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Abstract: This work builds on advancements in biomechanics and artificial intelligence to 

develop personalized training plans, enhancing physical education by optimizing movement 

performance and reducing injury risks. However, limitations include reliance on accurate 

biomechanical data, potential algorithmic bias in training plan personalization, and challenges 

in integrating real-time feedback from wearable devices. The aim is to establish a 

comprehensive evaluation framework for physical education, leveraging personalized training 

algorithms and biomechanics to enhance performance and create tailored data-driven exercise 

plans. We propose the Versatile Hunter-Prey Optimizer-tuned Intelligent CNN (VHO-ICNN) 

to optimize ICNN parameters through VHO algorithms, thereby improving performance 

analysis, movement optimization, and injury prevention in athletes. The BFP and BMI datasets 

contain data for various human features and are utilized for biomechanical analysis and 

optimizing physical activities in sports and education. To preprocess the data, we employ z-

score normalization to standardize joint position data, ensuring uniformity across features. 

Additionally, the Fourier Transform is applied for feature extraction, allowing us to analyze 

the frequency components of movements and enhance the model's performance. After 

evaluation, the results demonstrate an F1-score of 92.37%, accuracy of 93.41%, recall of 

96.22%, and precision of 92.95%. The results indicate that the VHO-ICNN significantly 

improves classification accuracy and reduces injury risk, demonstrating its potential as a 

powerful tool in physical education. At the cell molecular biomechanics level, cells in tissues 

like muscles and ligaments are affected by mechanical forces during exercise. These forces can 

change how molecules in cells work. When we design personalized training, understanding 

these cell changes can help. If we know how cells react to different forces, we can make better 

training plans. This can make muscles stronger and less likely to get injured. It also ties in with 

the data we get from biomechanical analysis and the algorithms we use. So, adding cell 

molecular biomechanics knowledge makes our approach to physical education and athlete 

training even better. 

Keywords: personalized training; injury prevention; biomechanics; muscles and ligaments; 

versatile hunter-prey optimizer-tuned intelligent CNN (VHO-ICNN) 

1. Introduction 

Generally, coaches in the sports field train athletes mostly by analyzing their 

performance and then providing necessary training strategies. In sports, human 

gestures and movements are regularly studied to help with action interpretation, 

direction, and evaluation [1]. Sports activities are divided into two categories namely 

specific and general. Any action that is frequently used in a range of sports is 

considered an everyday sports activity. The fundamental athletic motions are jogging, 

walking, leaping, and sprinting. Particular sports activities are dribbling in hockey, 

smashing in badminton, slicing in tennis, and other sports activities [2]. The computer 
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technology (CT) introduced into the sports field has made it possible to help athletes 

and coaches develop their plans. Because of the vast amount of information involved 

in training for competitive sports education, the human motion recognition (HMR) 

technique is mostly employed in the sports sector [3]. 

Traditionally, standard technologies for biomechanical data gathering and 

analysis have been used to evaluate human kinematics and kinetics. An optimal 

training procedure can ultimately result in more success while lowering the chance of 

injury and increasing an athlete’s performance [4]. For assessing both kinetics and 

kinematics of motion in humans, the most widely used method is a motion capture 

system. However, its applicability is severely limited due to the consequent laboratory 

structure of the devices involved in motion capture [5]. Enhancing the skills of an 

athlete mostly involves athletic skill assessment and customized training programs. 

It’s essential to comprehend physiological quirks, individual strengths, and 

shortcomings when creating training plans that can optimize increases in performance 

while lowering the danger of injury [6]. Some examples of physical education are 

categorized as shown in Figure 1. 

 
Figure 1. Components of physical education. 

Sports video content analysis (VCA) mostly uses the human motion recognition 

(HMR) approach in conjunction with deep learning (DL) due to the vast quantity of 

data involved in competitive sports training and the high demands placed on 

computers' processing power. In many cases, the discovered individuals require 

additional motion recognition. As a result, in real-world situations, precise and 

instantaneous HMR in the video picture and motion and location analysis are essential 

[7]. Motion pose identification needs to be improved in terms of efficacy and accuracy. 

DL can handle and analyze complex motion pose data by automatically learning and 

extracting characteristics from a large amount of data through algorithms. The field of 

intelligent sports is now developing at a steady pace, and numerous examples have 

demonstrated how intelligent sports may enhance the quality of instruction and foster 

the growth of sports globally [8]. 
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1.1. Study purpose 

The development of a performance prediction model of athletes in sports and 

provide movement optimization, and injury prevention is the main motive of the study. 

Initially, the study gathers data from the body fat percentage (BFP) and body mass 

index (BMI) dataset that contains data on various human features. Then, the data are 

pre-processed by employing z-score normalization. Further, feature extraction is 

performed by implementing the Fourier transform method. Further, the classification 

of performance is performed by using the Versatile Hunter-prey Optimizer-tuned 

Intelligent CNN (VHO-ICNN) algorithm. This approach aids in enhancing 

classification accuracy and performance by reducing injury risks.  

1.2. Paper organization 

The paper is presented with related works in Section 2 that deliberates the related 

works to sports performance prediction using different advanced techniques along 

with research gaps. The proposed methods employed in predicting student 

performance and classification are discussed in Section 3 elaborately. Results 

contributed by the model are explained in Section 4 along with appropriate discussion. 

Section 5 delivers the conclusion.  

