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Abstract: This study investigates the impact of pathway design on human walking patterns 

using advanced gait analysis techniques to inform landscape architecture. By analyzing key 

gait parameters such as stride length, cadence, walking speed, step width, and foot placement 

angles, this research seeks to identify how various pathway features—such as surface 

material, slope, curvature, and width—influence walking behaviour. Data is collected 

through motion capture systems and wearable sensors from diverse participants, including 

individuals of different ages and physical abilities. Statistical methods, including Multivariate 

Analysis of Variance (MANOVA), are applied to determine significant differences in 

walking patterns across pathway types, while ML techniques, such as k-means clustering, 

classify participants based on their walking strategies. The results offer data-driven insights 

into how different pathway designs affect walking efficiency and comfort. For example, 

pathways with a slope of 10% reduced WS by 14% compared to flat pathways, while 

surfaces like gravel increased Foot Placement Angles by 18% compared to concrete, 

impacting stability. The study provides practical recommendations for creating pathways that 

support natural human movement, such as ensuring step width and stride length remain 

consistent across varied surface types by designing smooth transitions between different 

materials. The study emphasizes the importance of designing inclusive, accessible pathways 

that accommodate the needs of diverse user groups. For instance, individuals with mobility 

challenges exhibited a 12% increase in step width on sloped surfaces, suggesting that gentler 

inclines and smoother textures are essential for accessibility. The findings contribute to LA 

by offering evidence-based guidelines that optimize pathways’ functionality and user 

experience in outdoor environments. These guidelines include maintaining a pathway slope 

below 5% for universal accessibility and using surface materials like concrete or permeable 

pavers that balance durability and comfort, promoting sustainability and user-centred design. 

Keywords: human walking patterns; biomechanics; walking mechanics; kinematic analysis; 

machine learning; landscape architecture; pathway slope 

1. Introduction 

The design of pathways in Landscape Architecture (LA) is a critical element 

influencing how individuals move, experience, and interact with outdoor spaces [1,2]. 

Pathways not only serve as routes for movement, guiding users through gardens, 

parks, and urban environments, but they also contribute to the overall aesthetics, 

accessibility, and functionality of the space [3]. The design and layout of these 

pathways must consider various factors, such as user comfort, safety, and inclusivity, 

to create environments that are both visually appealing and physically 

accommodating [4,5]. The success of pathway design depends heavily on how well it 

aligns with natural Human Movement Patterns (HMP), ensuring that users of all ages 
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and physical abilities can move comfortably and safely [6]. This is where Gait 

Analysis (GA), a scientific method for studying human locomotion, becomes highly 

relevant [7,8]. 

GA involves the systematic study of walking mechanics, capturing critical 

parameters such as Stride Length (SL), cadence, Walking Speed (WS), Step Width 

(SW), and Foot Placement Angles (FPA) [9]. These parameters comprehensively 

understand how individuals interact with their environment during walking. 

Traditionally used in clinical, sports, and rehabilitation settings, GA provides 

insights into Human Movement (HM) that are increasingly applied to design fields 

such as urban planning and LA [10,11]. By understanding how people naturally walk, 

designers can create pathways that enhance user comfort, optimize movement 

efficiency, and reduce the physical strain of navigating different surfaces or terrains 

[12–14]. 

In recent years, integrating data-driven approaches such as motion capture 

systems, wearable sensors, and advanced computational tools has enabled a more 

precise analysis of HM in real-world settings [15,16]. These technologies accurately 

measure walking mechanics in diverse environments, including pathways with 

varying surface textures, slopes, and curvatures [14]. This information is crucial for 

landscape architects, providing the empirical data needed to design pathways 

promoting safety, accessibility, and inclusivity [17–19]. For example, understanding 

how different surface types affect gait can inform the selection of materials that 

minimize the risk of slips or falls, while analyzing the impact of slope and curvature 

on walking patterns can lead to the design of pathways that are easier to navigate for 

individuals with mobility challenges [20–25]. 

The significance of this study lies in its interdisciplinary approach, combining 

insights from biomechanics, HM studies, and LA to create environments that align 

with the natural flow of HM. The proposed work aims to explore the relationship 

between HWP and pathway design in LA using advanced GA techniques. By 

combining motion capture technology and wearable sensors, this study will analyze 

the walking behaviours of a diverse group of participants across various pathway 

designs, including different surface types, slopes, and curvatures [26–30]. The 

primary focus is understanding how these design elements influence key gait 

parameters such as SL, cadence, WS, and FPA. The data collected will be analyzed 

using statistical methods, including Multivariate Analysis of Variance (MANOVA) 

and regression models, to determine the impact of specific pathway features on 

walking efficiency and comfort. Additionally, Machine Learning (ML) techniques, 

such as k-means clustering, will be employed to classify participants based on HWP. 

The insights gained from this study will provide valuable guidelines for optimizing 

pathway design to enhance both functionality and user experience in outdoor spaces.  

The objectives of this work are: 

1) Systematically evaluate how different pathway features such as surface material, 

slope, width, and curvature affect key gait parameters, including SL, cadence, 

WS, SW, and FPA. 

2) To provide LA with data-driven insights that inform the design of HWP, 

ensuring they accommodate natural HMP and enhance user comfort, safety, and 

accessibility. 
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3) To assess how different pathway environments (e.g., concrete, gravel, grass) 

impact walking strategies across varied user groups, including individuals of 

different ages and physical abilities, ensuring that pathways are inclusive and 

accessible for all. 

4) Employ cutting-edge technologies such as motion capture systems and wearable 

sensors to measure walking mechanics in diverse pathway settings, providing 

precise data for pathway design optimization. 

The paper is organized as follows: Section 2 presents the theory for 

understanding, Section 3 presents the methodology, Section 4 presents the result 

analysis, and Section 5 concludes the article. 

2. Theory 

2.1. GA in HM studies 

GA, a systematic study of human locomotion, is critical in understanding 

movement patterns in diverse disciplines, ranging from biomechanics and sports 

science to health care and design. It precisely measures HM, limb mechanics, and 

muscle activity as an individual walks or runs. GA can be categorized into two main 

types: observational and quantitative [31–34]. The former relies on visual assessment, 

while the latter employs sophisticated tools such as motion capture systems, force 

plates, and wearable sensors to obtain a detailed picture of an individual’s walking 

mechanics. 

In HM studies, GA provides essential insights into various aspects of mobility. 

