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Abstract: In recent years the use of biomechanics in athletic training and performance has 

received a lot of attention, especially in university sports programs. Biomechanics is the 

study of the mechanical principles that control how biological things move or are 

constructed. It is critical for understanding the intricate relationships between physical 

performance, body mechanics, and injury prevention. The objective of this study is to 

establish how biomechanical variables can be designed and optimized in universities using 

mathematical modeling. In this study, a novel Emperor Penguin Search-driven Dynamic 

Feedforward Neural Network (EPSO-DFNN) is proposed to optimize the biomechanical 

parameters of athletes. Various biomechanical data are utilized from athletes participating in 

different sports. Biomechanical parameters include muscle activation patterns, joint angles, 

forces, and movement. The data was preprocessed using Z-score normalization from the 

obtained data. The Fast Fourier Transform (FFT) using features is extracted from 

preprocessed data. The proposed method is to identify the optimal configurations for athlete’s 

movements tailored to their sports and individual biomechanical profiles. The proposed 

method is the performance of various evaluation metrics such as F1-score (92.76%), 

precision (91.42%), accuracy (90.02%), and recall (89.69%). The result demonstrated that the 

proposed method effectively improved the performance in athletic capabilities compared to 

other traditional algorithms. This study demonstrates how mathematical modeling may be 

used to optimize biomechanical characteristics, providing insightful information that can be 

used to improve athletic performance and encourage safer behaviors in athletic settings. 

Keywords: biomechanical parameters; athlete; Emperor Penguin Search Driven Dynamic 

Feedforward Neural Networks (EPSO-DFNN); Fast Fourier Transform (FFT) 

1. Introduction 

In recent times the interface between biomechanics and sports performance has 

become very popular, particularly in the university sports system [1]. Indeed when 

athletes seek to excel finding out the mechanical principles underlying human 

movement becomes essential [2]. Biomechanics can be defined as that branch of 

knowledge that deals with the mechanical aspects of living organisms bringing out 

precious elements of how physical performance, body mechanics, and injury 

prevention are integrated [3]. 

Through the application of biomechanics in contemporary sports science 

performance is evaluated for athletes and training programs are developed for an 

athlete [4]. Today, as viewed differently [5], different physical demands are realized 

in different sports disciplines, and movement is characterized by complex interaction 

at the levels of joint angles, muscle activation patterns, and the forces applied [6]. 

These interactions heavily influence how performances may be optimized and proper 

CITATION 

Wen Y. Optimization design of 

biomechanical parameters based on 

advanced mathematical modelling. 

Molecular & Cellular Biomechanics. 

2024; 21(3): 463. 

https://doi.org/10.62617/mcb463 

ARTICLE INFO 

Received: 6 September 2024 

Accepted: 18 September 2024 

Available online: 14 November 2024 

COPYRIGHT 

 
Copyright © 2024 by author(s). 

Molecular & Cellular Biomechanics 

is published by Sin-Chn Scientific 

Press Pte. Ltd. This work is licensed 

under the Creative Commons 

Attribution (CC BY) license. 

https://creativecommons.org/licenses/

by/4.0/ 



Molecular & Cellular Biomechanics 2024, 21(3), 463.  

2 

analysis and optimization of biomechanical parameters may make a difference 

between winning and losing [7]. 

Optimizing biomechanical parameters is particularly important. Poor movement 

patterns or ineffective force application can result in poor performance and, more 

importantly, injuries [8]. The knowledge of such parameters can help coaches design 

training programs in which the appropriate movement mechanics are practiced thus 

there may be a reduction in injury [9]. For example, an analysis of inefficiency can 

be shown in an analysis of the gait cycle when corrected, it may lead to increased 

speed and endurance. In addition, muscle activation regarding sports-specific 

movement is also important in determining the strength and conditioning needs 

unique to each athlete’s profile [10]. 

Advanced mathematical modeling to optimize biomechanical parameters has 

strong limitations. First, it becomes extremely demanding to require accurate and 

detailed data errant data or noise results in wrong predictions. Intrinsic human 

biomechanics complexity creates great demands for universally applicable models. 

At a minimum, mathematical assumptions could severely understate the dynamical 

complexity existing in reality, creating poor results. There is a danger of overfitting, 

models may fit well to the training data but fail with any other input. Moreover, the 

computational requirements of these models limit their applicability in real-time and, 

therefore make such use to coaches and athletes limited. The purpose of this study is 

to determine how biomechanical aspects can be established and optimized in 

universities utilizing mathematical modeling. 

Motivation and contribution of the study 

The motivation for this study is derived from the growing need for specificity in 

enhancing the biomechanical potential of athletes concerning training effectiveness 

and minimizing risks of injury. Indeed, in the great majority of cases, traditional 

approaches are not well adapted to capture the dynamics of human motion. 

Incorporating a novel search model known as Emperor Penguin Search-driven 

Dynamic Feedforward Neural Network (EPSO-DFNN) improving the optimization 

tools efficiency, flexibility, and precision as a parameter tuning are anticipated. Such 

a combination could alter the traditional way of exercising with the individualized 

insight of an athletic performer based on analyzed data. Therefore, the following is a 

summary of this work’s contributions: 

• Data collection: Initially a CMU Mocap motion capture dataset is collected 

from the Kaggle website; 

• Data preprocessing: The data was pre-processed using Z-score normalization 

from the obtained data; 

• Feature extraction: The FFT using features is extracted from preprocessed data; 

• Model classification: A novel Emperor Penguin Search-driven Dynamic 

Feedforward Neural Network (EPSO-DFNN) is proposed to optimize the 

biomechanical parameters of athletes; 

• Model evaluation: F1-score, Precision, Accuracy, and recall parameters are used 

to assess the simulation outcomes. 
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This work is organized as follows: Part 2 reveals the related work. The methods 

and materials are explained in Part 3. Part 4 offers the results and Part 5 concludes 

the study. 