2. Related works 

An intelligent evaluation system based on student actions for physical education 

to monitor students was implemented by the author [9]. For the classification of risky 

actions, the model used a deep convolution neural network (DCNN). The methodology 

applied adjustments and remedial actions after assessing the level of learning, 

accomplishments, and retention of learners. Lastly, the classification algorithm 

produced an F1 score of 97.86. A deep neural network (DNN)—based alteration of 

the teaching approach in physical education was developed, involving the creation of 

a teaching platform called WeChat [10]. Multiple physical test indicators were 

compared before and after test scenarios between the control group and the 

experimental group. It was done to indicate the effectiveness of the instruction 

following the modification of the physical education method. From the findings, the 

p-values were all less than 0.05 as a result, and significant differences were observed.  

Research [11] developed an index for evaluating the quality of physical education 

using wearable technology. The wearable gadget recorded electrocardiograms (ECG), 

determined the level of physical activity engaged, and facilitated a quantitative 

assessment of the quality of instruction. Then the issues of complicated equipment and 

poor accuracy were addressed by using a one-dimensional CNN (1D-CNN), to 

precisely acquire the variability signal of heart rate. The support vector machine (SVM) 

was applied to detect the intensity of exercise and experiments were conducted to 

confirm the effectiveness of the strategy and demonstrated improved performance 

with a classification accuracy of 98%. A recognition model based on human action 

was deployed by implementing long-short-term memory (LSTM) NN to determine the 

sports status of the students during sports education lessons and to give teachers 

feedback on their physical condition [12]. An intelligent wearable system was 

deployed to identify student’s status as well as a feedback system to support instruction. 
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As a result, the LSTM-based human motion recognition model provided a recognition 

accuracy exceeding 97.5%. 

Using aerobics as the focal point, a hybrid DL-based intelligent system for visual 

information discovery-based sports action recognition was implemented [13]. In 

particular, the human-based skeleton graph was signified with the basis of the 

anatomical configuration of the human body. A selective hyper-graph convolution 

network was employed to extract the multi-scale data from the skeleton in an adaptable 

manner. Additionally, a triple loss-based error assessment technique depending on 

suitable feature extraction was used to design an objective function and a recurrent 

neural network (RNN) structure to represent dynamic action sequence features. 

Ultimately, tests showed that the suggested algorithm’s efficacy was improved. A DL-

based infrared (IR) high-speed motion capture methodology was applied to assess 

challenging moves [14]. First, variations in ground pressure, joint angle, and 

movement speed were employed to investigate the biomechanical implications and 

purposes of motion fluency and completion. To build an unsupervised similarity 

framework model, the Restricted Boltzmann Machine (RBM) model was also 

presented. With the use of IR-based technology, motion was more precisely captured 

and characteristics were extracted from human bone data. 

AI position estimation techniques were used, along with a discussion of their 

principles, potential uses, and limits in table tennis [15]. A real-world table tennis 

game footage was used to use the OpenPose posture algorithm. The study’s findings 

demonstrated how effectively, in a graphics processing unit (GPU)-accelerated setting, 

the pose estimation method estimated the stances of table tennis players from the video. 

Through the collection of inertial measurement unit (IMU) data from human lower 

limbs, the study [16] aimed to produce the appropriate motion biomechanical factors 

of joints at different cutting movements (CM). To identify the coordination variability 

of certain lower extremity couplings at the three different CM orientations, the LSTM 

model and three inertia sensors were employed. Enhanced prediction accuracy was 

shown by the motion prediction models under three CM directions. An ensemble of 

input models for merging data from wearable sensors was implied which supported 

telemedicine and human performance [17]. Dynamic temporal warping (DTW) and 

CNNs were two different classifiers that were executed in correlation with four 

different inputs. Classification of actions for 24 taekwondo kicks and 18 boxing 

punches showed that the fusion classifiers outperformed. Using a feature-blind 

approach and minimal computing cost for trained CNNs, the comprehensive 

expression allowed for movement classification of subject-specific. 

A novel personalized fitness recommender system that is privacy-aware and 

learns key attributes from a large-scale real fitness dataset was implemented by using 

wearable Internet of Things (IoT) devices [18]. The models and algorithms 

specifically forecasted the following concepts, personalized recommendations for 

exercise distance, heart rate, and speed series recommendations. When compared to 

previous research, the investigation of the real-world Fitbit dataset showed results with 

improved accuracy in identifying the sequence of exercise speed heart rate, and 

distance. A method that blends semantic knowledge and DL in the case of physical 

activity was deployed, to produce personalized and hybrid suggestions was established 

[19]. A probabilistic interval prediction technique that is naïve in nature was applied. 
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It utilized the residual standard deviation to give meaningful point predictions for the 

recommendation presentation. Additionally, the Simple Protocol was implemented to 

produce individualized recommendations in a comprehensible way. An accuracy of 

97% was achieved by the 1D CNN model in the prediction process. 