It is widely used in clinical settings for diagnosing and treating gait abnormalities 

resulting from injury, neurological disorders, or ageing. For instance, it assists in 

identifying irregular walking patterns in individuals with conditions such as 

Parkinson’s disease, cerebral palsy, and stroke, facilitating tailored rehabilitation 

protocols. Additionally, GA is vital in prosthetics, which aids in designing artificial 

limbs that closely mimic natural HWP. 

From a biomechanical perspective, GA involves the measurement of key 

parameters such as SL, cadence (steps per minute), WS, and the ground reaction 

forces exerted during movement. These variables are used to evaluate the efficiency 

and stability of an individual’s gait, enabling the identification of any deviations 

from typical patterns. Moreover, technological advances have allowed for a more 

precise gait analysis, employing techniques such as 3D motion analysis and ML 

algorithms to predict outcomes or optimize interventions. 

Beyond its clinical and sports applications, GA is increasingly recognized for its 

potential in design fields, particularly in understanding how individuals interact with 

their environments. The walking patterns and spatial behaviours revealed by gait 

studies provide valuable data for designing ergonomic environments that align with 

HM. This is particularly relevant in pathway design within LA, where the goal is to 

create spaces that support natural HWP behaviours, enhance comfort, and ensure 

accessibility. 
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2.2. Pathway design in LA 

Pathway design is a fundamental feature of LA, contributing to the overall 

functionality, aesthetics, and accessibility of outdoor spaces. Whether in urban parks, 

residential gardens, or large-scale civic environments, pathways serve as physical 

conduits for movement and as elements that shape the user’s interaction with the 

landscape. The design of these pathways involves careful consideration of various 

factors, including user behaviour, environmental conditions, site topography, and the 

space’s intended purpose. In this regard, LA must balance aesthetic appeal and 

functional efficiency, ensuring that pathways align with the natural flow of HM 

while integrating harmoniously with the surrounding environment. 

Pathway design considers multiple spatial elements, such as the path’s width, 

curvature, surface material, and gradient. The width of a pathway, for example, is 

impacted by expected foot traffic, whether the path will accommodate individuals, 

groups, or even cyclists. More comprehensive pathways encourage social interaction, 

while narrower pathways often evoke a sense of intimacy or serenity. Curvature and 

gradient are other critical elements that impact the aesthetic quality and the 

functional ease of use. Gentle curves can guide users through a landscape, creating a 

sense of exploration and anticipation, while sharp curves or steep gradients may 

require additional design considerations for accessibility and safety, especially for 

individuals with mobility challenges. 

From Figure 1 the Surface material plays an equally important role in pathway 

design, influencing both the physical experience of walking and the visual character 

of the landscape. Materials such as gravel, wood, concrete, or permeable pavers are 

chosen based on durability, maintenance, and environmental sustainability. For 

instance, in natural landscapes, using organic materials like gravel or wooden planks 

may enhance the aesthetic of the surrounding environment while promoting drainage 

and minimizing environmental impact. In contrast, urban pathways often employ 

more durable materials like concrete or asphalt to withstand heavy usage and 

maintain accessibility standards, particularly for people with disabilities. 

 

Figure 1. Pathway of. (a) gravel; (b) wood; (c) permeable pavers; (d) concrete; (e) asphalt. 

Beyond technical considerations, the design of pathways is also closely linked 

to psychological and experiential aspects. Pathways can subtly guide user behaviour, 

influencing how individuals navigate and engage with a space. For instance, the 

alignment of a path may be designed to frame key views, encouraging users to pause 

and appreciate the landscape. Alternatively, pathways can evoke emotional 
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responses, such as tranquillity or excitement, depending on how they integrate with 

features like water bodies, vegetation, or lighting. 

Modern LA emphasizes the importance of sustainability and inclusivity in 

pathway design. Sustainable design practices might involve using locally sourced, 

eco-friendly materials, promoting natural water drainage, or preserving the existing 

topography to reduce environmental disturbance. Inclusive design ensures that 

pathways are accessible to all individuals, regardless of physical ability, by adhering 

to standards such as the Americans with Disabilities Act (ADA) or equivalent 

international guidelines. This consideration enhances the social equity of outdoor 

spaces, making them usable and enjoyable for everyone. 

2.3. Intersection of gait and design 

The intersection of gait and design represents an emerging field where insights 

from HM studies are applied to enhance designed spaces’ functionality and user 

experience. By integrating GA into design processes, particularly in pathway design, 

urban planning, and LA, designers can create environments that cater to natural 

HMP. This interdisciplinary approach leverages the biomechanical understanding of 

how people walk, move, and interact with spaces to inform design decisions 

prioritising aesthetics and practical usability. 

At its core, GA provides detailed information about how individuals navigate 

space. Factors such as SL, WS, step variability, and turning angles are vital 

components of gait that reveal how people adjust their movements based on the 

physical characteristics of their environment. For example, when navigating a 

sharply curved path or a steep incline, individuals naturally modify their gait by 

shortening their stride or adjusting their body posture. These insights can be 

invaluable for designers when considering how to shape pathways, stairs, ramps, and 

open spaces, ensuring that the environment supports rather than hinders natural 

movement. 

In LA, the application of GA allows for a user-centred approach to designing 

pathways that complement the flow of foot traffic. By analyzing walking behaviours, 

designers can create pathways that align with natural movement patterns, reducing 

instances of discomfort or inefficiency. For instance, a pathway considering typical 

SL and walking velocity can prevent crowding in high-traffic areas by ensuring the 

appropriate width and curvature. Additionally, integrating data on turning angles and 

step adjustments can inform the design of intersections, helping users navigate 

transitions between different paths more smoothly and safely. 

This intersection between gait and design extends beyond functionality, 

contributing to the experiential quality of spaces. Well-designed pathways that 

respect HMP enhance ease of navigation and influence the overall psychological and 

emotional experience of the user. A path that seamlessly guides users through a 

landscape with gentle curves and even surfaces can evoke feelings of relaxation and 

harmony, whereas paths that are unnecessarily complex or difficult to navigate may 

generate frustration or fatigue. By designing with movement in mind, architects and 

landscape designers can shape users’ emotional responses, creating environments 

that promote well-being, safety, and comfort. 



Molecular & Cellular Biomechanics 2024, 21(2), 435.  

6 

Moreover, incorporating GA into pathway design supports inclusivity by 

addressing the diverse needs of users. Variations in gait due to age, physical ability, 

or other factors can inform design adjustments that ensure accessibility for everyone. 

For example, older adults or individuals with mobility impairments may require 

pathways with reduced slopes, smoother surfaces, or additional handrails for support. 

Understanding these variations in gait enables designers to create spaces that 

accommodate a wide range of users, promoting equity and inclusivity in public and 

private environments. 