2. Related work  

A computational framework for optimizing the cross-sectional size and shape of 

Transcatheter Aortic Valve (TAV) frames was presented [11]. Idealized aortic root 

models were subjected to finite element analyses with an emphasis on contact 

pressure, peak maximum principal stress, and pullout force magnitude. The 

optimization problem was defined by surrogate modeling. Through multi-objective 

design optimization, the best TAV frame geometries for various aortic root 

anatomies were found. The framework reduced costs and improved procedural 

outcomes by improving mechanical efficiency. 

The biomechanics of martial arts development with a particular emphasis on 

Wushu a traditional Chinese sport were looked [12]. It made use of bibliometric 

analysis to examine doctoral dissertations and core journals to comprehend the most 

recent advances in biomechanical research concerning martial arts routines. The 

findings demonstrated a significant improvement in test classification accuracy, 

recall, and F value when using the Backpropagation (BP) neural system model. The 

study highlighted Wushu’s need for innovative forward-thinking and modern 

biomechanical research. 

To enhance the computational simulation of dental prosthetics by applying the 

vibroacoustic Resonance Frequency Analysis (RFA) technique was aimed [13]. The 

implantation was stimulated with a sinusoidal force in the study, and the 

displacement that resulted was recorded. With values ranging from 8975 to 8995 Hz, 

MATLAB was used to plot a resonance frequency that was equivalent to the 

maximum micro-motion. With less micromotion a higher resonance frequency 

denoted improved integration. To develop systems with several degrees of freedom 

to replicate dental implant models more research was required. 

Finite element modeling proved to be an effective technique for studying the 

biomechanics of the musculoskeletal system. The development of precise models 

required medical imaging. Segmentation, meshing, and assigning material properties 

to the various model components were steps in the workflow. Quantitative 

computerized tomography was employed for bone tissue and elastography, T1 rho, 

and T2 imaging for soft tissues. In their 2020 study, [14] concentrated on 

computational models of the musculoskeletal system and provided an overview of 

techniques for meshing, image segmentation, and assessing the mechanical 

characteristics of biological tissues. They also addressed current advancements in 

Artificial intelligence (AI). 

A 2D biomechanical model for bone remodeling a multifaceted process to 

involves the interaction and regulation of apparent density by bone cells was 

presented [15]. Automatic boundary recognition, mechanical transduction, and 

mathematical parameters were all included in the model. To create boundary maps it 

was coupled with the Radial Point Interpolation Method (RPIM). The model also 
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examined bone resorbs and strain energy density (SED) changes in response to 

different loading regimes. 

To describe force generation in cardiac muscle tissue, [16] offered four 

mathematical models. Applying those highly computationally efficient models to 

multiscale 3D numerical simulations could accurately predict features related to 

force generation thereby obviating the need for the Monte Carlo (MC) method. The 

algorithms were based on biophysically precise depictions of regulating and 

contractual proteins in sarcomeres. 

In simulating the circumstances of specialized motions and collaborating by 

employing joint angles calculated from inertial measurements [17] sought to improve 

ergonomic analysis. The Gesture Operational Model (GOM) forecasted workers’ 

postures and identified contributing joints for ergonomic risk prevention by using 

autoregressive models to learn joint dynamics. To prevent mistakes such as bone 

stretching and improper skeleton configurations Euler angles were employed. The 

most involved joints in movements were identified by computing the statistical 

significance of each model. High gesture recognition performance validated the 

selection of joints, and the models’ forecasting performance was assessed. 

A semi-implicit hybrid boundary element method (HBEM) was created by [18] 

to describe unpredictable partial biomechanical connections in asymmetrical soft 

tissue structures with functioning grades. The irregular fractional dual-phase-lag 

bioheat (DPLB) regulating calculation was solved using the universal Boundary 

Element (BE) method and the regional base function radial association technique. 

For BE separation calculations an effective separated semi-implicit connecting 

algorithm was employed. It established the reliability, efficiency, and efficacy of the 

method used to graphically illustrate the effects of evaluated factors limited 

variables, and asymmetrical assets on bio-thermal anxiety. 

The purpose of [19] was to determine that female athletes’ drop vertical jump 

(DVJ) biomechanical characteristics varied depending on the sport they played. 42 

female athletes, 25 played basketballs, 8 played soccer, and 9 played volleyball. The 

findings demonstrated that, in comparison to basketball players, soccer players had 

fewer scores, larger peak knee flexion angles, and smaller knee abduction angles at 

initial contact. The study found that while performing the jump-landing task, female 

basketball and volleyball players might be more susceptible to non-contact anterior 

cruciate ligament (ACL) injuries. 

The purpose of the [20], which involved eight competitors from the 2017 World 

Championship, was to ascertain the connections between the techniques of elite 

hammer throwers. The Dartfish program was used to determine the biomechanical 

parameters. The angle left knee, the angle incline torso, and the time of the second 

pre-swing were found to be strongly correlated with each other. The second 

preliminary swing technique was not considerably affected by the parameters of the 

first preliminary swing. For pre-swing implementation to be effective it emphasized 

the significance of time parameters, angular parameters, and hammer height during 

pre-swing. 

The body adjusts to training and maintains homeostasis when it experiences 

acute fatigue from running were examined [21]. A combination global navigation 

satellite system—inertial measurement units (GNSS-IMU)-electrocardiogram sensor 
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and an Android smartphone were given to 13 runners. The study discovered that 

during the race, heart rate gradually increased along with contact time, duty factor, 

and trunk anteroposterior acceleration. The results emphasized how crucial it was to 

research the biomechanical, physiological, and psychological aspects of running in 

actual environments. 