To simulate in vivo adaptations to resistance training, [20] examined whether 

mechanical loading causes tissue-engineered skeletal muscle to undergo an anabolic 

hypertrophic response. Mechanical loading was applied by lengthening the construct 

by 15% using a three-dimensional murine C2C12 cell line model that mimics natural 

muscle tissue. Candidate gene expression, Akt-mTOR (Protein Kinase B- Mechanistic 

Target of Rapamycin) signaling, myotube development, and contractile function were 

all analyzed throughout time. Atrophic Muscle Atrophy F-box (MAFbx) gene 

expression was downregulated at 45 hours, p70S6 kinase and 4EBP-1(Eukaryotic 

Translation Initiation Factor 4E-Binding Protein 1) phosphorylation were raised 

immediately after loading, and Insulin-like Growth Factor 1 (IGF-1) and Matrix 

Metalloproteinase-2 messenger RNA (MMP-2 mRNA) expression was markedly 

elevated at 21 hours. At 45 hours, there was a 265% increase in maximal contractile 

force and myotube hypertrophy. With an emphasis on the control of the contractile 

protein, myosin heavy chain gene, [21] examined the adaptive mechanism of skeletal 

muscle adaption. A key structural and regulatory element of the contractile apparatus, 

this protein can express itself in several isoforms, which affects the variety of muscle 

functions. Numerous factors influence the myosin gene family's regulation, which 

makes it a biological marker for research on muscle plasticity. 

The molecular processes behind skeletal muscle plasticity during acute exercise 

and long-term training adaptations were investigated [22], which concentrated on 

resistance and endurance training. Using a multiomic and multi-cellular analytical 

approach, it synthesizes current studies on the signals, sensors, regulators, and 

effectors involved in muscle adaptation, emphasizing molecular principles and 

processes. Key mechanisms in muscle remodeling and adaptation are identified, with 

a focus on the knowledge gaps regarding signal integration, functional redundancy, 

and stimulus-specific responses in resistance and endurance training. Sprague-Dawley 

rats were used in [23] to assess the effects of high-frequency resistance training and 

conventional-frequency resistance training on signaling pathways. IGF-1-mediated 

AKT phosphorylation was inhibited by high-frequency training, but Tumor Necrosis 

Factor-alpha (TNFα) and Inhibitor of κB kinase (IKK) phosphorylation prolonged 

inflammatory signaling. TNFα had returned to baseline, demonstrating the quick 

adaptation of conventional frequency training by Day 5. Both procedures led to a 

comparable rise in p70 S6K phosphorylation, suggesting that kinase activity 

associated with translation initiation remained unchanged. 

Individual differences in training-induced adaptations were revealed by [24], 

which examined the molecular and cellular processes determining skeletal muscle 

adaptation to exercise. It reveals the differences in adaptive responses to resistance 

and endurance training and identifies important signaling proteins and pathways 

associated with improved performance. The intricate relationship between molecular 

markers and performance results was also presented. The molecular processes 

underlying muscle wasting, a significant cause of persistent muscular tiredness, were 

examined in [25]. It examined research on COVID-19, aging, immobility, insulin 
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resistance, systemic inflammation, and chronic diseases. According to the research, a 

combination of hereditary triggers, biochemical alterations in muscle cells, and muscle 

wastage results in chronic muscular fatigue, which impairs quality of life (QoL) by 

reducing muscle function and causing persistent weariness. 

Research gaps 

While many studies utilize specific data sources such as ECG or motion capture, 

there is a lack of research that integrates modalities like physiological, and 

biomechanical into a unified intelligent evaluation system. Exploring how combining 

these data types could enhance the accuracy and effectiveness of personalized training 

plans remains a critical area for investigation. The generalizability of the models 

remains uncertain, which may limit their applicability across different demographics 

and educational settings. Current studies primarily focus on performance metrics like 

classification accuracy and F1 scores without adequately considering the feedback 

mechanisms for students and trainers. Research exploring effective ways to provide 

actionable insights from the data, including how feedback can influence coaching 

strategies and student engagement, would enhance the practical application of these 

intelligent systems. Thus, investigating how adaptive learning algorithms can enhance 

the personalization of physical education would provide valuable contributions to the 

field. To address the issues related to existing studies, the present study implements 

intelligent evaluation systems in physical education called VHO-ICNN to optimize 

performance analysis, movement optimization, and injury prevention in athletes. 

3. Research methodology 

The research methodology involves the combination of a physical activity 

training with help of VHO-ICNN, and biomechanics to facilitate the improvement of 

physical education results. The process starts with data extraction from a fitness 

dataset which includes height, weight, and BMI. To pre-process the data 

standardization z-score normalization is used. For feature extraction Fourier transform 

(FT) is used to quantify paradigms of movements by frequency. The ICNN categorizes 

the data through convolutional activation, pooling layers, full connection layers, and 

the final output layer. The VHO algorithm fine-tunes the parameters of the model to 

increase outcome precision as well as students’ interest in physical classes in Figure 

2. 

 
Figure 2. Overall proposed flow diagram. 
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3.1. Dataset description 

The fitness exercise using the BFP and BMI dataset [26] is used in the present 

study. With the help of this fitness dataset, users can create individualized workout 

programs based on their gender, activity level, and physical characteristics. Its purpose 

is to help people reach their fitness objectives by providing personalized exercise plans 

that maximize efficiency and security.  

Table 1 evaluates factors such as height, weight, BMI, BFP, and muscle mass 

and it covers both genders. It quantifies different types of activities by duration, daily 

activities, intensity, and frequency of exercising. The exercise choices also involve 

endurance activities, flexibility, strength training, and generalized fitness objectives in 

general health and well-being, endurance, muscle building, and weight loss. This 

multi-faceted approach should additional advantage in the use of individual training 

programs based on biomechanical evaluation. 

Table 1. Key features of dataset. 

Features Detail 

Physical Features Height, Weight, BMI, BFP, and muscle mass 

Gender Male and Female 

Activity Levels Duration, Daily physical activity, Intensity, and exercise frequency. 

