy. 

3.2.4. Optimization of OPEN_LIST 

The two state lists (i.e., the OPEN_LIST and the CLOSE_LIST) are introduced 
to the A*algorithm to store nodes in path. Its running process can be simply 
summarized as: move in (move extended nodes into the OPEN_LIST)-sort-move out 
(move out of the OPEN_LIST). The most time-consuming operation is sorting, which 
aims to find the node with the smallest evaluation function value in the OPEN_LIST. 
The time is largely influenced by the structure of OPEN_LIST. In order to further 
improve the efficiency of the A* algorithm, the structure of the OPEN_LIST is 
optimized to accelerate the comparison process of the evaluation function and removal 
process of the nodes. 
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The common data structures include array, linked list, and binary tree [28], as 
shown in Figure 13. 

 
(a) (b) 

 
(c) 

Figure 13. Common data structures. (a) Array; (b) Linked list; (c) Binary tree. 

From Figure 13, it can be concluded that the array is a data structure of a linear 
table, where the data is unsorted. Therefore, the time complexity during operation is 
O(n). For a linked list, its data structure is non continuous and nonsequential. The time 
complexity for moving out and in nodes is O(1), while the time complexity for finding 
the most valuable node is O(n). However, the binary tree is a tree structure in which 
the evaluation function of each node can be less than or equal to the evaluation 
function of nodes in other subtrees. The time complexity for performing operations 
such as moving in, sorting, and moving out is O(logn). Therefore, if the binary tree is 
used to store data, the A* algorithm only needs to read the node at the top of the heap 
each time, which greatly improves its running efficiency. The time complexity is 
shown in Figure 14. 

 
Figure 14. Time complexity. 

3.2.5. Single pipeline simulation analysis 

In order to validate the effectiveness of the improved A* algorithm, three paths 
are set up for simulation comparison, as shown in Figure 15. 
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Figure 15. Path description 1. 

From Figure 15, it can be seen that there are 3 paths to be arranged and 8 
obstacles set up in the space. The starting and ending points of these three paths are 
different, and the coordinate information of the obstacles and starting and ending 
points are shown in Tables 2 and 3, respectively. 

Table 2. Coordinate information of the obstacles. 

Number Diagonal coordinates 

1 (200, −70, 350), (440, −430, 430) 

2 (200, −280, 275), (300, −280, 275) 

3 (200, −340, −70), (430, −430, 65) 

4 (775, 345, −85, 345), (1120, 415, 85, 415) 

5 (680, −335, 1200), (1000, −390, 220) 

6 (675, −360, −160), (1020, −360, −160) 

7 (1070, −180, 360), (1330, −180, 360) 

8 (1380, −350, −470), (1520, −40, 40) 

Table 3. Coordinate information of the starting and ending points. 

Number starting point ending point 

I (300, −280, 275) (820, −85, 390) 

II (430, −395, 0) (1120, −220, 330) 

III (1260, −220, 330) (1380, −395, 0) 

The three pipelines are arranged separately using the improved A* algorithm. The 
results are compared with the unimproved A*algorithm, as shown in Figure 16. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 16. Comparison of results. (a) Path I with unimproved A* algorithm; (b) Path I with improved A* algorithm; 
(c) Path II with unimproved A* algorithm;(d) Path II with improved A* algorithm; (e) Path III with unimproved A* 
algorithm;(f) Path III with improved A* algorithm. 

The detailed comparison of results is presented in Table 4. 

Table 4. Specific comparison of results. 

Number Method Pipeline length/m Pipeline elbow Avoidance distance/m Time/ms 

I 
unimproved A* algorithm 4.1723 3 0.0527 546.8712 

improved A* algorithm 3.6371 1 0.0916 228.6983 

II 
unimproved A* algorithm 5.6117 3 0.0291 746.4349 

improved A* algorithm 4.5183 1 0.0962 248.8951 

III 
unimproved A* algorithm 2.8524 1 0.2076 352.4237 

improved A* algorithm 2.8524 1 0.2076 170.1286 

From Table 4, it can be concluded that the improved A*algorithm performs 
excellently. Specifically, the length of the pipeline of improved A*algorithm is 3.6371 
m, which is less than the pipeline length of the unimproved A*algorithm in path I. And 
the number of pipeline elbow is smaller than that of the unimproved A* algorithm. 
This greatly improves space utilization. The improved A*algorithm has a significant 
avoidance effect on obstacle 5, with an avoidance distance of 0.0916 m. In addition, 
the improved A* algorithm has a pipeline layout time of 228.6983 ms, which is 
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58.1806% less than the unimproved A*algorithm. In path II, the performance of the 
improved A*algorithm is similar to that in path I. Due to the increase in pipeline length, 
both have increased in time. But the improved A*algorithm still performs well, with a 
66.6554% reduction in computation time compared to the unimproved A*algorithm. 
In path III, there are almost no obstacles, so the difference between the two algorithms 
is only reflected in the time. The improved A*algorithm reduces 51.7261% compared 
to the unimproved A*algorithm. The above analysis demonstrates that the improved 
A* algorithm is effective in the layout of aircraft engine pipelines. 