A surrogate model-based, effective method for correlated global sensitivity 

evaluation was presented [22]. Although the correlation structure was unknown, the 

method could yet serve as an orientation for modelers during the model expansion 

and personalization process. When the technique was applied to a model of pulsed 

wave propagation it produced precise results at a computational cost 27,000 times 

less than that of the correlated SA approach in the absence of a substituting model. It 

enabled modelers to concentrate on input prioritization fixing, and reduction while 

highlighting the significance of looking into input correlations during model 

development. 

The effects of backseat support, inclination angles, frequency, and magnitude of 

vibrations on Seat to Head Transmissibility (STHT) in a biodynamic individual’s 

model were examined in [23]. Based on anthropometric data the model parameters 

(mass, stiffness, and damping) were calculated. For every scenario, the STHT was 

calculated with MATLAB software and the implications of vibration and excitation 

frequencies were examined. When the outcomes were compared to mean STHT 

characteristics from prior research, they showed good agreement with those findings. 

An integrative finite element framework for the pelvis including the 

surrounding soft tissues and bone has been created by [24] and verified 

experimentally. According to the model adding soft tissue decreased the amount of 

stress and strain on the pelvis and improved the accuracy of strain and stress 

dispersion under pelvis stimulation. The results showed that the combined model had 

the potential to improve clinical interventions and treatments for pelvic injuries as 

well as an understanding of the complex biomechanics of the pelvis. It would 

increase the probability of success of pelvic bone repair using surgical navigation 

systems and robotics. 

3. Methods 

 
Figure 1. Overall flow for EPSO-DFNN. 

Source: https://www.kaggle.com/datasets/kmader/cmu-mocap. 

https://www.kaggle.com/datasets/kmader/cmu-mocap
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In this study, the CMU Mocap dataset is gathered on Kaggle websites. Next 

preprocessing was done using Z-score normalization techniques. Normalize the raw 

biomechanical data to ensure uniform scaling across different parameters. Feature 

extraction is done using FFT. Extract relevant features from the normalized data, 

focusing on frequency components of movement. For classification, a novel Emperor 

Penguin Search-driven Dynamic Feedforward Neural Network (EPSO-DFNN) is 

proposed to optimize the biomechanical parameters of athletes. Figure 1 depicts the 

overall flow for EPSO-DFNN. 

3.1. Dataset 

The CMU Motion Capture (Mocap) dataset available on Kaggle features 

comprehensive movement capture data collected from the Carnegie Mellon 

University Motion Capture Lab. This dataset comprises recordings of human 

movements in three-dimensional space, captured using a variety of sensors and 

recording systems. The biomechanical data includes joint angles, limb velocities, and 

accelerations, providing detailed insights into human motion dynamics. The sensor 

data collection process involves multiple high-fidelity cameras and inertial 

measurement units (IMUs) to accurately track and record movements from various 

perspectives. This dataset consists of recordings of human movement in 3-D accrued 

by the usage of several sensors and systems. The dataset consists of c3d files, mpg 

documents, h5 files, and ASF + AMC files, which may be accessed through 

repositories like AMC Parser. The data is often used for responsibilities like human 

pose estimation, animation, biomechanics, and more. The dataset is prepared by 

different types of movements and can be useful for researchers and developers 

working in fields associated with motion analysis and system machine learning. 

3.2. Data preprocessing using Z-score normalization 

The resultant raw biomechanical data had vastly disparate scales because of the 

various units, ranges, and techniques used for measurement. For consistent scaling of 

all the parameters to be comparable Z-score normalization was applied. This is a 

feature normalizing procedure that scales the data to a universal scale, provided the 

mean value is zero, and the standard deviation is one, which can help in achieving 

better integration of features and prevent machine learning biases. 

The number of standard deviations is represented by the Z-score, a traditional 

standardization and normalization technique that indicates whether the original data 

point was higher or lower than the population mean. The ideal range is between −3 

and +3. To apply the default scale to all the data with different scales it normalized 

the dataset to the previously mentioned scale. 

Equation (1), where 𝑤 denotes the value of a specific sample, 𝜇 denotes the 

mean, and 𝜎 denotes the standard deviation, can be utilized to calculate the Z-score, 

which normalizes the data by subtracting the population mean from a raw data point 

and dividing the result by the standard deviation. This yields a score that ideally 

varies between −3 and +3. 

𝑧_𝑠𝑐𝑜𝑟𝑒 =
(𝑤 − 𝜇)

𝜎
 (1) 
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3.3. Feature extraction FFT 

The FFT is a method that transforms time-domain signals into the frequency 

domain where such periodic functions can be very powerfully used to transform 

time-domain signals into the frequency domain. For biomechanics, the FFT was 

applied in extracting frequency-based features from time-series data, giving valuable 

insights into movement rhythmic and repetitive components. 

The process of splitting a function over some time into its component frequency 

is known as the FFT. The Fourier transform holds significant importance in signal 

processing speech and communication image processing, and other fields where it 

finds numerous uses. Here is the Equation (2) for the Fourier transform, 

𝑊(𝜁) = ∫ 𝑤(𝑠)𝑒−2𝜋𝑗𝜁𝑠𝑑𝑠
∞

−∞

 (2) 

where time is represented by 𝑠, frequency by 𝜁, and 𝑤(𝑠)  ∈ 𝔻is Lebesgue integral 

feasible. 

FFT can be used to employ it quickly for practical use. The most significant 

distinction is that a Discrete Fourier Transform (DFT) is much quicker and more 

reliable in the presence of round-of-error. The DFT is determined by FFT which 

produces an identical outcome when immediately assessing the DFT explanation. 

The DFT is defined as Equation (3). 

𝑊𝑙 = ∑ 𝑤𝑚𝑒−
𝑗2𝜋𝑚

𝑀 ,

𝑀−1

𝑚=0

 (𝑙 = 0, … . . , 𝑀 − 1) (3) 

𝑤0, … … . , 𝑤𝑀−1  represent complex numbers. FFT is widely used in science, 

engineering, and mathematics for a variety of purposes. The revolving machine 

signal was transformed into the frequency domain from numerous studies and 

examined using this FFT. 