Exercise Preferences Endurance activities, flexibility, strength, and training. 

Fitness Goals Overall health and wellness, improved endurance, muscle gain, and weight 

loss. 

3.2. Pre-processing using z-score normalization 

Before feeding data into the network, it often requires preprocessing steps, to 

enhance the model’s robustness. Thus, z-score normalization or standardization is 

applied in the pre-processing technique, which is used to transform data into a uniform 

scale. This is particularly useful in biomechanical analysis, where joint position data 

varies significantly across different measurements. By making the mean as well as 

scaling to the unit variance, it creates standardized features that verify each feature 

adds the same amount of information. Initially, the average mean (𝜇) and standard 

deviation (SD) (𝜎) values of each feature dataset are computed by using Equations (1) 

and (2). 

𝑀𝑒𝑎𝑛 (𝜇) =
1

𝑁
∑ 𝑎𝑖

𝑁
𝑖=1   (1) 

SD (𝜎) = √
1

𝑁
∑ (𝑎𝑖 − 𝜇)2𝑁

𝑖=1   (2) 

Here, 𝑎𝑖  denotes each data point, and 𝑁  represents the total number of 

observations. Further, each data points are transformed by applying z-score 

normalization by using the formula as shown in Equation (3). 

𝑧𝑖 =
𝑎𝑖−𝜇

𝜎
  (3) 

For each feature value in the input dataset, the mean is subtracted and then 

divided by SD values. It results in the formation of a new dataset, in which all the 
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values are altered into z-scores making it suitable for input into the VHO-ICNN model. 

By verifying, the new mean should be close to 0 while the SD should be close to 1 for 

each feature.  

3.3. Feature extraction fourier transform (FT) 

After pre-processing, the feature extraction is implemented by using the Fourier 

transform (FT) method. It is applied for analyzing the frequency components of 

movements in physical education, which can significantly improve the performance 

of the VHO-ICNN models used for monitoring and evaluating student actions. In FT, 

the frequency-domain representation is produced by altering the time-domain signal 

and this transformation permits analyzing the frequency components present in the 

movement data, such as acceleration or angular velocity. This is performed as these 

data are critical for understanding the biomechanics of physical activities. The 

continuous FT of a time-domain signal 𝑦(𝑡) is denoted as discussed in Equation (4). 

𝑌(𝑓) = ∫ 𝑦(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞
  (4) 

Here, the FT of a signal is denoted by 𝑌(𝑓) , time-domain signal as 𝑦(𝑡) , 

frequency as 𝑓, time and imaginary unit as 𝑡 and 𝑖. 

In the context of analyzing student movements during physical education, a 

signal 𝑦(𝑡) is considered for representing joint angles over time. After applying the 

FT, the features are extracted by using Equation (5). 

𝑀𝑒𝑎𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

𝑀
∑ |𝑌[𝑙]|𝑀−1

𝑙=0   (5) 

By incorporating these obtained frequency features into the proposed VHO-

ICNN module, the model’s ability will be enhanced to classify and predict student 

movements, leading to improved monitoring and feedback mechanisms in physical 

education settings. 

3.4. Proposed improved convolutional neural network (ICNN) 

The proposed ICNN comprises several layers in which the raw input data is 

transformed into meaningful classifications. Following are the descriptions of layers 

involved in enhancing classification accuracy in intelligent evaluation systems for 

physical education. The working of ICNN layers is illustrated in Figure 3. 

 

Figure 3. Improved convolutional neural network. 
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• Input layer: This layer is denoted as the primary layer of the ICNN, which is 

accountable for acquiring input raw data from the previous stage. This data 

includes multidimensional data formats and this layer does not perform any 

computations but serves as a conduit for data to enter the network. The working 

of each layer present in ICNN is described as follows. 

• Convolutional Layer: From the input data, the layer derives features by 

implementing a convolution procedure using learned kernel filters. A filter slide 

present over the input image evaluates dot products between the local regions and 

filter. Thus, the operation helps in detecting features like shapes, edges, and 

textures. The result produced is a collection of feature maps, each highlighting 

different aspects of the input data based on the learned filters. The number of 

filters defines the number of output feature maps. Additionally, the stride (step 

size of the filter) may affect the output dimensions, while padding (adding zeros 

around the input) helps control spatial size. It is expressed as depicted in the 

Equation (6).  

𝑃(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗) ∙ 𝐾(𝑥 − 𝑖, 𝑦 − 𝑗)𝑗𝑖   (6) 

• Activation Layer: This layer introduces non-linearity to the proposed module, 

entitling it to learn other complex patterns efficiently. Here, Rectified linear unit 

(ReLU) is employed as an activation function that produces zero as output for 

negative inputs and the input itself for positive inputs. This function aids in 

minimizing the vanishing gradient issues often encountered with the traditional 

sigmoid or tanh activation functions. 

• Pooling Layer: It aids in mitigating the spatial dimensions such as the height and 

width of the input feature maps and retains the most important features. This 

reduces the computational complexity and thus helps in preventing over-fitting 

issues. Max pooling chooses the maximum value from a defined window and 

moves it across the feature map, effectively by down-sampling. Further, the 

number of computations and parameters is reduced in the network, allowing for 

deeper architectures without a significant increase in training time. This layer is 

expressed as in Equation (7). 

