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Abstract: In communication, the detection and recognition of digital signals have always faced 

problems such as low adaptability and high misclassification rate. To address these issues, this 

study innovatively fused the deep auto-encoder network with convolutional neural networks to 

construct a novel digital signal detection and recognition model. Firstly, this study utilized the 

powerful feature extraction capabilities of the deep auto-encoder network to extract key feature 

information from massive amounts of data. Then these features were combined with 

convolutional neural networks to construct a detection and recognition model. These results 

confirmed that the constructed digital signal detection and recognition model had values of 

93.75% and 94.18% in data detection recognition rate and average classification accuracy, 

respectively. Meanwhile, this model also performed well in terms of data processing accuracy 

and recall. In the comparison of data processing, the accuracy and recall rates were 93.59% 

and 94.67%, respectively, and the performance of data detection and recognition was better 

than that of the comparison methods. This indicates that the constructed digital signal detection 

and recognition model can significantly improve the reliability and robustness of signal 

detection and recognition. This paper brings new breakthroughs to the development of digital 

signal detection and recognition technology in communication. 

Keywords: deep auto-encoder network; convolutional neural network; communication field; 

digital signals; detection and recognition 

1. Introduction 

With the rapid development of information technology, data show explosive 

growth. The types and complexity of digital signals are also increasing day by day. 

Communication is facing increasingly complex digital signal processing problems. 

How to accurately detect and recognize digital signals in complex and ever-changing 

communication environments becomes a focus of current research [1,2]. Meanwhile, 

the presence of various interferences and noise also poses great challenges to the 

detection and recognition of digital signals. Digital Signal Detection and Recognition 

(DSDR), as a key link in communication systems, is of great significance in ensuring 

the accuracy and reliability of information transmission. In communication systems, 

the main task of DSDR is to classify and recognize received signals to extract useful 

information [3,4]. The traditional DSDR methods are mainly based on mathematical 

analysis and statistical models. These methods often face problems such as high 

computational complexity and low recognition accuracy when dealing with complex 

signals [5]. In recent years, deep learning technology provides new ideas and methods 

for DSDR. Deep Auto-Encoder Network (DAEN) and Convolutional Neural Network 

(CNN), as two important deep learning models, show excellent performance in signal 

processing and pattern recognition. DAEN is a deep learning model based on 
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unsupervised learning, which can extract high-level abstract features from signals 

through layer by layer learning of autoencoders. CNN is particularly suitable for 

processing image and signal data. It extracts local features from signals through 

convolution operations and reduces data dimensions through pooling operations, 

improving the model’s generalization ability [6,7]. However, DAEN has weak 

generalization ability in data processing, while CNN has poor recognition ability for 

input data. Therefore, this study applies DAEN to extract digital signal features and 

fuses DAEN with CNN to construct a DSDR model. This study aims to use digital 

signal detection models to enhance the digital signal detection capability in 

communication, providing technical support for the effective transmission of digital 

signals. 

Firstly, this study analyzes DSDR in communication and summarized the 

shortcomings of existing research. The second part utilizes DAEN to extract data 

features, and then fuses DAEN with CNN to construct a DSDR model. Next, 

performance analysis is conducted on the detection model using the constructed data. 

Finally, the experimental results are summarized and the advantages and 

disadvantages of the research methods are analyzed. 

2. Related works 

As communication technology develops, the complexity and diversity of digital 

signals continue to increase. Traditional signal detection and recognition methods are 

no longer sufficient to meet practical needs. Therefore, exploring new signal detection 

and recognition technologies to improve the accuracy and efficiency of signal 

recognition has important theoretical and practical significance. Numerous experts and 

scholars have conducted in-depth research and exploration on signal detection in 

communication. Liu et al. applied deep learning to signal conversion and classification 

to quickly identify the types of wireless communication signals and improve 

communication efficiency and quality. This study significantly improved the 

classification performance of signal data by leveraging the advantages of deep 

learning. However, this study only explored the classification performance of relevant 

deep learning, and there was relatively little research on different Signal-to-noise Ratio 