3.3. Improved A* algorithm based on co-evolutionary algorithm 

However, the layout of aircraft engine pipelines is not a single pipeline layout 
problem, but a process of simultaneously arranging multiple pipelines [29]. Therefore, 
the single optimization algorithm is difficult to meet all requirements. In this section, 
A* algorithm is further improved based on co- evolutionary algorithm to solve the 
problem of multiple pipeline layout. 

In order to verify the performance of the improved A* algorithm, MATLAB 
software was used for simulation and comparison experiments, and raster map was 
used for simulation experiments. The raster map size was 20 × 20 and 50 × 50 
respectively. Set the safety distance of quadratic line optimization to 1, the expansion 
node unit before path smoothing to 0.1, and the moving window size to 9. The 
performance of the algorithm is compared and analyzed in different scale raster maps 
under the same conditions. 

3.3.1. Co-evolutionary algorithm 

The co-evolutionary algorithm from the theory of biological coevolution and is 
anew evolutionary algorithm based on traditional evolutionary algorithm [30]. Its 
principle is to establish two or more populations and add appropriate population 
relationship conditions to achieve evolution between populations, thereby obtaining 
the optimal solution. The coevolutionary relationship between populations is shown 
in Figure 17. 

 
Figure 17. Relationship between population coevolution. 

In addition, the co-evolutionary algorithm includes competitive co-evolutionary 
algorithm, lotka-volterraco-evolutionary algorithm, and cooperative co-evolution 
algorithm. Among them, competitive co-evolutionary algorithm and lotka-volterraco-
evolutionary algorithm have the problems of large search space range and low 
efficiency, respectively. However, the cooperative co-evolution algorithm can ensure 
that the current population is in an evolutionary state while the population is in a silent 
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state, which not only reduces the complexity of the algorithm but also obtains the 
complete optimal solution of the final problem [31,32]. Therefore, for the problem of 
pipeline layout in the aircraft engine studied in this article, it is obvious that the 
cooperative co evolutionary algorithm is more suitable for the needs. The simple steps 
of the pipeline steps under this algorithm are as follows: 

Step 1: The population model, which is based on the pipeline layout problem, is 
segmented into multiple subpopulation models. Additionally, the algorithm’s 
parameters, evaluation function, and termination conditions are defined; 

Step 2: Algorithm iteration is performed to find the optimal solution for each 
subpopulation according to the constraint rules; 

Step 3: The solution of each population is determined whether it is the optimal 
solution. Otherwise, steps 2 and 3 will be executed. 

Step 4: During the iteration process, the optimal solutions of each subpopulation 
adapt to each other, influence each other, and evolve together. The final optimal 
solution of the overall problem is obtained, which is the set of optimal solutions of all 
subpopulations. 

3.3.2. Co-evolutionary improved A* algorithm 

Based on the analysis of the pipeline layout problem of aircraft engines, the 
mathematical model of pipeline layout can be obtained as follows: 

 1 1 2 2

1 2

1 2 1 2

( ) min ( ) ( ) ( )
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. .     
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 (14) 

where f(N) is the evaluation function of multi pipeline layout algorithm; N is the multi 

pipeline system; Niis the i-th sub path of the multi pipeline system; and are parallel 

pipelines and branch pipelines, respectively. 
The biggest difference between multi pipeline layout and single pipeline layout 

is that multi pipeline systems have multiple different pipeline connection points, which 
results in the complexity of multi pipeline systems. The solution to this problem is to 
divide the pipeline into multiple single pipelines, which are interconnected yet 
relatively independent. Then each pipeline is expressed separately. The schematic 
diagram of branch pipeline decomposition is shown in Figure 18. 

 
Figure 18. Schematic diagram of branch pipeline decomposition. 

 
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From Figure 18, it can be seen that the original branch pipeline has been 
decomposed into three single pipelines: AB, AC, and AD. The mathematical model of 
the branch pipelines based on Equation (12) is represented as follows: 

𝑁 = {𝑁ଵ, 𝑁ଶ, … , 𝑁௜}, 𝑖 = 1,2, … , 𝑛 (15) 

𝑁஻௘௡ௗ = (𝑁஻௘௡ௗ(𝑁ଵ), 𝑁஻௘௡ௗ(𝑁ଶ), … , 𝑁஻௘௡ௗ(𝑁௜)), 𝑖 = 1,2, … , 𝑛 (16) 

where NBend is the number of bends in the entire branch pipeline. 
As shown in Figure 19, if the starting and ending nodes and bending nodes of 

the branch pipeline are assigned node numbers, each connecting node in the pipeline 
can be represented as: 

𝑔𝑟𝑖𝑑௞ = (𝑋௞ , 𝑌௞ , 𝑍௞), 𝑘 = 1,2, … , 𝑛 (17) 

The mathematical expression of branch pipelines is as follows: 
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 (18) 

Additionally, the evaluation function for the problem of multi pipeline layout also 
needs to be redefined. The updated evaluation function is represented as: 

1 cos 2
1 1 1
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 (19) 

where Lcost(Ni) is the length cost of the i-th single pipeline; NBend(Ni) is the bending cost 
of the i-th single pipeline; ω is the cost of one bending; E, E1, E2 are the proportion of 
each evaluation factor in the evaluation function, respectively. 