𝑆(𝑥, 𝑦) = 𝑃(𝑥 + 𝑖, 𝑦 + 𝑗)(𝑖,𝑗)∁𝑤𝑖𝑛𝑑𝑜𝑤
 𝑚𝑎𝑥            (7) 

• Fully Connected Layer (FC): This layer tends to connect every neuron present in 

one level to each neuron in the subsequent layer. FC also assimilates the input 

features that are learned in preceding levels to make a final decision. Every 

neuron in the FC layer computes the sum of weighted inputs after the activation 

function. Thus, the output from this layer represents the network's prediction 

scores for each class, which are then passed to the output layer and represented 

in Equation (8). 

𝑛 = 𝑓(𝑊𝑇𝑚 + 𝑏)  (8) 

• Output Layer: It produces the final class probabilities or predictions based on the 

processed information from the preceding layers. In the present multi-class 

classification of students’ movements, the softmax activation function is typically 

applied to convert the outputs into probability distributions over the classes. The 
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predicted class is the one with the highest probability, providing a clear and 

interpretable result for classification tasks. It can be signified by using Equation 

(9). 

𝑆(𝑛 = 𝑘|𝑚) =
𝑒𝑓𝑘(𝑚)

∑ 𝑒𝑓𝑘(𝑚)𝐾
𝑦=1

  (9) 

• Dropout layer: This layer indulges a fraction of input units to 0 by random setting 

during the training process, to get rid of over-fitting problems. It also encourages 

the network to learn robust features and prevents reliance on any single feature. 

When the dropout rate is denoted as 𝛼, then the output of this layer is given by 

Equation (10). 

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝐼𝑛𝑝𝑢𝑡

1−𝛼
  (10) 

• Batch Normalization: The normalization layer normalizes the outputs of the prior 

layer to stabilize and accelerate training. This tends to reduce the internal 

covariate shift, allowing for higher learning rates and improving convergence 

speed. Then the output is given by Equation (11). 

�̂� =
𝑦−𝜇

√𝜎2+𝜀
  (11) 

Here, the variance of the mini-batch is represented by 𝜎2, with mean 𝜇, 𝜀 is the 

small constant. By employing a structured approach with convolutional, 

activation, pooling, fully connected, output, and loss layers, the CNN can 

effectively learn and adapt to complex patterns, significantly enhancing 

classification accuracy in physical education monitoring and assessment 

applications. 

3.5. Proposed versatile hunter-prey optimization (VHO)  

Robust search and fast problem-solving abilities are provided by the hunter-prey 

optimization (HPO) technique, which imitates the behavior of an animal hunter. HPO 

is a population-based optimization technique that draws inspiration from nature to 

solve optimization issues in several domains. It can traverse and utilize the search 

space efficiently using a limited amount of intuitive principles, which makes it 

computationally efficient and potentially useful for a wide range of optimization tasks. 

The behavior of prey species like stags and gazelles as well as predators like wolves, 

leopards, and lions serves as inspiration for the HPO algorithm.  

VHO algorithm has presented the flow of this algorithm as shown in Figure 4 

which also emphasizes the way to balance exploration and exploitation for 

optimization problems. By focusing on the complicated process of interaction between 

hunters and prey, the diagram also stresses the general possibilities of making asked 

improvements in parameter tuning in models. This unique strategy results in better 

performance-related outcomes and thus VHO is considered to be an optimal tool to 

manage various systems. 
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Figure 4. Versatile hunter-prey optimization. 

The algorithm initializes the position of the population in solution space and 

initialization is expressed by using equation (12). 

𝑎𝑘 = 𝑟𝑎𝑛𝑑(1, 𝑐) × (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏  (12) 

Here, the position of ith hunter or prey is denoted by 𝑎𝑘, where 𝑖 = 1,2,3, … . , 𝑛. 

The population size is represented as 𝑛. The upper as well as lower bounds of the 

search space are signified as 𝑢𝑏 and 𝑙𝑏. 𝑟𝑎𝑛𝑑(1, 𝑐) is the random numbers of [0, 1] 

with 𝑐 = 1,2,3, … , 𝐶  in which 𝐶  is the search space dimension. Two primary 

components of the strategy are covered such as the predator’s search mechanism and 

the prey’s position. These are represented in Equations (13) and (14). 

𝑎𝑘,𝑙(𝑇 + 1) = 𝑎𝑘,𝑙(𝑇) + 0.5[(2𝑃𝐶𝑍𝑝𝑜𝑠(𝑙) − 𝑎𝑘,𝑙(𝑇)) + 2(1 − 𝑃)𝐶𝜇(𝑙) − 𝑎𝑘,𝑙(𝑇))]  (13) 

Here, the site of prey is represented as 𝑍𝑝𝑜𝑠, the current predator site is 𝑎(𝑇), and 

𝑎(𝑇) is the predator’s site in subsequent iterations. 

𝑎𝑘,𝑙(𝑇 + 1) = 𝑡𝑝𝑜𝑠(𝑙) + 𝑃𝐶 cos(2𝜋𝑆4) × [𝑡𝑝𝑜𝑠(𝑙) − 𝑎𝑘,𝑙(𝑇)]  (14) 

Here, the global best site is denoted by 𝑡𝑝𝑜𝑠, while the present prey’s location in 

the next iteration is 𝑎(𝑇) and 𝑎(𝑇 + 1), adaptive factor, and the random number are 

𝐶 and 𝑆4. The 𝑃 is signified as the sum of exploration and exploitation and when the 

process converges it loses value. It can be expressed as in Equation (15).  