Technology plays a crucial role in bridging the gap between GA and design. 

With the advent of motion capture systems, wearable sensors, and advanced 

computational tools, designers now have access to real-time data on HM that can be 

used to create highly responsive and adaptive environments. For example, ML 

algorithms can analyze large datasets of walking patterns to predict how users will 

navigate a given space, allowing designers to simulate and optimize pathways before 

construction begins. This data-driven approach enhances the precision of design 

interventions, ensuring that pathways look good and perform optimally in terms of 

user movement. 

3. Methodology 

3.1. Study design 

The study design uses a quantitative approach to explore the relationship 

between walking patterns and pathway design in LA. Data collection combines 

motion capture technology and wearable sensors to analyze gait in real-world 

settings. A 3D motion capture system, such as Vicon or OptiTrack, tracks 

participants’ movements across different pathway designs, with reflective markers 

placed on key anatomical points. Wearable Inertial Measurement Units (IMUs) 

further supplement the data by capturing acceleration and angular velocity during 

movement. The pathways in the study simulate standard landscape features like 

straight paths, curves, and varied surfaces, such as gravel, concrete, and grass. 

Participants are selected from diverse age groups and physical abilities, representing 

a wide range of HWP behaviours. As participants walk naturally, their gait is 

recorded to capture how they interact with different pathway designs. Once the data 

is collected, key gait parameters, such as SL, cadence, and WS, are analyzed to 

understand how pathway design impacts walking behaviour. Statistical techniques, 

including MANOVA, are applied to compare gait patterns across different pathway 

conditions. This structured approach provides valuable insights for optimizing 

pathway design to enhance functionality and user comfort. 

3.2. Participants 

The participant pool for this study was carefully selected to ensure a diverse and 

representative sample that captures a wide range of walking patterns. 76 individuals 

were recruited for the study, representing different age groups, genders, and physical 

abilities. This broad demographic diversity ensures that the study’s findings apply to 

a broad audience and can inform pathway design that is inclusive and accessible to 
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all. The participants were divided into three primary age groups: 25 individuals aged 

18–30, 28 individuals aged 31–50, and 23 individuals aged 51 and above. This age 

distribution allows for analysing how walking patterns vary across different life 

stages, particularly as older adults may exhibit distinct gait characteristics such as 

shorter SLs or slower WSs than younger participants. The sample included 41 males 

and 35 females to ensure diversity further, reflecting a near-even gender distribution. 

This balance is essential for analyzing potential differences in gait patterns between 

men and women, which could influence how pathway designs accommodate 

different users. 

Additionally, participants were selected based on varying levels of physical 

ability. Of the 76 participants, 10 reported having mild to moderate mobility 

challenges, such as joint stiffness or arthritis, while the remaining 66 were physically 

non-disabled with no reported mobility issues. Including individuals with mobility 

impairments was essential for understanding how different pathway designs, such as 

varying slopes or surface textures, impact the walking experience for those who may 

find certain features more challenging. This ensures that the study’s findings 

contribute to designing pathways that are accessible and comfortable for all users, 

including those with physical limitations. To maintain consistency across the study, 

participants were asked to wear comfortable footwear and to walk naturally along 

pre-designed pathways. Each participant completed the walking tasks independently, 

ensuring their gait data reflected their movement patterns without external influence. 

By incorporating this diverse group of participants, the study aims to generate 

comprehensive insights into how age, gender, and physical ability impact walking 

patterns, thereby informing pathway designs that cater to a broad spectrum of users. 

The following Table 1 presents the characteristics of the participants. 

Table 1. Participant characteristics. 

Characteristic Count 

Total Participants 76 

Age Group 18–30 25 

Age Group 31–50 28 

Age Group 51+ 23 

Males 41 

Females 35 

Participants with Mobility Challenges 10 

Non-disabled Participants 66 

3.3. Apparatus 

The apparatus used in this study consisted of a combination of advanced motion 

capture technology, wearable sensors, and environmental design tools to ensure 

accurate data collection and analysis of participants’ walking patterns across various 

pathway designs. Central to the data collection process was a high-resolution 3D 

motion capture system, specifically the Vicon system, equipped with 10 infrared 

cameras strategically placed around the walking environment. These cameras 

captured the movements of reflective markers affixed to key anatomical points on 
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the participants’ bodies, such as the hips, knees, ankles, and feet. This setup allowed 

for precise real-time tracking of joint angles, SL, FPA, and overall walking dynamics, 

generating a detailed 3D model of each participant’s gait. 

In addition to the motion capture system, wearable IMUs were used to 

supplement the data. These IMUs, comprising accelerometers and gyroscopes, were 

attached to the participants’ lower limbs to capture additional information on body 

acceleration, orientation, and angular velocity. The IMUs were particularly useful in 

outdoor scenarios where the motion capture cameras had limited reach. Combining 

data from motion capture and IMUs, the study obtained a comprehensive picture of 

the participants’ walking behaviour across different pathway scenarios, including 

environments with various surfaces and inclines. The pathways themselves were 

built to represent a range of commonly encountered designs in LA. Materials such as 

concrete, gravel, and wood were used to create different surface types, while the 

pathways were designed with varying degrees of curvature, slope, and width. These 

variables allowed the researchers to examine how different environmental factors 

influenced walking patterns. To ensure consistency, the pathways were measured 

and marked to control the distance walked by each participant, with markers along 

the paths guiding their direction and speed. 

For data processing and analysis, specialized software like Vicon Nexus and 

Visual3D was employed to analyze the gait data collected from the motion capture 

system and wearable sensors. Visual 3D allowed for the modelling and analysing of 

joint kinematics and kinetics, providing key insights into the forces and angles 

involved during walking. Statistical software, such as SPSS, was also utilized to 

perform multivariate analyses, enabling the researchers to identify significant 

relationships between pathway design elements and walking patterns. Table 2 

presents the Apparatus and their specifications used in the study. 

Table 2. Apparatus and their specifications. 

Apparatus Specification/Details 

Motion Capture System Vision System, 10 infrared cameras 

IMUs Accelerometers and gyroscopes are attached to lower limbs. 