(SNR) [8]. To annotate digital signals in different working environments, Gao et al. 

used fused CNN to extract features from complex working environments, and then 

used Gaussian weighting to accurately analyze the data. This study significantly 

improved the practical application performance of IBD signals [9]. To improve the 

data misclassification in industrial big data, Gu et al. combined DAEN with automatic 

denoising to construct a multi-module information classification model. The 

combination of two methods significantly improved the denoising performance of 

signal data. However, this study only analyzed industrial big data, which had certain 

limitations [10]. Khani and other researchers proposed an adaptive neural signal 

detection method that combines deep learning techniques and iterative soft 

thresholding algorithms to achieve signal detection in large-scale multi input multi 

output systems. This method can utilize the temporal and spectral correlations in real 

channels to accelerate training. The results show that the adaptive neural signal 

detection method reduces the computational complexity of large-scale multi input 
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multi output systems by 10 times [11]. Jinno and other scholars proposed the use of 

ultra flexible optical devices for biological signal collection in order to achieve stable 

and continuous biological signal detection. They designed an ultra flexible self 

powered organic optical system for monitoring photoplethysmography, and the results 

showed that the system could maintain 70% of its initial brightness after working in 

air for 11.3 h [12]. 

Yan innovatively integrated backpropagation networks with CNN to construct an 

improved CNN to enhance signal transmission and anti-interference performance in 

wireless communication. Through continuous training and recognition optimization, 

this model significantly improved its convergence speed. This meant that the model 

provided accurate results more quickly when processing large amounts of data. The 

accuracy of signal recognition was significantly improved [13]. Chen et al. conducted 

in-depth research on the detection and analysis performance of linear frequency 

modulation signals. This study utilized fractional Fourier transform to aggregate and 

classify signals, effectively solving complex problems in signal recognition. Through 

simulation experiments, using CNN to classify signals significantly improved the 

detection and processing capabilities of linear frequency modulation signals. This 

brought new breakthroughs to signal processing technology [14]. In addition, Latha et 

al. used CNN to construct a recognition specific network architecture, which improved 

recognition efficiency by simplifying digital signals in two-dimensional images. This 

study not only improved the accuracy of digital signal recognition, but also showed 

significant improvements in noise cancellation and data recognition performance. This 

injected new vitality into the digital signal recognition for two-dimensional images, 

promoting rapid development in this field [15]. Wang’s research team proposed a 

method of using convolutional neural networks combined with wavelet transform for 

radar system design in order to improve signal recognition accuracy in complex 

electromagnetic environments. This method utilizes wavelet transform and deep 

learning techniques for signal preprocessing analysis, and designs an optimized 

convolutional neural network for feature fusion processing at the decision layer. The 

results show that the radar system designed by this method effectively improves 

recognition performance in complex electromagnetic environments [16]. Researchers 

such as Yıldırım et al. proposed a new deep one-dimensional convolutional neural 

network model to improve the detection accuracy of abnormal EEG signals. The 

model utilizes a complete end-to-end structure to classify EEG signals without any 

feature extraction. The results show that the model effectively reduces the 

classification error rate of abnormal EEG signals [17]. 

In summary, digital signal detection in communication plays an important role in 

communication. Numerous scholars have achieved significant results in digital signal 

detection and classification in this field. However, further research is needed on the 

adaptability of different SNRs, working environments, or signal types. Therefore, this 

study innovatively integrates DAEN and CNN to construct a digital signal data 

detection and classification model. This model can fully utilize the advantages of both 

networks to enhance the data monitoring ability in digital signal detection and 

classification. This can provide strong guarantees for the stable operation of the 

communication system. 
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3. Construction of a digital signal detection and recognition model 

combining DAEN and CNN 

Firstly, this study utilizes DAEN to extract data features to improve DSDR. Then, 

based on feature extraction, DAEN and CNN were fused to construct a DSDR model 

to improve the digital signal detection and classification in communication. 