3.4. Emperor Penguin Search-driven Dynamic Feedforward Neural 

Network (EPSO-DFNN) 

The Emperor Penguin Search-driven Dynamic Feedforward Neural Network is 

used to optimize the biomechanical parameters of athletes because this approach 

combines both of them to achieve precise, customized enhancements of their 

performances. For instance, if more complex non-linear relationships exist between 

different biomechanical parameters such as joint angles, muscle activation, and 

forces, then use the Dynamic Feedforward Neural Network that will model behavior 

and handle variability in movement for athletes across different sports because this 

DFNN has the capability of adapting uniquely to the individual profile of each 

athlete. This is enhanced by the EPSO algorithm because it efficiently tunes 

hyperparameters in the network and, therefore, determines optimal configurations. A 

better balance between exploration and exploitation is offered with the EPSO. 

Allowing it to quickly find global optima while avoiding local traps. This hybrid 

approach enables the system to optimize biomechanical parameters more effectively, 

leading to enhanced athletic performance, injury prevention, and personalized 

movement recommendations tailored to each athlete’s specific needs and sport. 
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3.4.1. Dynamic feedforward neural network (DFNN) 

A DFNN approach is applied in the biomechanical parameters of athletes since 

it models rich, complex, nonlinear relationships between parameters like joint 

angles, muscle activation, and forces. It is adaptable; hence, it can handle variation 

among individuals and provide an accurate optimization that improves athletic 

performance and decreases injury risk based on biomechanically distinct profiles. 

In every adjacent layer, there exists only one connection between any two 

neurons. The initial input level, output level, initial hidden level, and the final hidden 

layer, accordingly, are accessions for the delay dynamic operators 𝑦 
−𝜏𝑖𝑗

(1)

and 𝑦−𝜏𝑜𝑟
(2)

. 

In addition to the threshold 𝑎 and weights of connections 𝜔, Adaptive adjustments 

are made for those two flexible variables. The connections between the input and 

output, which are implied in the hidden layers, can be expressed as Equations (4) and 

(5), 

𝑛𝑒𝑡𝑖
(𝑘)(𝑙) = ∑ 𝜔𝑖𝑗

(𝑘−1)
𝑃𝑗

(𝑘−1)(𝑙) + 𝑎𝑘𝑖

𝑀(𝑘−1)

𝑗=1

 (4) 

𝑃𝑖
(𝑘)(𝑙) = 𝑒 [𝑛𝑒𝑡𝑖

(𝑘)(𝑙)] (5) 

where the output and input of the 𝑖𝑡ℎ neuron in the 𝑘𝑡ℎlevel at time 𝑙 are indicated by 

𝑛𝑒𝑡𝑖
(𝑘)

(𝑙)and 𝑃𝑖
(𝑘)

(𝑙), respectively. 

The limit value parameter of the 𝑖𝑡ℎneural in the 𝑘𝑡ℎ layer is indicated by𝑎𝑘𝑖 and 

the quantity of mass concerning the 𝑖𝑡ℎ neural in the 𝑘𝑡ℎ layer to the 𝑖𝑡ℎ neural in the 

(𝑘 − 1)th layers is characterized by𝜔𝑖𝑗
(𝑘−1)

. It has been observed that modifications 

from 1 to 𝑀𝑘  when 𝑗 variations from 1 to 𝑀𝑘 . The bipolar sigmoid activation 

function, 𝑒[. ], is described as Equation (6). 

𝑒(𝑤) = 𝐿
1 − 𝑒−𝑑𝑤

1 + 𝑒−𝑑𝑤
 (6) 

Particle structure data is represented using the DFNN variables, as shown in 

Equation (7). 

𝑤𝑖
 (𝑙)𝜔11

(1)(𝑙), … … , 𝜔1𝑗
(𝑁−1)(𝑙)𝑎21(𝑙), … . . , 𝑎𝑁1(𝑙)𝜏11

(1)(𝑙), … … , 𝜏11
(1)(𝑙), … . , 𝜏1𝑗

(2)
(𝑙) (7) 

Consequently, the intersection of the flexible interruption operators between the 

relationships can be used to describe the original hidden neurons and their output 

neurons are described in Equations (8) and (9), 

𝑛𝑒𝑡𝑖
(2)(𝑙) = ∑ 𝜔𝑖𝑗

(1)
𝑃𝑗

(1)
(𝑙 − 𝜏𝑖𝑗

(1)
) + 𝑎2𝑖

𝑀(1)

𝑗=1

 (8) 

𝑛𝑒𝑡𝑜
(𝑁)(𝑙) = ∑ 𝜔𝑜𝑟

(𝑁−1)
𝑃𝑟

(𝑁−1)
(𝑙 − 𝜏𝑜𝑟

(2)
) + 𝑎𝑁𝑟

𝑀(𝑁−1)

𝑟=1

 (9) 
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where 𝜏𝑖𝑗
(1)

and 𝜏𝑜𝑟
(2)

represent the corresponding delay time between the input and 

output layers and the layers that are concealed, accordingly. Examine the impact of 

the inputs 𝑣1(𝑙 − 1)on output 𝑧(𝑙)asEquation (10). 

(𝑙) = 𝑒[ ∑ 𝜔𝑜𝑟
(𝑁−1)

. (𝑒 … (𝑒 (𝜔𝑖𝑗
(1)

𝑣1 (𝑙 − 1 − 𝜏𝑖𝑗
(1)

− 𝜏𝑜𝑟
(2)

) ⋮ +𝑎2𝑖) … ) + 𝑎𝑁1]

𝑀(𝑁−1)

1

 (10) 

After achieving the fitness function’s lowest value, the algorithm adaptively 

modifies the parameters 𝜏𝑖𝑗
(1)

and 𝜏𝑜𝑟
(2)

, which vary from 0 to 𝜏𝑚𝑎𝑥. An input vector 

that combines the most recent output with supplementary input vectors represents the 

complete input-output connecting with a delay of the DFNN. 