 
Figure 19. Branch pipeline node number. 

3.3.3. Multi pipeline simulation analysis 

In order to verify the effectiveness of the improved A* algorithm based on co-
evolutionary algorithm, the path is further increased, as shown in Figure 20. And the 
partial paths in Figure 20 have been combined, as shown in Table 5. 
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Figure 20. Path description 2. 

Table 5. Relationship of combination. 

Case Path 1  Path 2 Path 3 

A I IV VI 

B II III V 

C II III  

The simulation parameters are set to ω = 3, E1 = 1, E2 = 10, E = γ. The simulation 
results are shown in Figure 21. 

 
                 (a)                                                                 (b)                                                          (c)  

Figure 21. Simulation results. (a) Case A; (b) Case B; (c) Case C. 

The specific results are shown in Table 6. 

Table 6. Specific results. 

Case Total length of pipeline/m Total elbow of pipeline Total time/ms 

A 17.6569 3 645.8941 

B 26.8642 12 729.6457 

C 15.5864 6 486.1251 

From Figure 21 and Table 6, it can be concluded that there is no overlapping 
arrangement of independent pipelines in the process of multi pipeline layout, and the 
overall layout is relatively beautiful the layout time is relatively short. This not only 
improves space utilization, but also reduces time cost. Therefore, A* algorithm can 
meet the basic requirements of aircraft engine pipeline layout. 

The improved algorithm can greatly reduce the number of traversing nodes 
without affecting the optimal path, so that the number of nodes is reduced from the 
original 3067 to 1968, and the planning time is also shortened from the original 20.34 
s to 7.26 s, which proves the effectiveness of the algorithm. (see Table 7): 



Molecular & Cellular Biomechanics 2025, 22(2), 515.  

19 

Table 7. Data comparison of the path planning algorithm experiment. 

Algorithm type Average path length/mm Number of traversed nodes/node Average running time/s 

Traditional algorithm 1406 3067 20.34 

This study improves the algorithm 1360 1968 7.26 

4. Conclusion 

To address the current issues with single pipe and multi pipes layout in aero-
engine, an automatic pipe layout method for aero-engine based on co-evolutionary 
algorithm and improved A* algorithm is proposed. The method has positive reference 
value for further improvement and implementation of automatic layout of aircraft 
engine piping systems. The main conclusions are as follows: 

(1) The improved A*algorithm based on improved node coordinate expression, 
improved evaluation function, introduction of directional strategy, and improved 
OPEN_LIST is proposed. The algorithm is applied to the automatic layout of single 
pipe in aero-engine, and its simulation results are compared with the unimproved 
algorithm. Under different single pipeline paths, the improved A*algorithm has 
relatively shortened the length of pipes by 12.8275% and 19.4843%, respectively. 
According to different paths, the number of elbows also varies, but the number of 
elbows is much smaller than that of the unimproved algorithm. For time of pipes layout, 
the improved A* algorithm has relatively shortened the length of pipes by 58.1806%, 
66.6554%, and 51.7261%, respectively. This lays the theoretical foundation for the 
single pipe layout in aero-engine. 

(2) For automatic layout of multiple pipes, combining with co-evolutionary 
algorithm and new evaluation function, the new improved A* algorithm is proposed to 
solve the problem of automatic layout of multiple pipes in aero-engine. This algorithm 
is further optimized based on the former. Both space utilization and layout efficiency 
have been further improved. This provides support for obtaining various pipe layout 
schemes in aero-engine that better meet engineering conditions. 

The method proposed in this paper can optimize the layout of multiple pipelines 
at the same time, and improve the efficiency and rationality of the overall layout. In 
the process of searching, it can converge to the optimal solution more quickly. This 
improved A* algorithm can effectively reduce the search space and improve the 
computational efficiency when dealing with pipeline layout problems. The method in 
this paper not only considers the layout efficiency of the pipeline, but also takes into 
account the length of the pipeline, bending degree, thermal expansion and other factors 
to achieve multi-objective optimization. This comprehensive consideration makes the 
pipeline layout more in line with the actual engineering needs. 

However, in practical applications, especially when dealing with large-scale 
pipeline layout problems, the computational complexity is still high and the 
computation time is long. The method proposed in this paper is mainly aimed at the 
problem of pipeline layout in aero engines. For other types of pipeline layout problems, 
further research and improvement may be needed. 

In the future, it is necessary to explore the combination of the proposed method 
with other optimization algorithms (such as genetic algorithm, particle swarm 
optimization algorithm, etc.) to further improve the performance of the algorithm. 
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