3.1. Signal data feature extraction based on DAEN 

In digital signal detection in communication, digital signals contain rich 

information, which is often hidden within complex signal structures. Therefore, 

effective extraction of these hidden information is necessary to obtain sufficient data 

features for data detection and classification. DAEN can extract the inherent patterns 

and features of digital signals layer by layer. In communication, DAEN can deeply 

explore the features in these signals and transform them into more easily processed 

and classified forms [18,19]. Before conducting digital signal feature extraction, this 

study first requires pre-training, optimization, and other processing of the digital signal 

to improve the accuracy of digital signal feature extraction. The main purpose of 

digital signal pre-training is to adjust and optimize the parameters and characteristics 

of the signal to better adapt to subsequent feature extraction. Figure 1 shows the 

DAEN feature extraction model. 
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layer

Feature 
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Weight
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Figure 1. DAEN feature extraction model. 

As shown in Figure 1, in the DAEN network feature extraction model, the digital 

signal is first input, and then processed through weight processing in the first hidden 

layer, second hidden layer, and third hidden layer, finally reaching the K-th hidden 

layer. Then reverse the weights from the K-th hidden layer and perform a reverse 

operation, and finally output the feature extraction. In DAEN, research is conducted 

on encoding and decoding digital signals. Encoding is the mapping of the encoder 

from the input vector to the hidden layer of the activation function, which can be 

defined by Equation (1). 

ℎ = 𝑆𝑓(𝑊𝑥 + 𝑝) (1) 

In Equation (1), ℎ  represents encoding mapping. The process of encoding 

mapping is the process of converting information from one form to a digital or binary 

form. 𝑆𝑓 represents an activation function. 𝑊𝑥 represents a matrix weight between the 

input and hidden layers of an input vector 𝑥. 𝑝 represents a bias vector on a hidden 

layer. Decoding is the mapping of data from the hidden layer to the output layer, which 

can be defined by Equation (2). 
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𝑦 = 𝑆𝑔(𝑊
~

𝑥 + 𝑞) (2) 

In Equation (2), 𝑦 represents decoding mapping. The process of decoding mapping 

is the process of converting digital or binary information back to its original form. 𝑆𝑔 

represents the mapping function. 𝑊
~

𝑥  represents the matrix weight value between the 

hidden and input layers of 𝑥 . 𝑞  represents the bias vector on the output layer. After 

completing the encoding and decoding operations, the digital signal parameters are 

labeled. By training the signal parameters during training, corresponding optimization 

results can be obtained. The optimal training parameters are used as the optimal solution 

for signal parameters, and decoding operations are used to decode the signal parameters. 

The decoding results are compared with the optimal parameters in terms of proximity, 

which can be expressed using Equation (3). 

𝐽(𝜃) =
1

𝑁
∑ 𝐿(𝑥(𝑆𝑓(𝑊𝑥 + 𝑝))

𝑥∈𝑆

 (3) 

In Equation (3), 𝐽(𝜃)  represents proximity. 𝜃  represents signal parameters. 𝑁 

represents the number of decoded information. 𝐿 represents the decoding length. After 

completing the comparison of decoding proximity, this study used gradient descent 

method to further optimize and adjust the input and output layers to ensure the 

minimization of proximity values. By continuously iterating and updating parameters, 

the gradient descent method can gradually optimize the input and output layers of 

DAEN, achieving the minimum decoding proximity. Figure 2 shows the flowchart of 

feature extraction and classification for DAEN data. 

Encoding process

Decoding

Output  

Figure 2. DAEN data feature extraction and classification flowchart. 