𝑧𝑛(𝑠) = ℎ𝑛 (𝑧𝑛 (𝑙 − 𝜏11
(1)

− 𝜏1𝑟
(2)

) , … . , 𝑧𝑛 (𝑙 − 𝜏
𝑀1𝑀2

(1)
− 𝜏

1𝑀(𝑀−1)
(2)

) , 𝑣 (𝑙 − 𝜏11
(1)

− 𝜏1𝑟
(2)

) , … . . , 𝑣 (𝑙 −  𝜏
𝑀1𝑀2

(1)
− 𝜏

1𝑀(𝑁−1)
(2)

)) 
(11) 

where ℎ𝑛 denotes the DFNN’s nonlinear mapping. Due to the arbitrary time delay on 

each neuron relationship, the system thus possesses the time sequence 𝜏𝑖𝑗
(1)

. 

Connecting the present period output to some input instances increases the 

adaptability of the DFNN. Particularly emphasizing unpredictable characters, the 

fluctuating delays between the input layer and the initial hidden layer completely 

convey the fundamental connection between the output and the input. In contrast, a 

controlled long-delay mechanism is identified by the delay operatives across the 

concealed and output layers, yielding unregulated time delays 𝜏𝑜𝑟
(2)

. 

As a result, the suggested DFNN could effectively capture the delay and 

nonlinear aspects of the system using a small number of parameters. After training, 

the precisely regulated plant is obtained without any delays if the delay operators 

𝜏𝑜𝑟
(2)

are eliminated. At that point, a satisfactory regulation effect can be obtained with 

the common predictive control strategy. 

3.4.2. Emperor penguin search optimization (EPSO) 

EPSO is deployed for the biomechanical parameters of the athlete because it 

very efficiently explores the search space to find optimal configurations for complex, 

multi-variable problems. It therefore represents exploration and exploitation to 

concentrate on convergence whilst ensuring appropriate global optimization of 

parameters such as muscle activation and angles of joints, leading to improved 

performance and injury prevention across various profiles of athletes. 

An innovative meta-heuristic algorithm is the EPO. The socially awkward 

behavior of emperor penguins served as the model for the EPO algorithm. Because 

the Antarctic continent is the emperor penguin’s natural habitat it can get extremely 

cold there in the winter, making it extremely difficult for the species to survive. 

Because of this, the emperor penguins flock huddles together in an arrangement that 

keeps everyone’s body temperature within an appropriate range for survival. 

The only animals that cuddle are emperor penguins. It depends on several 

variables including the huddle’s effective movers, distance, and temperature. All of 
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these elements and more form the foundation of the EPO algorithm, where the 

observer and update equations, respectively, replicate the temperature and distance. 

The efficacy of the EPO algorithm has been demonstrated through testing on 

multiple optimization problems. The emperor penguins’ primary goals when they 

huddle are to preserve energy and increase the interior temperature. As a result, the 

following relationship exists between the temperature 𝑆 and the huddle polygon’s 

radius 𝑄 as Equation (12). 

𝑆 = {
0, 𝑖𝑓 𝑄 > 1

1, 𝑖𝑓 𝑄 < 1
 (12) 

Exploration and exploitation are processes that are driven by the temperature 

profile 𝑆0. This is how it’s computed as Equation (13), 

𝑆0 = 𝑆 −
𝑀𝐼

𝐶𝐼 − 𝑀𝐼
 (13) 

where 𝑆0 is the temperature profile surrounding the gathering area, 𝑎𝑛𝑑 𝑀𝐼 stands 

for maximum iteration count. Iteration 𝐶𝐼refers to the current iteration. 

The distance between the emperor penguin and the optimal solution 𝐶  is 

calculated as follows after the huddle boundaries have been established in Equation 

(14), 

𝐶 = 𝑇(𝐵). 𝑂𝑒𝑝(𝑤) − 𝐶. 𝑃(𝑤) (14) 

where 𝑇(𝐵)  refers to the emperor penguins’ social forces. 𝑂(𝑤) is the emperor 

penguin’s current position vector. Anti-collision factors (𝐵, 𝐷) separate neighbors. 

The vector containing the best possible solutions is called 𝑂𝑒𝑝(𝑤). 

The distance 𝐶 is tuned by 𝐵  and 𝐷 , which can be determined using the 

following Equations (15)–(17), 

𝐷 = 𝑟𝑎𝑛𝑑1 (15) 

𝐵 = 𝑁 × (𝑆0 + 𝑂ℎ(𝑎𝑐)) × 𝑟𝑎𝑛𝑑2 − 𝑆0 (16) 

𝑂ℎ(𝑎𝑐) = 𝑂𝑒𝑝(𝑤) − 𝑂(𝑤) (17) 

where 𝑁  is the movement parameter that keeps search agents apart to prevent 

collisions. By assessing the variations amongst emperor penguins, 𝑂ℎ(𝑎𝑐)defines the 

polygon grid accuracy. Equation (18) can be used to calculate 𝑇(𝐵), which is in 

charge of moving in the direction of the best optimal search agent, whereas Equation 

(19) updates the position. 

𝑇(𝐵) = (√𝑒. 𝑓−
𝑤
1 − 𝑒−𝑤)

2

 (18) 

𝑂(𝑤 + 1) = 𝑂𝑒𝑝(𝑤) − 𝐵 × 𝐶 (19) 

Here 𝑒& 1 are control variables for improved exploration and utilization. The 

emperor penguin’s next updated position is denoted by 𝑂(𝑤 + 1). The following are 

the key procedures for executing EPO: 
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Step 1: Set the starting values for 𝑄, ( ) 𝑆, 𝑆0, 𝐵, 𝐷, 𝑇𝐵, 𝑁, 𝑒, and 𝑟𝑎𝑛𝑑1 , 

𝑟𝑎𝑛𝑑2.  

