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Abstract: The rise of social media has provided a rich source of real-time data for analyzing 

player performance and tactics in professional sports, particularly tennis. This study harnesses 

social media data mining techniques to analyze tennis-related discussions on Twitter, focusing 

on identifying biomechanical patterns and tactical strategies during major tournaments. We 

propose a hybrid model combining Bidirectional Encoder Representations from Transformers 

(BERT) for generating contextual embeddings and Bidirectional Long Short-Term Memory 

(Bi-LSTM) for analyzing the sequential nature of tweets. The data collection spans tweets 

discussing key tournaments, including the Australian Open, French Open, Wimbledon, and US 

Open. It focuses on specific player movements such as footwork, speed, endurance, and tactical 

decisions like serve placement, net play, and shot selection. Our methodology includes 

preprocessing the data, tokenizing the text, and applying sentiment analysis to capture public 

perception of player performance. The model achieves an accuracy of 88.5% and an F1-score 

of 87.95%, outperforming comparative models such as BERT with CNN and GloVe with 

LSTM. The analysis highlights key player-specific tactics, including Rafael Nadal’s baseline 

dominance and Novak Djokovic’s defensive play, as well as tournament-specific strategies, 

such as serve-and-volley at Wimbledon and baseline control at the French Open. Furthermore, 

sentiment analysis reveals positive public perception toward player performance, with key 

emotions such as excitement and admiration frequently expressed during intense match 

moments. This study demonstrates the effectiveness of applying advanced NLP techniques to 

social media data for sports analytics. The insights generated can inform players, coaches, and 

analysts in enhancing performance strategies and understanding public reactions. Using social 

media data, our approach provides a scalable framework for analyzing tactical shifts and player 

performance in other sports contexts. 

Keywords: biomechanical patterns and tactical strategies; social media data; sentiment 

analysis; match moments; BERT; Bi-LSTM 

1. Introduction 

Social media’s rapid growth has transformed how sports are discussed and 

analyzed [1,2]. Platforms like Twitter offer real-time insights into matches, player 

performance, and tactical strategies, with fans, analysts, and players contributing to 

vast data [3,4]. Among the most widely discussed sports is tennis, where 

biomechanical movements and tactical adjustments play a critical role in determining 

the outcome of matches [5–7]. The ability to capture and analyze these discussions 

can provide valuable insights into the performance and strategies of professional tennis 

players [8]. In recent years, Natural Language Processing (NLP) advancements have 

enabled the automated extraction of meaningful information from large-scale text data, 

including social media posts [9]. Models like BERT (Bidirectional Encoder 
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Representations from Transformers) have revolutionized text understanding by 

capturing the context of words within a sentence in both directions [10,11]. Combined 

with models like Bi-LSTM (Bidirectional Long Short-Term Memory), which excels 

at capturing sequential dependencies, these techniques provide powerful tools for 

analyzing dynamic and context-dependent content, such as the commentary 

surrounding tennis matches [12,13]. 

Tennis is a sport that demands not only physical prowess but also strategic depth. 

Players must constantly adapt their tactics to the specific conditions of the match, the 

surface they are playing on, and their opponent’s style [14]. Key aspects of tennis 

performance, such as serve placement, footwork, speed, and stamina, are frequently 

discussed on platforms like Twitter [15,16]. Additionally, tactical elements such as 

baseline play, net play, and shot selection are essential themes in the discourse among 

fans and experts [17]. Understanding these aspects through social media can provide 

valuable feedback for coaches, analysts, and players [18,19]. This study uses social 

media data mining techniques to identify and analyze biomechanical patterns and 

tactical strategies discussed concerning tennis players’ performances in major 

tournaments. By applying BERT for contextual embedding of tweets and Bi-LSTM 

for sequential analysis, we aim to extract insights into how the tennis community 

perceives and discusses key performance elements, including player movements, 

stamina, and tactical adjustments [20,21]. The model’s effectiveness will be compared 

with other NLP models to demonstrate its superiority in analyzing sports-related social 

media content [22–25]. 