𝑃 = 1 − 𝑖𝑛(
0.98

𝐼𝑛𝑚𝑎𝑥
)  (15) 

Here, the present iteration number and the large iteration number are represented 

by 𝑖𝑛 and 𝐼𝑛𝑚𝑎𝑥. Thus, the Euclidean distance of each search individual is indicated 

by Equation (16). 

𝐹𝑒𝑢𝑐(𝑘) = (∑ (𝑎𝑘,𝑙 − 𝜇𝑘,𝑙)
2

)
1

2
𝑓
𝑙=1   (16) 

The prey 𝑍𝑝𝑜𝑠 is denoted as the search agents with maximum distance from the 

average position 𝜇 and is expressed by Equation (17). 

𝑍𝑝𝑜𝑠 = 𝑎𝑘|𝑘 𝑖𝑠 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑀𝑎𝑥(𝑒𝑛𝑑)𝑠𝑜𝑟𝑡(𝐹𝑒𝑢𝑐)  (17) 

The algorithm’s convergence is poor if the greatest distance between the search 

agent and the average position µ is used in each iteration. When the prey is caught in 
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the real hunting scenario, the hunter will go to the next prey position the next time. 

The prey tries to escape to the global optima, to improve its chances of survival after 

being attacked. In that case, the hunter will choose a different prey. Consequently, the 

following Equation (18) is the combination of Equations (13) and (14), which is 

considered as the updated equation for hunter or prey position. 

𝑎𝑘,𝑙(𝑇 + 1) = {
𝑎𝑘,𝑙(𝑇) + 0.5 [(2 𝑃𝐶𝑍𝑝𝑜𝑠(𝑙) − 𝑎𝑘,𝑙(𝑇) + 2(1 − 𝑃). 𝐶. 𝜇(𝑙) − 𝑎𝑘,𝑙(𝑇))] , 𝑟5 < 𝛽(𝑎)

𝑡𝑝𝑜𝑠(𝑙) + 𝑃𝐶 cos(2𝜋. 𝑆4) × [𝑡𝑝𝑜𝑠(𝑙) − 𝑎𝑘,𝑙(𝑇), 𝑟5 ≥ 𝛽(𝑏)
  (18) 

Here, 𝛽 is represented as the adjusting parameter, and 𝑟5 is the random number 

within the range [0, 1]. Therefore, by balancing exploration and exploitation, the 

proposed VHO efficiently navigates the parameter space, leading to enhanced model 

performance in intelligent evaluation systems for physical education. The integration 

of fitness evaluation, effective movement strategies, and a clear termination condition 

ensures that the algorithm converges to optimal solutions for classification tasks. 

3.6. Hybrid VHO-ICNN approach 

The hyper-parameters of the ICNN are optimized by the implementation of the 

proposed VHO model, including learning rate, number of filters, filter size, and 

dropout rates. By mimicking the predator-prey dynamics, VHPO explores the hyper-

parameter space effectively and balances exploration and exploitation to converge on 

optimal configurations. This typically improves the performance of ICNN and the 

presence of multiple convolutional layers in the architecture automatically extracts 

significant features from the input data. These features are essential for understanding 

student actions and categorizing them into predefined classes, such as successful 

movements or risky actions. It also incorporates fully connected layers to further refine 

classification and improve accuracy. The training process begins with the VHPO 

optimizing the ICNN’s hyper-parameters and once the optimal hyper-parameters are 

identified, the ICNN is trained on the dataset. It leverages its capacity to learn complex 

spatial and temporal features. The trained ICNN model is evaluated and the VHPO 

can also be reapplied periodically to fine-tune the hyper-parameters as more data 

becomes available. This hybrid approach effectively monitors students’ physical 

activities, providing real-time feedback to trainers about student performance and 

safety. By classifying actions accurately, it enables timely interventions, enhancing 

the overall effectiveness of physical education programs. Algorithm 1 provides the 

procedures for the suggested VHO-ICNN approach. 

Algorithm 1 Proposed VHO-ICNN method 

1: Step 1: Initialization 

2: Define the number of hunters (N_h) and prey (N_p) 

3: Define hyperparameters: Step size (α), Attraction factor (β), Randomness factor (γ), Maximum iterations (G) 

4: Step 2: Initialize the VHPO population 

5: Initialize hunters and prey randomly within the search space 

6: For each hunter h in hunters: 

7:     h.position = Random initialization 

8: For each prey p in prey: 

9:     p.position = Random initialization 

10: Step 3:  Define ICNN structure 
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Algorithm 1 (Continued) 

11: Define ICNN architecture: 

12:     Input Layer 

13:     Convolutional Layers 

14:     Activation Function (e.g., ReLU) 

15:     FC Layers 

16:     Output Layer (softmax for classification) 

17: Step 4: Training Phase 

18: For each generation g from 1 to G: 

19:     Evaluate the fitness of each prey using ICNN 

20:     For each prey p in prey: 

21:         p.fitness = Evaluate_ICNN(p.position) 

22:     Update hunters based on the best prey position 

23:     best_prey = Get_Best_Prey(prey) 

24:     For each hunter h in hunters: 

25:         Update_Hunter_Position (h, best_prey) 

26:     Update prey positions 

27:     For each prey p in prey: 

28:         Random_Movement (p, α, β, γ) 

29:     If a stopping criterion is met (e.g., convergence or max iterations), the exit loop 

30: Step 5: Generate Personalized Training Plans 

31: For each student in students: 

32:     student_data = Collect_Data(student) 

33:     personalized_plan= Generate_Personalized_Training_Plan (student_data, best_prey) 

34: Step 6: Comprehensive Evaluation 

35: Evaluate student performance based on training plans: 

36:     For each student in students: 

37:         Performance=Evaluate_Student_Performance (student, personalized_plan) 

38:         Log performance metrics (e.g., F1-score, accuracy) 

39: Step 7: Output the results 

40: Output best_prey position as an optimal training plan 

41: Output student performance metrics 

4. Results and discussion 

A brief discussion of the results gathered by implementing the VHO-ICNN 

method and the relevant discussion of each outcome is provided. In addition, the 

analysis of comparing proposed along with conventional methods is also deliberated 

to predict the effectiveness of the present study. 