As shown in Figure 2, in the data feature extraction and classification process of 

DAEN network, the autoencoder performs mapping encoding from the hidden layer 

to the output layer. After the autoencoder is trained, its output is used as the input of 

the next autoencoder for decoding operation. The next autoencoder is trained 

sequentially until the decoding proximity reaches the minimum value, and then its 

output is outputted. After obtaining the minimum value, wavelet transform can be used 

for feature extraction. When extracting features from digital signals, Fourier transform 

cannot analyze the frequency characteristics of local time-domain signals. This will 
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affect the performance of digital signal analysis and cannot provide effective support 

for subsequent interference suppression or signal processing. Therefore, this study 

utilizes wavelet transform for feature extraction. Wavelet transform can change the 

shape of the window without changing its size, thus providing a time-frequency 

window that follows frequency changes. The wavelet transform is represented by 

Equation (4). 

𝑋(𝑎, 𝑏) =
1

√𝑎
∑ −∞

+∞𝑥(𝑏 − 𝑛𝑎)𝜓(
𝑛

𝑎
) (4) 

In Equation (4), 𝑋(𝑎, 𝑏)  represents the coefficient after wavelet transform. 𝑎 

represents the signal scale parameter. 𝑏 represents the signal translation parameter. 𝑛 

represents the sample parameter value of signal data. 𝜓 represents the frequency of 

wavelet transform. Wavelet transform can be used for multi-resolution analysis of 

signal data, and local features of the signal can be obtained during signal processing. 

When analyzing large-scale signal data, the overall characteristics of these signal data 

can also be obtained [20]. After obtaining signal data features through wavelet 

transform, the computational complexity of wavelet transform is relatively high, 

especially when dealing with large-scale signal data. This may require longer 

computation time and higher computing resources. Therefore, this study utilizes sparse 

theory to improve DAEN and reduce computational complexity. Figure 3 shows the 

data feature extraction based on wavelet transform combined with sparse theory. 

Initial waveform

First conversion

Second conversion

Wavelet transform

 

Figure 3. Flowchart of data feature extraction based on wavelet transform combined 

with sparse theory. 

As shown in Figure 3, in the data feature extraction process based on wavelet 

transform combined with sparse theory, the signal data features are first subjected to 

initial deformation through wavelet transform, and then the signal sub bands of the 

first transformation decomposition are obtained. The second transformation uses 

sparse theory to achieve sparse representation of the signal, and finally useful feature 

information is extracted through wavelet transform. In the DAEN autoencoder, when 
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the output value of the activation function approaches 1, it can be determined whether 

the network is in an active state. If the network is not active, it will affect the stability 

of feature extraction. Therefore, this study introduces sparse theory and defines the 

error function of DAEN, which can be represented by Equation (5). 

𝐽𝑠𝑝𝑎𝑟𝑠𝑒(𝜃) = 𝐽𝑎𝑒(𝜃) + 𝛽 ∑ 𝐾(𝜌|𝜌
∧

)

𝑘

𝑗=1

 (5) 

In Equation (5), 𝐽𝑠𝑝𝑎𝑟𝑠𝑒(𝜃)  represents the error function. 𝐽𝑎𝑒(𝜃)  represents 

sparse penalty term. 𝛽  represents the sparsity coefficient. 𝐾  represents sparse 

dispersion value. 𝜌  represents sparse parameters. 𝜌
∧
  represents the probability of 

variable activation in the 𝑗-th hidden layer. The sparse processing of DAEN can obtain 

a sparse representation of the hidden layer, thereby reducing the computational 

complexity in the feature extraction and improving the efficiency. 

3.2. Design of detection and recognition model combining data features 

and CNN 

After using DAEN to extract digital signal data features in communication, it is 

difficult for DAEN to quickly classify digital signal data in systems with high real-

time requirements. Therefore, this study combines CNN with DAEN to construct a 

signal inspection and recognition model in communication. This is because CNN has 

strong local perception ability and parameter sharing characteristics, which can 

effectively extract local features of signals and reduce computational complexity. 