Step 2: Determine the starting values for the important parameters 𝑂(𝑤) and 

the matching fit values.  

Step 3: Using the computed fitness, identify the first best optimal solution.  

Step 4: Determine the new values for 𝑆0, 𝑇(𝐵), 𝑂ℎ(𝑎𝑐), 𝑎𝑛𝑑 𝐵 to begin the first 

iteration. 

Step 5: Determine the values of 𝐶  and employ them to compute the new, 

updated solution 𝑂(𝑤 + 1) using the best solution 𝑃𝑒𝑝(𝑤). 

Step 6: preserve the newly found best optimal solution in 𝑃𝑒𝑝(𝑤) . 

Additionally, keep the matching best capability.  

Step 7: Ascertain that the repetitions have concluded; if otherwise, proceed 

again to Step 4 and continue to reach the required number of repetitions. 

Step 8: To regulate the ideal capability and demonstrate the corresponding 

response, appear over the fitness array. 

Algorithm 1 demonstrates the pseudocode for Emperor Penguin Search-driven 

Dynamic Feedforward Neural Network (EPSO-DFNN). 

Algorithm 1 EPSO-DFNN 

1: 𝑖𝑚𝑝𝑜𝑟𝑡 𝑛𝑢𝑚𝑝𝑦 𝑎𝑠 𝑛𝑝 
2: 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝐴𝑇𝐼𝑂𝑁𝑆 =  1000 
3: 𝑁𝑈𝑀_𝑃𝐸𝑁𝐺𝑈𝐼𝑁𝑆 =  30  # 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑛𝑔𝑢𝑖𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
4: 𝑇𝐴𝑈_𝑀𝐴𝑋 =  5  # 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑙𝑎𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
5: 𝑀 = . . .  # 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑙𝑎𝑦𝑒𝑟 (𝑡𝑜 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑟𝑜𝑏𝑙𝑒𝑚) 
6: 𝑁 = . . .  # 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 (𝑡𝑜 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑟𝑜𝑏𝑙𝑒𝑚) 
7: 𝐿 = . . .  # 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 (𝑡𝑜 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑟𝑜𝑏𝑙𝑒𝑚) 
8: 𝑑𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑑𝑓_𝑛𝑛_𝑝𝑎𝑟𝑎𝑚𝑠(): 
9:        𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =  𝑛𝑝. 𝑅𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑(𝑁𝑈𝑀_𝑃𝐸𝑁𝐺𝑈𝐼𝑁𝑆, 𝑀, 𝑁)   
10:    𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 =  𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑(𝑁𝑈𝑀_𝑃𝐸𝑁𝐺𝑈𝐼𝑁𝑆, 𝑁)   
11:    𝑑𝑒𝑙𝑎𝑦𝑠 =  𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑(𝑁𝑈𝑀_𝑃𝐸𝑁𝐺𝑈𝐼𝑁𝑆, 𝑀, 2)  ∗  𝑇𝐴𝑈_𝑀𝐴𝑋 
12:    𝑟𝑒𝑡𝑢𝑟𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑑𝑒𝑙𝑎𝑦𝑠 
13: 𝑑𝑒𝑓 𝑏𝑖𝑝𝑜𝑙𝑎𝑟_𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥): 
14:    𝑟𝑒𝑡𝑢𝑟𝑛 (1 −  𝑛𝑝. 𝑒𝑥𝑝(−𝑥)) / (1 +  𝑛𝑝. 𝑒𝑥𝑝(−𝑥)) 
15: 𝑑𝑒𝑓 𝑑𝑓_𝑛𝑛_𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑑𝑒𝑙𝑎𝑦𝑠): 
16:     𝑓𝑜𝑟 𝑘 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑁): 
17:        𝑛𝑒𝑡_𝑖𝑛𝑝𝑢𝑡 =  𝑛𝑝. 𝑧𝑒𝑟𝑜𝑠(𝑀) 
18:        𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑀): 
19:            𝑑𝑒𝑙𝑎𝑦𝑒𝑑_𝑖𝑛𝑝𝑢𝑡 =  𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎[−𝑑𝑒𝑙𝑎𝑦𝑠[𝑖][0]] 𝑖𝑓 𝑙𝑒𝑛(𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎)   >  𝑑𝑒𝑙𝑎𝑦𝑠[𝑖][0] 𝑒𝑙𝑠𝑒 0 
20:            𝑛𝑒𝑡_𝑖𝑛𝑝𝑢𝑡[𝑖]  =  𝑛𝑝. 𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡𝑠[: , 𝑖, 𝑘]  ∗  𝑑𝑒𝑙𝑎𝑦𝑒𝑑_𝑖𝑛𝑝𝑢𝑡)  +  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[: , 𝑘] 
21:         𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎 =  𝑏𝑖𝑝𝑜𝑙𝑎𝑟_𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑛𝑒𝑡_𝑖𝑛𝑝𝑢𝑡) 
22:    𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎   
23: 𝑑𝑒𝑓 𝑒𝑚𝑝𝑒𝑟𝑜𝑟_𝑝𝑒𝑛𝑔𝑢𝑖𝑛_𝑠𝑒𝑎𝑟𝑐ℎ(𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑑𝑒𝑙𝑎𝑦𝑠): 
24:    𝑓𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝐴𝑇𝐼𝑂𝑁𝑆): 
25:        𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑛𝑝. 𝑧𝑒𝑟𝑜𝑠(𝑁𝑈𝑀_𝑃𝐸𝑁𝐺𝑈𝐼𝑁𝑆) 
26:        𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑁𝑈𝑀_𝑃𝐸𝑁𝐺𝑈𝐼𝑁𝑆): 
27:            𝑓𝑖𝑡𝑛𝑒𝑠𝑠[𝑖]  =  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑑𝑓_𝑛𝑛_𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑖], 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑖], 𝑑𝑒𝑙𝑎𝑦𝑠[𝑖]))  
28:           𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑒𝑥 =  𝑛𝑝. 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠) 
29:        𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  =  (𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑒𝑥], 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑒𝑥], 𝑑𝑒𝑙𝑎𝑦𝑠[𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑒𝑥]) 
30:        𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑁𝑈𝑀_𝑃𝐸𝑁𝐺𝑈𝐼𝑁𝑆): 
31:            𝑖𝑓 𝑖 ! =  𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑒𝑥: 
32:                    𝐶 =  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑖], 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[0], 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑖], 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[1]) 
33:                      𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑖], 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑖], 𝑑𝑒𝑙𝑎𝑦𝑠[𝑖]  =  𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑖], 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐶) 
34:    𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  # 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝐷𝐹𝑁𝑁 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
35: 𝑑𝑒𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑏𝑒𝑠𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑): 
36:      𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 −  𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)  +  𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 −  𝑏𝑒𝑠𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 
37: 𝑑𝑒𝑓 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒): 
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Algorithm 1 (Continued) 