In this study, we propose a novel approach to analyzing social media discussions 

related to tennis by employing a combination of BERT and Bi-LSTM models. The 

aim is to extract and identify key biomechanical patterns and tactical strategies 

discussed by fans, analysts, and players on Twitter during significant tennis 

tournaments. The proposed methodology involves collecting tweets related to tennis 

players’ performances, preprocessing the data to remove noise, and utilizing BERT to 

generate contextual embeddings for each tweet. These embeddings will then be fed 

into a Bi-LSTM model to capture the sequential relationships between words, enabling 

a more nuanced understanding of the tactical and biomechanical content in the 

discussions. The model will classify tweets based on biomechanical movements 

(footwork, speed, and endurance) and identify tactical shifts (serve strategies, net play, 

and shot selection) throughout a match. This approach aims to provide a deeper insight 

into how social media discussions reflect real-time tennis strategies and player 

performance, ultimately offering a new avenue for sports analytics. 

The paper is organized as follows: Section 2 presents the methodology, Section 

3 presents the data analysis and discussion, and Section 4 concludes the paper. 

2. Methodology 

2.1. Data collection 

The data collection phase of this study focuses on gathering relevant social media 

data from Twitter, a platform widely recognized for its real-time content sharing and 

extensive user engagement, particularly during live sports events. The primary data 
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source consists of tweets related to tennis tournaments, matches, players, and game 

tactics. To ensure comprehensive and targeted data collection, specific keywords, 

hashtags, and official or fan accounts were used for tweet extraction. Key hashtags 

such as #Tennis, #Wimbledon, #USOpen, and tournament-specific tags like 

#AustralianOpen and #RolandGarros were incorporated to track significant tennis 

events. Additionally, player-specific hashtags (e.g., #Nadal, #Federer, 

#SerenaWilliams) and relevant mentions of famous players were included to capture 

tweets centered around individual performances and match-specific discussions. This 

approach ensured the collection of tweets that contained insights into biomechanical 

movements and tactical shifts during critical moments in these major tournaments [26–

30]. 

Tweets were collected over six months, from January 2024 to June 2024, to 

coincide with key tennis tournaments such as the Australian Open (January 2024), the 

French Open (May–June 2024), and the Wimbledon Championships (June 2024). 

These tournaments were chosen due to their significance in the tennis calendar and the 

high social media engagement surrounding them. During this period, social media 

activity was particularly intense, with players, analysts, and fans sharing real-time 

reactions and in-depth insights about players’ biomechanical performance and tactical 

decisions during matches [31,32]. A total of 8452 tweets were collected across these 

tournaments, focusing on real-time and post-match discussions. Tweets from tennis 

analysts, sports commentators, and experts were explicitly targeted to gather more in-

depth technical discussions about players’ performance. Alongside official sources, 

fan-generated content provided additional perspectives, often reflecting match trends, 

player biomechanics, and tactics from the audience’s viewpoint. 

Tweets were extracted using the Twitter API, a powerful tool that allows users to 

pull data in real time or through historical searches. The search parameters were set to 

gather tweets containing the preselected keywords and hashtags as well as replies and 

retweets that engage with the original content. This allowed for a broad spectrum of 

opinions and discussions, which can be critical in identifying trends in player 

performance, biomechanical nuances, and tactical changes throughout a match. Once 

the tweets were gathered, they were pre-processed to ensure that only relevant data 

were used for the analysis. This involved filtering out irrelevant or spam content, 

removing duplicate tweets, and excluding tweets not pertain to tennis players’ 

performance or tactical aspects. For instance, tweets focused on general tournament 

promotions or fan interactions unrelated to the match dynamics were removed to avoid 

noise in the dataset. After filtering, 6793 tweets were deemed relevant for further 

analysis. 