Through convolution operations, CNN can focus on local regions of the signal and 

learn key features within these regions. This enables CNN to more accurately capture 

the detailed information of signals when processing complex signals [21,22]. The 

digital signal features extracted by DAEN are converted into two-dimensional images 

through frequency conversion to obtain the types of digital signals. Then, CNN is used 

to classify and recognize the two-dimensional patterns of digital signals, thereby 

completing the classification and detection of digital signals in communication. The 

frequency obtained through DAEN is defined as the receiving signal, which can be 

defined using Equation (6). 

𝑟(𝑡) = 𝑠(𝑡) + 𝑛(𝑡) (6) 

In Equation (6), 𝑟(𝑡)  represents the receiving signal. 𝑠(𝑡)  represents the 

modulated signal processed by DAEN. 𝑛(𝑡)  represents the type of channel. 𝑡 

represents the time-frequency variable. After completing the definition of the 

receiving signal, it is necessary to perform time-frequency processing on the generated 

two-dimensional graphics. The purpose of time-frequency processing is to combine 

the time-domain and frequency-domain of two-dimensional images to quickly find the 

changing patterns of the signals that need to be classified. When converting digital 

signals into two-dimensional images, research is conducted on two time-frequency 

distributions: the smooth pseudo Wigner Willie distribution and the Born Jordan 

distribution. That is, digital signals are effectively converted into two-dimensional 

images through these two time-frequency distributions. The smoothed pseudo Wigner-

Ville distribution belongs to the Cohen distribution and the time-frequency distribution 



Molecular & Cellular Biomechanics 2024, 21(1), 482.  

8 

of cross suppression, which can be expressed by Equation (7). 

𝑥(𝑡) = 𝑟(𝑡) + 𝜉𝐻[𝑟(𝑡)] (7) 

In Equation (7), 𝑥(𝑡)  represents the analytical definition of the receiving 

frequency domain. 𝜉  represents the windowing coefficient. 𝐻[⋅]  represents Hilbert 

transform. The Hilbert transform can be represented by Equation (8). 

𝐻[𝑟(𝑡)] =
1

π𝑡
⊗ 𝑟(𝑡) =

1

π
∫

𝑥(𝜏)

𝑡 − 𝜏
𝑑𝜏

+∞

−∞

 (8) 

In Equation (8), ⊗  represents network convolution operation. 𝜄  represents a 

variable. 𝑑  represents the Hilbert conversion coefficient. The time-frequency 

conversion of the Born Jordan distribution can be represented by Equation (9). 

𝐵𝐽𝐷(𝑡, 𝑓) = ∫ [∫𝜙(𝑡 − 𝑣, 𝜏)𝑥(𝑣 + 𝜏/2)
𝑣

] 𝑒𝑑𝜏 (9) 

In Equation (9), 𝐵𝐽𝐷(𝑡, 𝑓) represents the time-frequency conversion of the Born 

Jordan distribution. 𝑓 represents the time-frequency coefficient. 𝑣 represents the time-

frequency width. 𝑒  represents the time-frequency conversion coefficient. Figure 4 

shows the time-frequency signal conversion of the smoothed pseudo Wigner-Ville 

distribution and Born Jordan distribution. 

Original image 

Smooth pseudo Wigner-

Ville distribution

Bonn Jordan distribution 

transformation diagram  

Figure 4. Signal spectra after converting two types of time-frequency signals. 

In Figure 4, two time-frequency signal conversion methods, the smoothed 

pseudo Wigner Willie distribution and the Born Jordan distribution, convert the 

original image into two different two-dimensional images using signal modulation. 

After completing the conversion of two-dimensional images using two types of time-

frequency, feature extraction of two-dimensional images can be carried out. The 

characteristics of two-dimensional images are the main basis for the accuracy of data 

signal recognition. This study analyzed relevant feature extraction techniques and 

selected zero center normalized instantaneous features as the feature extraction 

method. To calculate instantaneous characteristics, it is necessary to calculate the 

normalized instantaneous amplitude of the zero center, which can be represented by 
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Equation (10). 