38:     𝑛𝑒𝑤_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 −  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒   
39:    𝑛𝑒𝑤_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 =  𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[1]  −  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒    
40:      𝑛𝑒𝑤_𝑑𝑒𝑙𝑎𝑦𝑠 =  𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[2]  # 𝑈𝑠𝑒 𝑏𝑒𝑠𝑡 𝑑𝑒𝑙𝑎𝑦 𝑎𝑠 𝑎 𝑝𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟 
41:    𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤_𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑛𝑒𝑤_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑛𝑒𝑤_𝑑𝑒𝑙𝑎𝑦𝑠 
42: 𝑑𝑒𝑓 𝑚𝑎𝑖𝑛(): 
43:     𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑑𝑒𝑙𝑎𝑦𝑠 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑑𝑓_𝑛𝑛_𝑝𝑎𝑟𝑎𝑚𝑠() 
44:       𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎 = . ..   
45:       𝑏𝑒𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑏𝑒𝑠𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑏𝑒𝑠𝑡_𝑑𝑒𝑙𝑎𝑦𝑠 =  𝑒𝑚𝑝𝑒𝑟𝑜𝑟_𝑝𝑒𝑛𝑔𝑢𝑖𝑛_𝑠𝑒𝑎𝑟𝑐ℎ(𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑑𝑒𝑙𝑎𝑦𝑠) 
46:        𝑓𝑖𝑛𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑑𝑓_𝑛𝑛_𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎, 𝑏𝑒𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑏𝑒𝑠𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, 𝑏𝑒𝑠𝑡_𝑑𝑒𝑙𝑎𝑦𝑠) 
47:    𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑖𝑛𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡 
48: 𝑖𝑓 __𝑛𝑎𝑚𝑒__  ==  "__𝑚𝑎𝑖𝑛__": 
49:    𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑚𝑎𝑖𝑛() 
50:    𝑝𝑟𝑖𝑛𝑡("𝐹𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝐷𝐹𝑁𝑁: ", 𝑜𝑢𝑡𝑝𝑢𝑡) 

4. Results and discussion  

4.1. Simulation setup 

The simulation setup for the EPSO-DFNN model involved simulating and 

optimizing athletes’ biomechanical parameters using a Python-based environment on 

a system with an Intel Core i7 processor, 16GB RAM, and a 64-bit operating system. 

The neural network was implemented using TensorFlow (version 2.8) and Keras, 

while the Emperor Penguin search algorithm was coded using Python (version 3.9). 

The dataset for athlete biomechanics was processed using NumPy and pandas 

libraries.  

For the EPSO-DFNN model for optimization of the biomechanical parameters 

of athletes, accuracy means that the percentage of correct prediction of the optimal 

output for biomechanics is achieved in 100 epochs. The loss represents a measure of 

the amount of error or the difference between the values of the biomechanics to be 

considered during training. Greater than 100 epochs over, graphs of accuracy display 

the model’s improvements in prediction capability while the loss keeps track of the 

errors. Figure 2 provides a way to monitor the performance of models, including 

whether they are learning and improving at the progressive stages with each epoch. 

 
Figure 2. Accuracy and loss. 
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The output frames display the processed samples with key points marked, 

which represent various classes relevant to the study. Each key point highlights 

specific biomechanical parameters, facilitating a visual understanding of the model’s 

predictions. As illustrated in Figure 3, these marked key points serve as critical 

indicators for evaluating the performance and accuracy of the optimization process. 

 
Figure 3. Specific points of biomechanical parameters. 

Accuracy measures the number of correct predictions of the model with all 

predictions. In this case, it shows how well it can optimize the biomechanical 

parameters, thus showing the efficiency of the training and the performance of the 

model regarding prediction for the desired outcomes in athletes. 

The accuracy attained by the suggested methodology is shown in Figure 4. The 

suggested model achieves an accuracy of 90.02% when compared to alternative 

approaches. By contrast, the accuracy rates for Random Forest (RF), Multi-layer 

perception (MLP), and Support Vector Classifier (SVC) were 85.03%, 71.42%, and 

63.26%, respectively. When compared to other methods currently in use, EPSO-

DFNN produces better results for optimizing the biomechanical parameters of 

athletes. 

 

Figure 4. Results of accuracy 



Molecular & Cellular Biomechanics 2024, 21(3), 463.  

14 

The precision of a model is calculated as the ratio of true positive predictions to 

all positive predictions. When optimizing biomechanical parameters, the algorithm’s 

beneficial outcomes are consistent, demonstrating its capacity to prevent false 

positives in forecasting successful athlete biomechanics. Precision in the improving 

biomechanical parameters refers to the level of efficiency and consistency in 

measurements and forecasts based on advanced mathematical models. It 

demonstrates the model’s capacity to minimize parameter estimation errors, ensuring 

that the improved biomechanical outputs precision meet the predicted goals. High 

precision is essential to increase the dependability and efficacy of biomechanical 

designs, resulting in better performance, safety, and capability in applications such as 

sports and rehabilitation. 