4.1. Experimental setup 

Table 2. System specifications. 

Components Details 

Operating system Windows 10 

CPU Intel Core i7-7500U 

RAM 16GB RAM 

Programming Language Python 

Basic Clock speed 2.70 GHz 

Table 2 shows the system specifications utilized in this study with the subsystems 

required to implement the proposed algorithms. It gives the operating system, CPU, 

RAM, and programming language, of the technological setting. The system 
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specifications are helpful during the model’s implementation and evaluation for 

achieving the best performance and dependability. 

4.2. Performance metrics 

Certain performance metrics are employed to validate the efficacy of the VHO-

ICNN model. The present study uses precision, F1-score, recall, and accuracy in 

classifying actions in physical education. 

• Accuracy: It is defined by representing the overall suitability in making 

predictions by the model. It assesses the model on how often the detection 

matches the actual class labels in the dataset and is given by Equation (19). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (19) 

Here, the true negative and positive are denoted by 𝑇𝑃 𝑎𝑛𝑑 𝑇𝑁 , while false 

positive and false negative are given by 𝐹𝑃 𝑎𝑛𝑑 𝐹𝑁. 

• Precision: It computes the quality of the positive forecasts completed by the 

VHO-ICNN model, which enumerates the number of instances classified as 

positive that are positive. This can be expressed by Equation (20). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (20) 

Improved precision denotes that the model possesses false positives with a low 

rate, and ensures that falsely identifying a student as engaging in risky behavior 

could result in unwarranted interventions. 

• Recall: It evaluates the model’s measurements to find all pertinent occurrences 

and determines the proportion of definite positive situations that were correctly 

predicted. Recall is signified by Equation (21). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (21) 

Missing a potentially dangerous action could have serious consequences. So, it is 

significant to produce high recall to effectively capture most of the actual positive 

instances. 

• F1-Score: It is exposed as a composite metric that balances precision as well as 

recall, delivering a single score. Specifically, it is useful when handling 

imbalanced datasets, in which one class is more widespread than the other class. 

It is denoted by Equation (22). 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (22) 

For instance, in the case of assessing physical activities, prioritizing the correct 

identification of risky behaviors (high recall) while maintaining a reasonable 

level of false alarms (high precision) is crucial. 

4.3. Performance analysis 

Figure 5 shows the comparative evaluation of VHO-ICNN. This Figure 5 shows 

the significant difference of significant the proposed model. This analysis strongly 

suggests that the VHO-ICNN is optimally suited for movement analysis and training 
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outcome improvement, based on the indices of accuracy, recall, precision and F1-score 

improvements. 

 

Figure 5. Performance analysis of proposed VHO-ICNN. 

The effectiveness of the proposed VHO-ICNN method is evaluated by using the 

above-mentioned metrics outcomes are shown in Table 3. 

Table 3. Outcomes of proposed VHO-ICNN. 

Metrics VHO-ICNN [Proposed] 

Accuracy (%) 93.41 

Precision (%) 92.95 

Recall (%) 96.22 

F1-Score (%) 92.37 

4.4. Comparison phases 

The comparison analysis compares the proposed VHO-ICNN model with FDPN 

[27] and RFC-Net [28] as standards for the proposed model. The VHO-ICNN 

determines higher performance across four key metrics accuracy, recall, precision and 

F1-score. However, FDPN [27] and RFC-Net [28] exhibit relatively lower 

performance levels suggesting that the two models possess defects in identification 

capacities. In general, the proposed VHO-ICNN has provided better performances and 

is expected to be an acceptable model for calculated training programs and better 

safety for users across the board. 

Figure 6 presents the performance comparison of the models based on accuracy 

and precision-based results. The result can express the efficiency of each developed 

model in providing precise prediction. The FDPN is not efficient, while the RFC-Net 

is represented as slightly efficient, which has the better-predicting ability. The 

proposed VHO-ICNN has better accuracy (93.41%), and precision (92.95%) due to 

advanced optimization procedures. It augments the improvement of the proposed 

VHO-ICNN, re-endorsing its applicability in generating effective training strategies 

and boosting performance in physical education. 
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Figure 6. Performance analysis based on accuracy and Precision. 

Table 3 presents a comparative analysis of the performance metrics for three 

models: FDPN, RFC-Net, and the proposed VHO-ICNN. The FDPN model has 

performances with reasonable accuracy and precision that can be improved. 

Associated to the performance of the predictive model, RFC-Net performs better than 

FDPN and there are distinct improvements of the previous. In Table 4, however, the 

proposed VHO-ICNN is the better model and subsequently has the highest accuracy 

(93.41%), and precision (92.95 %) and uses efficient optimization and classification 

techniques as compared to the two previous models. This also proves that the VHO-

ICNN holds the prospect of being used in real-life applications of the field. 