𝑎𝑐𝑛(𝑖) =
𝑎𝑛(𝑖)

𝑚𝑎
− 1 (10) 

In Equation (10), 𝑎𝑐𝑛(𝑖) represents the normalized instantaneous amplitude at the 

zero center. 𝑚𝑎  represents the average instantaneous amplitude. 𝑎𝑛(𝑖)  represents 

instantaneous amplitude. After calculating the instantaneous amplitude, one month’s 

instantaneous characteristics can be calculated using Equation (11). 

𝛾
𝑚𝑎𝑥|[𝑎𝑐𝑛(𝑖)]|2

𝑁𝑠 𝑚𝑎𝑥

 (11) 

In Equation (11), 𝛾𝑚𝑎𝑥  represents the maximum value of the normalized 

instantaneous feature at the zero center. 𝑁𝑠 represents the quantity of sampling points 

during feature extraction. After completing feature extraction, it is necessary to 

perform feature fusion on the data, which can concatenate the 2D image features under 

different modes. By concatenating feature images from different modes for feature 

fusion, the overall detection and classification performance can be improved [23,24]. 

When performing feature fusion, there are certain differences in feature labels under 

different modes. To ensure the consistency of feature fusion, the study uses relative 

entropy divergence to measure the difference in probability distribution between 

adjacent features, represented by Equation (12). 

𝐾𝐿(𝑢 ∣ 𝑤) = − ∑ 𝑢𝑘 ln 𝑤𝑘

𝐾

𝑘=1

 
(1

2) 

In Equation (12), 𝐾𝐿(𝑢 ∣ 𝑤)  represents the measure of relative entropy 

divergence. 𝑢  and 𝑤  represent the discrete probability distribution values of two 

feature images with the same length, respectively. After completing signal feature 

fusion, digital signal data detection and recognition operations can be carried out. 

When detecting and recognizing signals, this study optimizes the calculation of digital 

signal data detection and recognition using the Lagrange multiplier method. The 

detection function is minimized using this method, and the minimum value is used as 

the result of detection and recognition. This process can be represented by Equation 

(13). 

𝑝(𝑘) =
√∏ 𝑚𝑝𝜃𝑚(𝑘)

∑ √∏ 𝑚𝑝𝜃𝑚(𝑗)𝑘
𝑗

 (13) 

Based on the analysis of the above content, a digital signal data detection and 

classification model is constructed by combining CNN and DAEN in Figure 5. 

Raw data input
Data standardization 

processing

Data feature 

extraction

Encoding and 

decoding

Wavelet 

transform

2D image data 

processing

Data 

conversion

Detect classification 

search

Digital signal detection 

and classification output  

Figure 5. Construction flowchart of signal data detection and classification model combining CNN and DAEN. 
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As shown in Figure 5, in the construction process of the signal data detection and 

classification model combining CNN network and DAEN network, after inputting the 

raw data, the data is standardized, then the data features are extracted, followed by 

encoding and decoding, and then wavelet transform operation is performed. After 

obtaining the two-dimensional image data, data conversion is carried out, followed by 

detection and classification search, and finally the digital signal detection and 

classification output are detected and classified. Based on Figure 5, in digital signal 

detection, DAEN and CNN are used for data feature extraction and detection 

classification. Through layer by layer learning, DAEN mines and extracts the inherent 

rules and features in digital signals, transforming them into a more easily processed 

and classified form. CNN can further extract and compress key features in signals 

through convolution and pooling operations, thereby completing data detection and 

classification. 

4. Performance analysis of a digital signal data detection model 

combining DAEN and CNN 

This experiment validated the digital signal data detection and classification 

model constructed by combining DAEN and CNN in communication. This study used 

the model loss value, misclassification rate, recognition results, average classification 

accuracy, data processing accuracy, recall rate, etc. under the same gradient as 

validation indicators. Simultaneously, Artificial Neural Network (ANN) and 

Bidirectional Encoder Representation from Transformers (BERT), one of the most 

advanced self supervised learning models, will be used as comparative models for 

performance analysis and validation. 