2.2. Data preprocessing 

The data preprocessing phase is essential in transforming the raw Twitter data 

into a structured and analyzable format. After collecting 8452 tweets (Table 1), the 

first step was cleaning and filtering the data to ensure that only relevant content 

focusing on tennis biomechanics and tactical insights was retained. Non-English 

tweets were excluded, and irrelevant content, such as advertisements, promotional 

material, and off-topic fan discussions, was removed. Additionally, duplicate tweets, 
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including retweets, were eliminated to prevent redundancy. Hashtags and user 

mentions, while helpful during the data collection process, were also removed during 

this stage to focus solely on the tweet content itself. After this initial cleaning, 6793 

tweets remained for further processing. 

Table 1. Data preprocessing and dataset size. 

Preprocessing Step Dataset Size After Process 

Initial Dataset 8452 

Non-English Tweets Removed 7897 

Spam and Irrelevant Content Removed 7193 

Duplicate Tweets Removed 6988 

Hashtags and Mentions Removed 6794 

Tokenization and Normalization 6794 

Stop Words Removal 6689 

Stemming and Lemmatization 6689 

Sentiment and Emotion Tagging 6689 

Padding for Sequential Input 6793 

The next step was tokenization and normalization, which are critical for preparing 

text data for Natural Language Processing (NLP). Using BERT’s method, 

Tokenization divided each tweet into individual units (tokens), preserving the context 

within shorter tweets and enabling the model to capture subtle nuances in the data. To 

standardize the text, all tweets were converted to lowercase, ensuring that variations 

in capitalization did not affect the analysis. Punctuation and special characters, except 

those essential for conveying meaning (e.g., exclamation marks indicating excitement), 

were removed to clean the data further. To enhance the model’s ability to focus on 

critical terms related to tennis, stop words such as common conjunctions and 

prepositions were removed. This reduced noise and allowed the model to zero in on 

more meaningful words, such as “serve”, “footwork”, “strategy” or “forehand”. 

Following this, stemming and lemmatization were applied to ensure consistency in 

word forms. Stemming reduced words to their base form, while lemmatization refined 

this process by reducing words to their dictionary form. This helped the model 

generalize insights across variations of words like “strategy” and “strategies” or “run” 

and “running”. 

In addition to this, sentiment and emotion tagging were integrated into the 

preprocessing. Tweets were analyzed to classify their sentiment as positive, negative, 

or neutral and tagged for emotions such as excitement or frustration, adding an extra 

layer of contextual understanding (see Table 2). This information provides insight into 

how the broader tennis community perceives a player’s biomechanics or tactical 

decisions during a match. Since the BERT with the Bi-LSTM model processes 

sequential data, all tweets must have a consistent analysis length. Shorter tweets were 

padded with unique tokens, and longer tweets were truncated to fit a pre-defined 

maximum length, typically set at 128 tokens to account for the brevity of tweets. This 

padding ensured uniform input size for the model, allowing it to process the tweets 

efficiently through the Bi-LSTM layer. 
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Table 2. Tweet sentiment analysis statistics. 

Metric Count 

Total Number of Tweets 6793 

Positive Word Count 2589 

Negative Word Count 1984 

Neutral Word Count 2220 

Average Word Length 5.6 

By the end of the preprocessing phase, the dataset was transformed into a cleaned, 

tokenized, normalized, and padded format, containing 6793 tweets ready for input into 

the BERT with Bi-LSTM model. This preprocessed data is now optimized for 

extracting biomechanical and tactical insights related to tennis player performance 

from social media discussions during major tournaments, as exemplified by tweets in 

Table 3: Sample examples from the data collection phase and informed by frequent 

tags identified in Table 4: Top Frequent Tags Used in Twitter Data Collection. 

Table 3. Sample examples from the data collection phase. 

Tweet Content Tournament Biomechanics/Tactical Aspect 

Nadal’s footwork is on point today! His 

speed around the court is unreal. 