Figure 5 illustrates the precision that the suggested methodology achieved. 

When the suggested model is compared to other methods its precision is 91.42%. In 

comparison, RF, MLP, and SVC had precision rates of 85.10%, 73.76%, and 

66.57%, respectively. In terms of optimizing the biomechanical parameters of 

athletes, EPSO-DFNN yields superior results than other currently used methods. 

 

Figure 5. Results of precision 

Recall is a task performance metric that measures a model’s ability to recognize 

relevant occurrences. Recall, also known as sensitivity, evaluates the number of 

actual positive occurrences correctly predicted by the proportion of genuine positive 

predictions, evaluating the model’s ability to catch all important samples. In the 

context of improving biomechanical parameters using advanced mathematical 

modelling, recall access how well the model detects the correct biomechanical 

configurations, ensuring accurate predictions that could increase performance and 

injury prevention in physical sports. 

The recall that was attained with the suggested methodology is shown in Figure 

6. The recall of the suggested model is 89.69% when compared to alternative 
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techniques. The recall rates of RF, MLP, and SVC were 85.03%, 71.42%, and 

63.26%, respectively. Compared to other existing methods, EPSO-DFNN generates 

superior outcomes when it is used for optimizing the biomechanical parameters of 

athletes. 

 

Figure 6. Results of recall 

The F1-score is an important evaluation statistic it expresses the harmonic 

relationship between precision and recall. When improving biomechanical 

parameters using advanced mathematical modelling, the F1-score is used to measure 

the model’s accuracy in forecasting relevant results. Recall evaluates the correctness 

of positive predictions, whereas recall examines the ability to recognize all relevant 

occurrences. A high F1-score indicates balanced overall performance, reducing both 

false positives and false negatives in biomechanics. 

The F1-score that was attained with the suggested methodology is shown in 

Figure 7. This model’s F1-score is 92.76% when compared to alternative 

approaches. In contrast, the F1-score rates for RF, MLP, and SVC are 84.99%, 

71.57%, and 61.80%, respectively. EPSO-DFNN outperforms other existing 

techniques in terms of optimizing athletes’ biomechanical parameters. Table 1 

shows the values of suggested and existing methods. 

 

Figure 7. Results of F1-score. 
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Table 1. Values of suggested and existing methods. 

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) 

RF [25] 85.03% 85.10% 85.03% 84.99% 

MLP [25] 71.42% 73.76% 71.42% 71.57% 

SVC [25] 63.26% 66.57% 63.26% 61.80% 

EPSO-DFNN (Proposed) 90.02% 91.42% 89.69% 92.76% 

4.2. Discussions 

The most commonly used algorithms in optimizing the biomechanical 

parameters are RF, MLP, and SVC, but each has critical limitations. While suffering 

from overfitting, especially with high-dimensional data, the random forest fails to 

capture many intricate relations within biomechanical parameters. MLP is very 

powerful, but a tremendous number of hyperparameter tuning is required, and it 

usually fails to converge in non-linear problems, hence obtaining a rather suboptimal 

performance. SVCs suffer from outliers but also do not scale well with big data sets, 

which is common in biomechanical analysis. To overcome these limitations, it 

proposes EPSO-DFNN as a novel algorithm by combining the optimization abilities 

of the Emperor Penguin Search with the adaptive learning capabilities of dynamic 

feedforward networks. This hybrid approach improves exploration and exploitation 

at the solution space by overcoming overfitting, convergence, and scalability. EPSO 

makes use of its global search to effectively fine-tune biomechanical parameters 

within an EPSO-DFNN environment so the performance improves and the insights 

will be more reliable when optimizing athletic performance. This work builds on 

prior research by introducing the EPSO-DFNN hybrid algorithm, which combines 

emperor penguin search optimization’s global search capabilities with dynamic 

feedforward networks’ adaptive learning qualities. This unique technique efficiently 

addresses the concerns of overfitting, convergence, and scalability that plague 

standard algorithms such as RF, MLP, and SVC. EPSO-DFNN improves 

performance and reliability in optimizing biomechanical parameters by increasing 

exploration and exploitation within the solution space, making it particularly well-

suited for high-dimensional data in athletic performance analysis.  

5. Conclusions 

The study successfully developed a framework for the design and optimization 

of parameters in biomechanics at universities based on mathematical modeling. The 

novel Emperor Penguin Search-driven Dynamic Feedforward Neural Network 

(EPSO-DFNN) was introduced for the improvement of the optimization of athletes’ 

biomechanical parameters. All critical biomechanical parameters from a 

comprehensive dataset for athletes across different sports were considered, including 

muscle activation patterns, joint angles, forces, and movements. The Z-score 

normalization was used for data preprocessing, and FFT-based feature extraction 

was utilized in the empirical tuning of athletic movement optimization concerning 

individual biomechanical parameters. The EPSO-DFNN outperformed various 

evaluation criteria, achieving an F1-score of 92.76%, precision of 91.42%, accuracy 
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of 90.02%, and recall of 89.69%. These findings indicate that the proposed method 

has an intriguing potential for increasing athletic capabilities when compared to 

standard methods. It emphasizes the potential for mathematical modeling to optimize 

biomechanical aspects and provides vital information that may help to significantly 

improve athletic performance and safer practicing settings. The EPSO-DFNN may 

require significant computational resources to train big data sets, and it is likely to be 

very sensitive to both hyperparameter selection and initialization. Further study can 

help lead efforts to improve the efficiency of the EPSO-DFNN by hybrid approaches 

that connect it to other types of optimizations. Finally, using portable detectors to 

feed real-time data can help athletes better monitor their performance. It would 

extend the analysis and application of biomechanical optimization by incorporating 

numerous sports, psychological aspects, and so on, with results that would allow for 

more tailored therapies for athletes. 
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