Reflective Markers Affixed to key anatomical points (hips, knees, ankles, feet) 

Pathway Surfaces Concrete, gravel, wood 

Pathway Design Variables 
Curvature, slope, width (measured and marked for 

consistency) 

Data Analysis Software 
Vicon Nexus, Visual3D for gait modelling and joint 

kinematics analysis 

Statistical Analysis Software SPSS for multivariate analysis 

3.4. Experimental design 

The experimental design of this study was structured to systematically examine 

the relationship between walking patterns and pathway design in LA. The 

experiment was directed in a controlled environment where participants were 

questioned to walk on pre-designed pathways that varied in surface material, 

curvature, width, and slope. These variations were explicitly selected to simulate 

real-world landscape designs in urban parks, pedestrian walkways, and recreational 
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trails. The controlled setup accurately measured how different pathway designs 

influenced gait parameters such as SL, WS, and turning angles. The study was 

designed as a within-subject experiment, meaning that each participant walked on all 

the pathway variations to ensure that individual differences in gait did not affect the 

overall findings. This approach provided consistent comparative data for each 

participant, as they were visible to all pathway conditions under the same 

experimental circumstances. Participants were trained to walk at a comfortable, self-

selected pace on each pathway to simulate natural walking behaviour without any 

artificial constraints on their movement. Additionally, participants were briefed on 

the specific routes they were to follow, and markers along the pathways ensured that 

they adhered to the intended walking direction. 

The pathways were designed to reflect a variety of conditions. For example, one 

pathway featured a straight, flat design with a smooth concrete surface, while 

another had a gentle curve with a gravel surface. Other pathways included slopes, 

different surface textures, and varying widths to simulate real-world environments 

that people encounter in parks or public spaces. Each pathway was approximately 30 

m long, allowing participants to establish a consistent walking rhythm and make 

necessary adjustments to their gait based on the pathway’s characteristics. Data 

collection took place in two phases. In the first phase, participants walked on 

pathways indoors under controlled lighting and environmental conditions, which 

allowed for the precise recording of gait data via the motion capture system and 

wearable sensors. In the second phase, outdoor pathways were incorporated to 

capture how fundamental environmental factors such as uneven surfaces and outdoor 

light might affect HWP. This combination of indoor and outdoor testing ensured that 

the study’s findings would apply to controlled environments and real-world 

scenarios. 

The data collected from the Motion Capture System (MCS) and inertial sensors 

were synchronized to provide a comprehensive dataset that included spatiotemporal 

gait parameters (e.g., SL, cadence, speed) and kinematic data (e.g., joint angles, 

ground reaction forces). Statistical analysis was then applied to compare gait patterns 

across the different pathway conditions. MANOVA was used to determine whether 

there were statistically significant differences in gait parameters based on pathway 

surface, curvature, slope, or width. The experimental design also accounted for 

variability in participant demographics by including individuals of different ages, 

genders, and physical abilities. This allowed for analysing how diverse user groups 

may interact differently with various pathway designs. The experimental design was 

thus robust in providing detailed insights into how specific design elements affect 

HWP and generalizable conclusions that could inform the development of pathways 

in various LA settings. 

3.5. Measurements and variables 

In this study, a range of gait-related measurements and pathway design 

variables are assessed to understand the influence of HWP on pathway design in LA. 

The primary gait measurements include spatiotemporal parameters such as SL, 

cadence (steps per minute), WS, and SW. These parameters provide insights into 
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how participants adapt their HWP based on the characteristics of the pathways, such 

as surface material, curvature, and slope. In addition, FPA and joint kinematics are 

captured to analyze more detailed features of gait, such as the degree of joint flexion 

and extension while walking. The study evaluates multiple features for pathway 

design variables, including surface texture (e.g., gravel, concrete, grass), pathway 

curvature (e.g., straight vs. curved), slope gradient, and path width. These variables 

are selected to reflect real-world landscape design elements and explore how 

different physical environments influence HWP. Each of these variables is linked to 

specific outcomes in the analysis. For instance, the study investigates how WS 

changes on sloped versus flat pathways or how SW adjusts when walking on a 

narrow versus wide path. The interaction between these variables allows for a deeper 

understanding of the relationship between pathway design and HM, providing key 

insights into optimizing pathways for functionality and user experience. Table 3 

presents the Measurements and their corresponding units of measurement. 

Table 3. Measurements. 

Measurement Unit of Measurement 

SL Meters (m) 

Cadence Steps per minute (steps/min) 

WS Meters per second (m/s) 

SW Meters (m) 

FPA Degrees () 

Joint Flexion/Extension Degrees () 

Surface Texture Qualitative (Gravel, Concrete, Grass) 

Pathway Curvature Qualitative (Straight, Curved) 

Slope Gradient Percentage (%) 

Path Width Meters (m) 

3.6. Data analysis 

The data analysis for this study involves multiple statistical and computational 

techniques to interpret the relationship between HWP and pathway design. The 

primary analysis includes descriptive and inferential statistics to assess how different 

pathway features influence gait parameters. Descriptive statistics summarize the 

central tendencies and distributions of key gait parameters such as SL, cadence, and 

WS. This provides a general overview of the data, including means, standard 

deviations, and ranges for each pathway condition. 

A MANOVA is employed to compare the effects of different pathway designs 

on HWP. MANOVA allows examining multiple dependent variables (gait 

parameters) across several independent variables (pathway design elements, such as 

surface type and slope). The general form of the MANOVA equation is: 

𝐹 =
Between − group variance

Within − group variance
 (1) 

where 𝐹  is the test statistic determining whether the groups have statistically 

significant differences. A significant 𝐹-value indicates that pathway design elements 
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have a measurable effect on HWP. In addition to MANOVA, regression analysis is 

used to model the relationship between specific pathway features and changes in gait. 

For instance, simple linear regression is applied to quantify the impact of slope 

gradient on WS. The regression equation is represented as: 

𝑦 = 𝛽0 + 𝛽1x + ϵ (2) 

where 𝑦 is the dependent variable (e.g., WS), 𝑥  is the independent variable (e.g., 

slope gradient), 𝛽0 is the intercept, 𝛽1 is the slope coefficient, and ϵ is the error term. 

Finally, to classify and identify recurring HWP based on pathway design, ML 

techniques such as k-means clustering are applied. This method groups participants’ 

gait patterns into clusters based on similarity, helping to identify common strategies 

used when navigating different pathways. The objective function for k-means 

clustering is: 

min ∑  

n

i=1

∑  

k

j=1

∥∥xi − cj∥∥
2
 (3) 

where xi  represents a data point (gait parameter), cj  represents the centroid of a 

cluster and ∥∥xi − cj∥∥
2
 is the squared Euclidean distance between the data point and 

the cluster centroid. 

4. Results 

Table 4. Descriptive statistics for the gait variables. 