#RolandGarros 

Roland Garros Footwork; Speed 

Federer’s serve placement is unmatched. 

He’s consistently hitting the lines. 

#Wimbledon 

Wimbledon Serve Placement 

Serena Williams shows incredible power in 

her forehand. She’s dictating the game. 

#USOpen 

US Open Forehand Power 

Djokovic’s stamina is just another level. 

He’s outlasting everyone. #AustralianOpen 
Australian Open Stamina 

It was such a tactical match between Nadal 

and Djokovic. You can see them adjusting 

strategies mid-game. #Wimbledon 

Wimbledon Tactical Adjustments 

Table 4. Top frequent tags used in twitter data collection. 

Hashtag Frequency 

#Wimbledon 1260 

#USOpen 1047 

#RolandGarros 983 

#AustralianOpen 872 

#Nadal 645 

#Federer 598 

#SerenaWilliams 543 

#Djokovic 497 

#Tennis 452 

#GrandSlam 398 
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2.3. Application of BERT for contextual embedding of the tweets 

This study uses the BERT (Bidirectional Encoder Representations from 

Transformers) model to extract contextual embeddings from tweets (Figure 1). BERT 

is a pre-trained language model designed to capture the bidirectional context of a word 

within a sentence. Unlike traditional word embedding models like Word2Vec or 

GloVe, which treat each word as a static vector, BERT considers the surrounding 

words in both directions (left and right) when determining the representation of a word. 

This makes it highly suitable for analyzing tweets, where context is often crucial for 

understanding biomechanical or tactical insights related to tennis players. 

 

Figure 1. BERT with BiLSTM model. 

i) BERT Model Architecture 

BERT’s architecture is based on a multi-layer bidirectional Transformer encoder. 

Given an input sentence, BERT produces context-dependent embeddings for each 

word by processing all words simultaneously. 

The BERT Architecture Consists of: 

Input Embeddings: This includes token embeddings, segment embeddings, and 

positional embeddings. 
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Transformer Layers: These consist of multiple layers of self-attention and feed-

forward neural networks, which allow BERT to capture intricate relationships between 

words in a sentence. 

For a tweet input, BERT generates a representation ℎ for each word, defined as: 

ℎ𝑡 = BERT(𝑥𝑡) 

where 𝑥𝑡  represents the input token at position 𝑡  and ℎ𝑡  does BERT generate the 

context-aware embedding. These embeddings, ℎ𝑡, capture the semantic meaning of 

words based on the entire tweet, providing a richer understanding of biomechanical 

terms like “footwork” or tactical terms like “serve placement”. 

ii) Input Embedding Structure 

The input to the BERT model for each tweet is a sequence of tokens. For instance, 

consider the tweet: 

“Nadal’s footwork is unreal during the match.” 

BERT first tokenizes this tweet into sub word units using Word Piece 

tokenization. The tokenization step produces a sequence of tokens such as: [ {CLS}, 

{“Nadal”}, {“s”}, {“foot”}, {“##work”}, {“is”}, {“unreal”}, {“during”}, {“the”}, 

{“match”}, {SEP}] Here, {CLS} is a unique token added at the beginning of the input 

sequence for classification tasks, and {SEP} marks the end of the sentence. 

BERT then generates three types of embeddings for each token: 

1) Token embeddings 𝐸𝑡, where each token is represented by its corresponding pre-

trained embedding. 

2) Segment embeddings 𝐸𝑠, which differentiates between different sentences in a 

pair (though only one sentence is used in our case). 

3) Positional embeddings 𝐸𝑝 , which encodes the position of each token in the 

sequence to account for word order. 

The final input embedding for each token is the sum of these three embeddings: 

𝐸 = 𝐸𝑡 + 𝐸𝑠 + 𝐸𝑝 

iii) Contextual Embedding with Self-Attention 

The core of BERT’s ability to capture contextual information lies in its self-

attention mechanism. For each token, BERT computes an attention score with every 

other token in the tweet, using a combination of query 𝑄, key 𝐾, and value 𝑉 matrices. 