4.1. Data processing performance analysis of digital signal detection and 

classification models 

This study set the SNR of the data signal used for detecting classification to −5~5 

dB to verify the digital signal detection classification model. A total of 1269 two-

dimensional images of digital signal detection in communication were collected, 

which were used as a dataset for performance testing. Table 1 shows the other 

supporting facilities for the experiment. 

Table 1. Experimental parameters. 

Parameter items Parameters 

CPU Intel Core i5-10700K, 3.8 GHz 

RAM 16 GB 

Operating system Win7 

Graphics card NVIDIA GeForce RTX 3080, 10 GB GDDR6X 

Memory 1TB 

Source 750 W 80 + Gold 

Cooling system NZXT Kraken X63 Water-cooled radiator 

Visual chunking area size 256*256*224 

Resolving power 300*500 
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This study compared the performance of three models in the same iterative 

experiment to verify the data processing performance of the digital signal detection 

classification model. This study used iterative loss value and misclassification rate as 

comparison indicators. Figure 6 shows the comparison results. 
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Figure 6. Comparison results of loss values and misclassification rates of three models.  

In Figure 6a, the loss value of the signal data detection classification model first 

tended to stabilize, which tended to stabilize after 95 iterations. The loss values of 

ANN and BERT tended to stabilize when iterating 139 and 157 times, respectively, in 

data training. In Figure 6b, the error of the signal data detection classification model 

significantly decreased when iterated to 8 times, and tended to 0 when iterated to 15 

times. The misclassification rates of ANN and BERT in data training tended to 

stabilize after 26 and 39 iterations, respectively, but did not approach 0. This indicated 

that the signal data detection and classification model constructed had higher 

robustness during the data training process. Meanwhile, the misclassification rate was 

significantly reduced, which greatly improved the recognition ability of digital signals. 
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Figure 7. Comparison of classification accuracy of three models under different gradients and signal-to-noise ratios. 

Figure 7 shows the comparison results of classification accuracy of three models 

under different gradients and SNRs. In Figure 7a, the average recognition rate of the 

signal data detection classification model was 93.75%, while the average recognition 

https://www.baidu.com/s?sa=re_dqa_generate&wd=BERT&rsv_pq=ed636bb40011b217&oq=%E8%87%AA%E7%9B%91%E7%9D%A3%E5%AD%A6%E4%B9%A0%E6%A8%A1%E5%9E%8B(%E5%A6%82%20BERT,%20GPT-4)%E6%98%AF%E6%9C%80%E6%96%B0%E7%9A%84%E7%AE%97%E6%B3%95%E5%90%97&rsv_t=1a34PzjKRHbNhpGQDtoeNsM3jvYs5GjYwgaZNyQou+CfYKDJmkQocHOoQyc&tn=baidu&ie=utf-8
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rates of ANN and BERT were 85.13% and 89.81%, respectively. In Figure 7b, the 

average classification accuracy values of the signal data detection and recognition 

model, BERT and ANN were 94.18%, 90.05%, and 87.92%, respectively. These 

indicated that the signal data detection and recognition model constructed had more 

accurate classification ability in different gradients and SNRs, which improved the 

reliability of signal data classification. 
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Figure 8. Comparison results of accuracy and recall of three models in signal data processing. 

Figure 8 shows the comparison results of accuracy and recall of three models in 

digital signal data processing in communication. In Figure 8a, the average data 

processing accuracy of the signal data detection classification model was 93.59%, and 

the average data processing accuracy of ANN and BERT was 87.03% and 89.66%, 

respectively. In Figure 8b, the average data processing recall of the signal data 

detection classification model was 94.67%, and the average data processing recall of 

ANN and BERT was 86.53% and 88.16%, respectively. This indicated that in signal 

data processing, this constructed model provided better processing capabilities. 