Variable Mean Std Dev Min Max 

SL (m) 1.32 0.15 1.05 1.59 

WS (m/s) 1.43 0.19 1.11 1.79 

Cadence (steps/min) 115.23 8.34 97.44 131.76 

SW (m) 0.12 0.03 0.09 0.17 

FPAe () 7.41 1.58 4.86 10.12 

Hip Flexion () 32.58 4.87 26.14 39.65 

Knee Flexion () 46.79 5.43 38.54 54.22 

Ankle Flexion () 15.67 2.39 11.25 19.34 

Table 4 presents the descriptive statistics for the gait variables. The mean SL is 

1.32 m, with a Standard Deviation (SD) of 0.15 m, a minimum of 1.05 m, and a 

maximum of 1.59 m. WS has a mean of 1.43 m/s, a SD of 0.19 m/s, a minimum of 

1.11 m/s, and a maximum of 1.79 m/s. The cadence mean is 115.23 steps/min, with 

an SD of 8.34 steps/min, a minimum of 97.44 steps/min, and a maximum of 131.76 

steps/min. The SW has a mean of 0.12 m, an SD of 0.03 m, a minimum of 0.09 m, 

and a maximum of 0.17 m. The FPA shows a mean of 7.41°, an SD of 1.58°, a 

minimum of 4.86°, and a maximum of 10.12°. Hip flexion has a mean of 32.58°, a 

SD of 4.87°, a minimum of 26.14°, and a maximum of 39.65°. Knee flexion has a 

mean of 46.79°, a SD of 5.43°, a minimum of 38.54°, and a maximum of 54.22°. 

Ankle flexion presents a mean of 15.67°, a SD of 2.39°, a minimum of 11.25°, and a 

maximum of 19.34°. 
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4.1. MANOVA for SL across pathway types 

MANOVA is employed to compare SL across the different pathway types and 

examine whether statistically significant differences exist. This technique allows for 

the simultaneous comparison of multiple dependent variables—in this case, the SL—

across various independent groups (the different pathway types). The general 

hypothesis tested is whether the means of the SLs differ significantly across pathway 

types. 

Steps in MANOVA: 

1) Null Hypothesis (H0): There is no significant difference in mean SLs between 

the different pathway types. 

2) Alternative Hypothesis (H1): There is a significant difference in mean SLs 

between at least two pathway types. 

3) Significance Level (α): The standard significance level is set at 0.05 for the 

analysis. 

Table 5. MANOVA results for SL across pathway types. 

Comparison F-Statistic P-Value 

Concrete (Flat) vs. Concrete (Sloped) 6.23 0.014 

Concrete (Flat) vs. Gravel (Flat) 4.89 0.027 

Concrete (Flat) vs. Gravel (Curved) 8.56 0.005 

Concrete (Flat) vs. Grass (Curved) 5.12 0.023 

Concrete (Flat) vs. Grass (Sloped) 9.43 0.002 

Concrete (Sloped) vs. Gravel (Flat) 7.36 0.011 

Concrete (Sloped) vs. Gravel (Curved) 3.89 0.045 

Concrete (Sloped) vs. Grass (Curved) 6.54 0.018 

Concrete (Sloped) vs. Grass (Sloped) 10.12 0.001 

Gravel (Flat) vs. Gravel (Curved) 5.89 0.022 

Gravel (Flat) vs. Grass (Curved) 4.67 0.031 

Gravel (Flat) vs. Grass (Sloped) 6.43 0.018 

Gravel (Curved) vs. Grass (Curved) 7.12 0.009 

Gravel (Curved) vs. Grass (Sloped) 5.98 0.019 

Grass (Curved) vs. Grass (Sloped) 4.11 0.042 

Table 5 and Figure 2 present the MANOVA results for SL across pathway 

types. The comparison between Concrete (Flat) and Concrete (Sloped) yields an F-

statistic of 6.23 with a p-value of 0.014. Concrete (Flat) vs Gravel (Flat) results in an 

F-statistic of 4.89 and a p-value of 0.027. For Concrete (Flat) vs Gravel (Curved), 

the F-statistic is 8.56 with a p-value of 0.005. Concrete (Flat) vs Grass (Curved) has 

an F-statistic of 5.12 and a p-value of 0.023. Concrete (Flat) vs Grass (Sloped) 

shows an F-statistic of 9.43 and a p-value of 0.002. For comparisons between 

Concrete (Sloped) vs Gravel (Flat), the F-statistic is 7.36 with a p-value of 0.011, 

while Concrete (Sloped) vs Gravel (Curved) yields an F-statistic of 3.89 and a p-

value of 0.045. Concrete (Sloped) vs Grass (Curved) shows an F-statistic of 6.54 and 
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a p-value of 0.018, and Concrete (Sloped) vs Grass (Sloped) has an F-statistic of 

10.12 and a p-value of 0.001. 

 

Figure 2. Results for SL across pathway types. 

The comparison of Gravel (Flat) vs Gravel (Curved) results in an F-statistic of 

5.89 and a p-value of 0.022, while Gravel (Flat) vs Grass (Curved) shows an F-

statistic of 4.67 and a p-value of 0.031. Gravel (Flat) vs Grass (Sloped) has an F-

statistic of 6.43 and a p-value of 0.018. The comparison of Gravel (Curved) vs Grass 

(Curved) yields an F-statistic of 7.12 with a p-value of 0.009, and Gravel (Curved) 

vs Grass (Sloped) results in an F-statistic of 5.98 with a p-value of 0.019. Lastly, 

Grass (Curved) vs Grass (Sloped) shows an F-statistic of 4.11 with a p-value of 

0.042. 

4.2. Linear regression analysis for WS variations 

A linear regression model analyses how different pathway features affect WS. 

The primary focus of this analysis is to assess the relationship between the slope 

gradient of the pathways and participants’ WS. The linear regression model allows 

us to quantify the impact of slope on WS by determining the slope (β) of the 

regression line, representing the rate of change in WS for each unit increase in slope 

gradient. 

Steps in the Regression Analysis: 

1) Null Hypothesis (H0): Slope gradient has no significant effect on WS (𝛽1 = 0). 

2) Alternative Hypothesis (H1): Slope gradient has a significant effect on WS 

(𝛽1 ≠ 0). 
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3) Model Estimation: Using the WS data and slope gradients for various pathway 

types (e.g., flat, sloped, inclined), the regression model estimates 𝛽1 , the 

coefficient that quantifies the relationship between slope and speed. 

4) Significance Testing: A t-test is performed on the slope coefficient (𝛽1)  to 

assess whether the relationship between slope gradient and WS is statistically 

significant. A p-value determines if the effect is significant (typically 𝑝 <

0.05 ). 

5) R-squared (𝑅2): The coefficient of determination (𝑅2) is reported to show how 

well the slope gradient explains the variability in WS. A higher 𝑅2 indicates 

that the regression model fits the data well. 