Table 4. Outcomes obtained by proposed and existing approaches. 

Metrics Accuracy (%) Precision (%) 

FDPN [27] 86.68 86.80 

RFC-Net [28] 92 91 

VHO-ICNN [Proposed] 93.41 92.95 

Performance analysis of the VHO-ICNN proposed and the existing models FDPN 

and RFC-Net in terms of recall and F1 Score is depicted in the following Figure 7. 

Through the results obtained from the experimental settings, it is that VHO-ICNN has 

achieved a higher recall value (96.22%) than FDPN and RFC-Net proving its 

efficiency in categorizing the relevant samples. Furthermore, the F1-score (92.37%) 

analysis also highlights a properly balanced accuracy of the VHO-ICNN model. This 

figure supports the superior performance of the proposed model and hence implies that 

it is well suited for practical use in training and performance improvement. 

 

Figure 7. Performance analysis based on recall and F1-Score. 
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A comparison of the proposed VHO-ICNN, and existing models FDPN, and 

RFC-Net’s F1-score and recall results can be seen in Table 5 below. The recall shows 

the models’ capability of finding true positives among them, VHO-ICNN has the 

highest recall (96.22 %), which proves that it is suitable for obtaining relevant 

information. The F1-score (92.37 %) indicates that the VHO-ICNN has better overall 

classification performance. Such comparison highlights the lesser complexity of the 

proposed model, and thus, its reliability in the real-world training and performance 

improvement domains. 

Table 5. Results procured by proposed and existing methods. 

Metrics Recall (%) F1-Score (%) 

FDPN [27] 94.99 90.71 

RFC-Net [28] 95 89 

VHO-ICNN [Proposed] 96.22 92.37 

4.5. Discussion 

The proposed VHO-ICNN method significantly enhances performance metrics 

in physical education training plan optimization, demonstrating a robust capability for 

movement analysis and injury prevention. The performance metrics represents that 

effective identification and classification of physical activities is performed by the 

model, providing optimized training plans that enhance student safety and 

performance. In comparison, existing methods like the FDPN and RFC-Net fall short 

in various aspects. Despite their reasonable performance levels, these methods exhibit 

substantial limitations that the VHO-ICNN overcomes. A significant drawback of the 

FDPN is its reliance on shallow feature extraction, which may hinder its ability to 

capture complex patterns in motion data. This architecture leads to reduced predictive 

accuracy, especially in dynamic environments such as physical education. While RFC-

Net leverages recurrent connections, it still lacks the optimization efficiency exhibited 

by the VHO algorithm, which fine-tunes the ICNN parameters for improved 

performance. Further analysis based on recall and F1-score values demonstrates that 

the VHO-ICNN outperforms existing FDPN and RFC-Net models, addressing their 

drawbacks through advanced optimization techniques and an ICNN structure. This 

positions the VHO-ICNN as an enhanced approach for personalized training plan 

generation, highlighting the need for ongoing research to further refine and validate 

its applications in various student’s physical education contexts. The novel VHO-

ICNN model which is proposed has the improvement in the capacity to classify and 

predict student movements in physical education. In the experimental model, an 

accuracy of 93.41%, precision of 92.95%, and recall of 96.22% confirms the 

effectiveness of the model in terms of finding an F1-score of 92.37% in practical 

applications. The results indicate that the VHO-ICNN has a higher precise 

classification accuracy in comparison with FDPN and RFC-Net, which relates to the 

model’s potential for specific student action detection. It also helps in the development 

of custom training processes in addition to increasing the safety of students in Physical 

Education settings and making it effective in dealing with complex classification 

challenges. 
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5. Conclusion 

The present study denotes a major development in the integration of 

biomechanics and intelligent systems, to develop personalized training plans that 

enhance physical education. By focusing on optimizing movement performance and 

reducing injury risks, the proposed VHO-ICNN showcases a robust approach to 

training personalization. Using BFP and BMI datasets, a study has demonstrated the 

efficacy of employing biomechanical analysis in tailoring exercise plans that cater to 

individual needs. The methodology involves critical preprocessing steps, including z-

score normalization for joint position data. Further, FT is implied for feature extraction, 

which enhances the model’s performance by ensuring consistency and providing 

insights into the frequency components of movements. Further, the analysis and 

classification of movements are performed by VHO-ICNN. The VHO algorithm fine-

tunes the ICNN parameters for improved performance. After evaluation, the results 

demonstrate an F1-score of 92.37%, accuracy of 93.41%, recall of 96.22%, and 

precision of 92.95%. The promising results, indicating significant improvements in 

classification accuracy and a reduction in injury risks, highlight the VHO-ICNN’s 

potential as a transformative tool in physical education.  

Limitations and future scope 

The limitations include the choice of accurate biomechanical data which is hard 

to secure in some scenarios. Several issues arise with real-time feedback from 

wearable devices, which seem to be the stimulating fragment of the model, although 

they oppose the principles of dynamic environments. The future scope should compare 

the VHO-ICNN with other methods and datasets to make VHO-ICNN more effective 

and apply other effective algorithms in it to give more personalized predictions. 

Moreover, the implementation of actual-time feedback from wearables would improve 

the responsiveness of the model. Exploring the usage of the VHO-ICNN in other 

sports disciplines can also add functional use in physical education. 
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