4.2. Application performance analysis of detection classification model 

This study used F1 and AUC values in signal detection classification as validation 

indicators for validating the application performance of digital signal detection 

classification models. 

Figure 9 shows the comparison results of AUC and F1 values for three models 

in digital signal data classification in communication. In Figure 9a, there was a certain 

difference in F1 values among these three models. The F1 value of the data detection 

model was 0.92, while the F1 values of BERT and ANN were 0.87 and 0.83, 

respectively. In Figure 9b, the AUC value of the data detection model was 0.93, while 

the F1 values of BERT and ANN were 0.89 and 0.85, respectively. This indicated that 

this data detection model had higher classification accuracy and performance in digital 

signal data classification in communication. 
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Figure 9. Comparison results of AUC and F1 values of three models in signal data classification process. 
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Figure 10. Comparison results of confidence and support between predicted and true values of data detection 

classification models.. 

Figure 10 shows the comparison of confidence and support between the 

predicted and true values of the data detection classification model. In Figure 10a, the 

average confidence was 0.68. The average support for monitoring classification of 

predictive model data was 0.94. In Figure 10b, the average values of confidence and 

support were 0.72 and 0.97, respectively, with a difference of 0.04 and 0.03 between 

the predicted model and the true values. This indicated that the constructed detection 

model had high feasibility in data detection and classification. To further verify the 

classification detection model, accuracy and true detection classification comparisons 

were conducted in the training and testing sets in Table 2. 

In Table 2, when the sample size was 100 in the training set, the detection 

classification accuracy was 89.81%. When the sample size increased to 250, the 

accuracy improved to 92.84%. This indicated that the model gradually learned more 

effective features during training, improving classification performance. In the test set, 

when the sample size was 100, the detection classification accuracy was 87.69%. 

When the sample size increased to 250, the accuracy improved to 90.33%. This 

indicated that this model also had a certain generalization ability on the test set, but its 
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performance slightly decreased compared to the training set. Although there was a 

certain gap between the accuracy of the predicted values and the true values, its overall 

detection and classification performance still had high applicability. 

Table 2. Comparison results of classification detection accuracy between predicted values and true values in the training 

and testing sets. 

Method Training set Detection classification accuracy/% Test set Detection classification accuracy/% 

Data detection classification 

model prediction value 

100 89.81 100 87.69 

150 90.08 150 88.63 

200 91.26 200 89.04 

250 92.84 250 90.33 

True value 

100 91.66 100 89.31 

150 92.18 150 89.95 

200 93.57 200 90.76 

250 94.05 250 91.37 

5. Conclusion 

In response to the low adaptability and high misclassification rate of DSDR in 

communication, a DSDR model was constructed by combining DAEN and CNN. 

Through simulation experiments, the F1 and AUC values of the data detection model 

were 0.92 and 0.93, respectively. The average confidence and support values of the 

DSDR model were 0.68 and 0.94, respectively. When the sample size increased to 250, 

the accuracy improved to 92.84%. This indicated that the DSDR model reduced 

computational complexity, shortened processing time, and achieved accurate 

classification and recognition of digital signals while ensuring performance. This 

greatly improved the accuracy and efficiency of detection and recognition, meeting 

the requirements of real-time and efficiency. In summary, significant research results 

are achieved in the study of DSDR in the communication between DAEN and CNN. 

This model not only improves the accuracy and efficiency of DSDR, but also brings 

new ideas and directions for the development of communication. This study achieves 

significant detection and classification results to a certain extent, but there are still 

some shortcomings. There have not been many experiments conducted in the presence 

of interference in digital signals. This will to some extent constrain the applicability 

of the detection classification model. The next step is to introduce interference 

recognition algorithms to enhance the anti-interference ability of the DSDR model. 
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