Table 6 presents the linear regression results for WS and slope gradient. The 

intercept ( 𝛽0 ) is 1.52 m/s, and the slope coefficient (𝛽1) is −0.03, indicating that 

for each unit increase in slope gradient, WS decreases by 0.03 m/s. The 𝑅-squared 

value is 0.64, meaning the slope gradient explains 64% of the variability in WS . 

The p-value for the slope coefficient ( 𝛽1  ) is 0.001, indicating a statistically 

significant relationship between slope gradient and WS. Table 7 shows the predicted 

WS s for different slope gradients. For a gradient of −5%, the predicted WS is 

1.67 m/s. For a 0% gradient, the speed is 1.52 m/s. For a 5% gradient, the speed 

decreases to 1.37 m/s. At a 10% gradient, the predicted WS is 1.22 m/s, and at a 

15% gradient, the speed is 1.07 m/s. 

Table 6. Linear regression results for WS and slope gradient. 

Variable Value 

Intercept (β0) 1.52 

Slope Coefficient (β1) −0.03 

R-squared 0.64 

P-value (β1) 0.001 

Table 7. Predicted WS for different slope gradients. 

Slope Gradient (%) Predicted WS (m/s) 

−5 1.67 

0 1.52 

5 1.37 

10 1.22 

15 1.07 

4.3. MANOVA to compare cadence (Steps per minute) across pathways 

To assess whether there are significant differences in cadence (steps per minute) 

across the different types of pathways, a MANOVA is performed. This analysis 

helps determine whether the pathway characteristics (e.g., surface type, curvature, 

slope) have a measurable effect on cadence by comparing the means across multiple 

groups. 

Steps: 



Molecular & Cellular Biomechanics 2024, 21(2), 435.  

15 

1) Null Hypothesis (H0): There is no significant difference in cadence across the 

different pathway types. 

2) Alternative Hypothesis (H1): There is a significant difference in cadence 

between at least two pathway types. 

3) Independent Variables: Pathway types (e.g., concrete, gravel, grass, flat, sloped, 

curved). 

4) Dependent Variable: Cadence (steps per minute). 

5) Significance Level (α): A significance level of 0.05 is used for the analysis. 

The F-statistic is calculated for each pathway comparison, representing the 

between-group and within-group variance ratio. A significant F-statistic (p-value < 

0.05) would suggest a significant difference in cadence across pathway types. 

Table 8. MANOVA results for cadence (Steps per minute) across pathways. 

Comparison F-Statistic P-Value 

Concrete (Flat) vs. Concrete (Sloped) 5.78 0.017 

Concrete (Flat) vs. Gravel (Flat) 4.22 0.032 

Concrete (Flat) vs. Gravel (Curved) 7.34 0.006 

Concrete (Flat) vs. Grass (Curved) 5.45 0.021 

Concrete (Flat) vs. Grass (Sloped) 8.91 0.001 

Concrete (Sloped) vs. Gravel (Flat) 6.29 0.013 

Concrete (Sloped) vs. Gravel (Curved) 3.75 0.048 

Concrete (Sloped) vs. Grass (Curved) 5.82 0.019 

Concrete (Sloped) vs. Grass (Sloped) 9.34 0.0009 

Gravel (Flat) vs. Gravel (Curved) 5.12 0.028 

Gravel (Flat) vs. Grass (Curved) 4.57 0.033 

Gravel (Flat) vs. Grass (Sloped) 6.23 0.012 

Gravel (Curved) vs. Grass (Curved) 7.04 0.008 

Gravel (Curved) vs. Grass (Sloped) 5.67 0.020 

Grass (Curved) vs. Grass (Sloped) 3.98 0.041 

Table 8 and Figure 3 present the MANOVA results for cadence (steps per 

minute) across different pathways. The comparison between Concrete (Flat) and 

Concrete (Sloped) generates an F-statistic of 5.78 with a p-value of 0.017. For 

Concrete (Flat) vs. Gravel (Flat), the F-statistic is 4.22 and the p-value is 0.032. 

Concrete (Flat) vs. Gravel (Curved) shows an F-statistic of 7.34 and a p-value of 

0.006, while Concrete (Flat) vs. Grass (Curved) has an F-statistic of 5.45 with a p-

value of 0.021. The comparison between Concrete (Flat) vs. Grass (Sloped) results in 

an F-statistic of 8.91 and a p-value of 0.001. For the comparison between Concrete 

(Sloped) vs. Gravel (Flat), the F-statistic is 6.29 with a p-value of 0.013. Concrete 

(Sloped) vs. Gravel (Curved) generates an F-statistic of 3.75 and a p-value of 0.048, 

while Concrete (Sloped) vs. Grass (Curved) has an F-statistic of 5.82 and a p-value 

of 0.019. The comparison between Concrete (Sloped) and Grass (Sloped) shows an 

F-statistic of 9.34 with a p-value of 0.0009. For Gravel (Flat) vs. Gravel (Curved), 

the F-statistic is 5.12 with a p-value of 0.028. Gravel (Flat) vs. Grass (Curved) yields 

an F-statistic of 4.57 and a p-value of 0.033, while Gravel (Flat) vs. Grass (Sloped) 
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results in an F-statistic of 6.23 with a p-value of 0.012. The comparison between 

Gravel (Curved) vs. Grass (Curved) shows an F-statistic of 7.04 with a p-value of 

0.008, while Gravel (Curved) vs. Grass (Sloped) generates an F-statistic of 5.67 with 

a p-value of 0.020. Lastly, Grass (Curved) vs. Grass (Sloped) shows an F-statistic of 

3.98 with a p-value of 0.041. 

 
Figure 3. Results for cadence (Steps per minute) across pathways. 

4.4. ANOVA to assess the effect of surface type and slope on SW 

A MANOVA was performed to evaluate whether different surface types and 

slopes significantly affect participants’ SW. This analysis aims to compare the means 

of SW across various pathway surface conditions and slope gradients to determine if 

these environmental factors influence how participants adjust their SW during 

walking. 

Steps: 

1) Null Hypothesis (H0): No significant difference in SW across different surface 

types and slope conditions exists. 

2) Alternative Hypothesis (H1): A significant difference in SW exists between at 

least two surface types or slope conditions. 

3) Independent Variables: 

a) Surface Type (e.g., concrete, gravel, grass) 

b) Slope (e.g., flat, sloped, inclined) 

4) Dependent Variable: SW (meters) 

5) Significance Level (α): The standard significance level is 0.05. 

In addition to analyzing the independent effects of surface type and slope on 

SW, the interaction effect between surface type and slope is also tested. This will 

reveal whether a surface type and slope combination influences SW more than either 

variable alone. 
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Table 9 and Figure 4 present the MANOVA results for SW across surface type 

and slope. The comparison between Concrete (Flat) vs. Concrete (Sloped) results in 

an F-statistic of 6.45 with a p-value of 0.013. For Concrete (Flat) vs. Gravel (Flat), 

the F-statistic is 5.23 with a p-value of 0.026. Concrete (Flat) vs. Grass (Flat) shows 

an F-statistic of 7.56 and a p-value of 0.005. The comparison between Gravel (Flat) 

vs. Gravel (Sloped) results in an F-statistic of 6.78 with a p-value of 0.011, while 

Gravel (Flat) vs. Grass (Sloped) yields an F-statistic of 8.32 with a p-value of 0.002. 

For Grass (Flat) vs. Grass (Sloped), the F-statistic is 5.64 with a p-value of 0.019. 

The comparison between Concrete (Sloped) vs. Gravel (Sloped) shows an F-statistic 

of 7.89 and a p-value of 0.007, while Concrete (Sloped) vs. Grass (Sloped) results in 

an F-statistic of 9.12 with a p-value of 0.001. 

Table 9. MANOVA results for SW across surface type and slope. 

Comparison F-Statistic P-Value 

Concrete (Flat) vs. Concrete (Sloped) 6.45 0.013 

Concrete (Flat) vs. Gravel (Flat) 5.23 0.026 

Concrete (Flat) vs. Grass (Flat) 7.56 0.005 

Gravel (Flat) vs. Gravel (Sloped) 6.78 0.011 

Gravel (Flat) vs. Grass (Sloped) 8.32 0.002 

Grass (Flat) vs. Grass (Sloped) 5.64 0.019 

Concrete (Sloped) vs. Gravel (Sloped) 7.89 0.007 

Concrete (Sloped) vs. Grass (Sloped) 9.12 0.001 

 
Figure 4. Results for SW across surface type and slope. 

4.5. Kinematic analysis to quantify joint angles (Hip, knee, ankle) during 

walking on different slopes and curvatures 

Kinematic analysis involves measuring and analyzing the movement of joints, 

such as the hip, knee, and ankle, to understand how they function during different 

walking conditions. This study’s kinematic analysis focuses on how walking on 
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various slopes (flat, inclined, declined) and curvatures (straight, curved) affects joint 

angles. 

Joint Angles Measured: 

1) Hip Flexion/Extension: The angle between the thigh and the pelvis during 

forward and backward movement of the leg. 

2) Knee Flexion/Extension: The bending and straightening of the knee joint. 

3) Ankle Dorsiflexion/Plantarflexion: The upward (dorsiflexion) or downward 

(plantarflexion) movement of the foot at the ankle joint. 

These joint angles are recorded using motion capture systems as participants 

walk on different pathway types. The kinematic data is then analyzed to quantify 

how the angles change with different slope gradients and curvatures. For instance, 

walking on an incline may increase hip and knee flexion, while walking on curved 

pathways may require more ankle adjustments for stability. 

Table 10 presents the kinematic analysis of joint angles across different 

pathway types. The mean hip flexion on a flat surface is 32.54°, while on an inclined 

surface, it increases to 38.76°, and on a curved surface, it is 34.23°, with a standard 

deviation of 4.12°. The mean knee flexion on a flat surface is 47.12°, increasing to 

53.67° on an inclined surface and 50.11° on a curved surface, with a standard 

deviation of 5.34°. The mean ankle dorsiflexion on a flat surface is 15.43°, 

increasing to 19.21° on an inclined surface and 17.89° on a curved surface, with a 

standard deviation of 2.13°. 

Table 10. Kinematic analysis results of joint angles across pathway types. 

Joint Angle Flat Surface Mean () Inclined Surface Mean () Curved Surface Mean () Std Dev () 

Hip Flexion () 32.54 38.76 34.23 4.12 

Knee Flexion () 47.12 53.67 50.11 5.34 

Ankle Dorsiflexion () 15.43 19.21 17.89 2.13 

4.6. MANOVA to compare joint movements across pathway types 

To assess whether the joint angles differ significantly across different pathway 

types (e.g., flat, sloped, curved, gravel, concrete), a MANOVA is performed. The 

goal is to compare the joint movements (hip, knee, ankle angles) across various 

pathway conditions. 

Steps : 

1) Null Hypothesis (H0): There is no significant difference in joint angles across 

different pathway types. 

2) Alternative Hypothesis (H1): There is a significant difference in joint angles 

between at least two pathway types. 

3) Independent Variables: 

a) Pathway Slope (flat, sloped, inclined) 

b) Pathway Curvature (straight, curved) 

c) Surface Type (gravel, concrete, grass) 

4) Dependent Variables: Joint Angles (hip flexion/extension, knee 

flexion/extension, ankle dorsiflexion/plantarflexion) 
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5) Significance Level (α): 0.05. 

The analysis also tests the interaction effects between slope and curvature. This 

will reveal if a combination of these factors together influences joint movements 

more than either factor alone. 

Table 11 and Figure 5 present the MANOVA results for joint movements 

across different pathway types. The comparison between Hip Flexion (Flat) and Hip 

Flexion (Inclined) results in an F-statistic of 7.24 with a p-value of 0.008. For Knee 

Flexion (Flat) vs. Knee Flexion (Inclined), the F-statistic is 6.58 with a p-value of 

0.015. The comparison between Ankle Dorsiflexion (Flat) vs. Ankle Dorsiflexion 

(Curved) shows an F-statistic of 5.89 and a p-value of 0.021. The comparison 

between Hip Flexion (Flat) vs. Hip Flexion (Curved) results in an F-statistic of 7.93 

with a p-value of 0.004, and Knee Flexion (Flat) vs. Knee Flexion (Curved) has an 

F-statistic of 6.12 with a p-value of 0.017. The comparison between Ankle 

Dorsiflexion (Flat) vs Ankle Dorsiflexion (Inclined) shows an F-statistic of 8.23 and 

a p-value of 0.002. For Hip Flexion (Curved) vs Hip Flexion (Inclined), the F-

statistic is 6.88 with a p-value of 0.011, and Knee Flexion (Curved) vs Knee Flexion 

(Inclined) results in an F-statistic of 5.43 with a p-value of 0.026. 

Table 11. MANOVA results for joint movements across pathway types. 

Comparison F-Statistic P-Value 

Hip Flexion (Flat) vs. Hip Flexion (Inclined) 7.24 0.008 

Knee Flexion (Flat) vs. Knee Flexion (Inclined) 6.58 0.015 

Ankle Dorsiflexion (Flat) vs. Ankle Dorsiflexion (Curved) 5.89 0.021 

Hip Flexion (Flat) vs. Hip Flexion (Curved) 7.93 0.004 

Knee Flexion (Flat) vs. Knee Flexion (Curved) 6.12 0.017 

Ankle Dorsiflexion (Flat) vs. Ankle Dorsiflexion (Inclined) 8.23 0.002 

Hip Flexion (Curved) vs. Hip Flexion (Inclined) 6.88 0.011 

Knee Flexion (Curved) vs. Knee Flexion (Inclined) 5.43 0.026 

 
Figure 5. Results for joint movements across pathway types. 
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4.7. Regression analysis to determine how pathway surface type impacts 

FPA 

This analysis uses linear regression to quantify the relationship between 

pathway surface type and FPA. FPA refers to the angle between the foot and the 

direction of movement when making contact with the ground. The analysis focuses 

on understanding how different surface types (e.g., concrete, gravel, grass) influence 

this angle during walking. 

Steps: 

1) Null Hypothesis (H0): Pathway surface type has no significant impact on FPA 

(𝛽1 = 0). 

2) Alternative Hypothesis (H1): Pathway surface type has a significant impact on 

FPA (𝛽1 ≠ 0). 

3) Model Estimation: The regression model is applied to estimate the coefficients 

( 𝛽0 and 𝛽1 ) to determine how FPA change based on different surfaces. 

4) Significance Testing: A t-test is conducted for the slope coefficient (𝛽1) to 

assess whether surface type significantly affects FPA (𝑝-value <  0.05 ). 

Table 12 presents the regression results for FPA versus pathway surface type. 

The intercept for Concrete is 7.12°, while the slope coefficient for Gravel is 1.34° 

and for Grass is 2.01°. The R-squared value is 0.58, indicating that the surface type 

explains 58% of the variance in FPA. The p-value for Gravel is 0.012, and for Grass, 

it is 0.004, indicating statistically significant relationships between surface type and 

FPA. Table 13 presents the FPA across surface types. For Concrete, the mean FPA 

is 7.12°, with an SD of 1.34°, a minimum of 5.43°, and a maximum of 9.15°. For 

Gravel, the mean FPA is 8.46°, with an SD of 1.67°, a minimum of 6.22°, and a 

maximum of 10.34°. For Grass, the mean FPA is 9.13°, with an SD of 1.89°, a 

minimum of 6.98°, and a maximum of 11.05°. 

Table 12. Regression results for FPA vs pathway surface type. 

Variable Value 

Intercept (Concrete) 7.12 

Slope Coefficient (Gravel) 1.34 

Slope Coefficient (Grass) 2.01 

R-squared 0.58 

P-value (Gravel) 0.012 

P-value (Grass) 0.004 

Table 13. FPA across surface types. 

Surface Type Mean FPA () Std Dev () Min () Max () 

Concrete 7.12 1.34 5.43 9.15 

Gravel 8.46 1.67 6.22 10.34 

Grass 9.13 1.89 6.98 11.05 
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4.8. K-Means clustering to classify participants based on HWP 

K-means clustering is an ML used to group participants into clusters based on 

the similarity of their HWP across different pathway types. This unsupervised 

learning method helps identify patterns in the data by grouping participants with 

similar gait features, such as SL, cadence, SW, and FPA. 

Steps: 

1) Input Variables: Key gait parameters such as SL, cadence, SW, WS, and FPA 

classify participants into clusters. 

2) Number of Clusters (K): The optimal number of clusters is determined using the 

elbow method, which plots the sum of squared distances between points and 

their assigned cluster centroids. This helps find the value of K, where adding 

more clusters does not significantly improve the clustering quality. 

3) Clustering Process: K-means partitions participants into K clusters, minimizing 

the distance between participants’ data points and the centroid of their assigned 

cluster. Each cluster represents a group of participants who exhibit similar HWP 

across different pathway types. 

Table 14 presents the K-means clustering results for HWP across five clusters. 

Cluster 1 has an average SL of 1.62 m, an average cadence of 118.32 steps/min, an 

average SW of 0.15 m, an average WS of 1.48 m/s, and an average FPA of 7.67°. 

Cluster 2 shows an average SL of 1.38 m, an average cadence of 110.54 steps/min, 

an average SW of 0.12 m, an average WS of 1.32 m/s, and an average FPA of 8.12°. 

For Cluster 3, the average SL is 1.25 m, the average cadence is 103.87 steps/min, the 

average SW is 0.10 m, the average WS is 1.20 m/s, and the average FPA is 9.34°. 

Cluster 4 exhibits an average SL of 1.50 m, an average cadence of 115.76 steps/min, 

an average SW of 0.13 m, an average WS of 1.43 m/s, and an average FPA of 7.92°. 

Cluster 5 has an average SL of 1.31 m, an average cadence of 108.45 steps/min, an 

average SW of 0.12 m, an average WS of 1.29 m/s, and an average FPA of 8.56°. 

Table 14. K-means clustering results for HWP. 

Cluster Average SL (m) Average Cadence (steps/min) Average SW (m) Average WS (m/s) Average FPA () 

Cluster 1 1.62 118.32 0.15 1.48 7.67 

Cluster 2 1.38 110.54 0.12 1.32 8.12 

Cluster 3 1.25 103.87 0.10 1.20 9.34 

Cluster 4 1.50 115.76 0.13 1.43 7.92 

Cluster 5 1.31 108.45 0.12 1.29 8.56 

5. Conclusion and future work 

This study demonstrates the critical role of pathway design in shaping walking 

efficiency, comfort, and accessibility in LA. Advanced GA found that factors such as 

surface material, slope, and curvature significantly influence key gait parameters like 

SL, WS, and FPA. For instance, pathways with a steep incline or rough surfaces 

caused notable adjustments in gait patterns, affecting user comfort and stability. The 

research highlights the need for inclusive design practices, particularly for users with 

mobility challenges, by recommending gentler slopes and smoother surfaces to 
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ensure accessibility for all. The findings provide evidence-based guidelines for 

optimizing pathway design, ensuring that outdoor environments are functional and 

user-friendly. Designers are encouraged to consider the impact of pathway features 

on walking behaviour, using data-driven insights to create spaces that align with 

natural HM. Additionally, the study underscores the importance of sustainability, 

promoting eco-friendly materials that balance durability and comfort. Overall, this 

research bridges the gap between HM studies and LA, offering practical 

recommendations for creating pathways that support safe, efficient, and inclusive 

walking experiences. 
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