The attention score between tokens 𝑖 and 𝑗 is computed as: 

Attention(𝑄𝑖, 𝐾𝑗) =
exp(𝑄𝑖 ⋅ 𝐾𝑗)

∑  𝑘  exp(𝑄𝑖 ⋅ 𝐾𝑘)
 

where 𝑄𝑖 and 𝐾𝑗 are the query and key vectors of the tokens, and the dot product 𝑄𝑖 ⋅

𝐾𝑗 measures the similarity between the tokens. The attention mechanism allows BERT 

to weigh the importance of surrounding words in a tweet, thereby enabling the model 

to focus on relevant information, such as when identifying key terms like “serve” or 

“forehand”. The self-attention mechanism is repeated across multiple layers in BERT, 

allowing the model to capture increasingly complex relationships between words. The 

output of each layer is a new contextual representation of the input tokens, ℎ𝑡, which 

is then passed to subsequent layers. 
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iv) Output Embedding 

For each token in the tweet, the final output of BERT is a contextually rich 

embedding ℎ𝑡, which integrates information from all other tokens in the tweet. For 

instance, the word “footwork” in the context of a tennis tweet will have a different 

embedding when paired with terms like “speed” or “court movement” as opposed to 

general usage. These final contextual embeddings can be represented as: 

𝐻 = [ℎ1, ℎ2, … , ℎ𝑇] 

where 𝐻  is the matrix of embeddings for the entire tweet sequence, and 𝑇  is the 

tweet’s length. These embeddings are then passed to the Bi-LSTM model to capture 

sequential dependencies between tokens and further enhance the analysis of 

biomechanical and tactical elements. 

2.4. Bi-LSTM for sequential analysis of player movements; tactics; and 

match events based on tweet context 

After obtaining contextual embeddings from BERT; the next step involves 

leveraging a Bi-LSTM (Bidirectional Long Short-Term Memory) network to analyze 

the extracted tweet representations sequentially. While BERT provides a robust 

context-aware embedding for each token in a tweet; Bi-LSTM enhances the model’s 

ability to capture sequential dependencies; making it well-suited for analyzing player 

movements; tactics; and match events that unfold over time. 

i) Bi-LSTM Overview 

A Bi-LSTM is an advanced form of the traditional LSTM network designed to 

capture both past and future dependencies in a sequence. In this case; it processes the 

sequence of tokens in a tweet both forward and backwards; capturing the full scope of 

temporal dependencies. This is critical for analyzing tweets related to tennis players; 

where the order of words can indicate specific actions or tactical shifts during a match. 

The LSTM network is particularly effective at retaining information over long 

sequences; thanks to its ability to address the vanishing gradient problem through its 

internal gating mechanisms. The core components of an LSTM cell include: 

1) Input Gate 𝑖𝑡: Determines how much new information is allowed into the current 

memory state. 

2) Forget Gate 𝑓𝑡: Controls which information from the past should be forgotten. 

3) Output Gate 𝑜𝑡: Determines how much of the memory state should be output to 

the next layer. 

The core update equations for a standard LSTM are as follows: 

Input gate: 𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖) 

Forget gate: 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓) 

Cell state update: �̃�𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶) 

New cell state: 𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡 

Output gate: 𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜) 

Hidden state update: ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡) 

where 𝜎  represents the sigmoid activation function, 𝑊𝑖 ,𝑊𝑓 ,𝑊𝐶 ,𝑊𝑜  are weight 

matrices, 𝑏𝑖, 𝑏𝑓 , 𝑏𝐶 , 𝑏𝑜  are biased terms, 𝑥𝑡  is the input at time 𝑡  (in this case, the 

embedding from BERT for the token). In a Bi-LSTM, we have two LSTMs running 
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in parallel: Forward LSTM processes the tweet from the first word to the last, and 

Backward LSTM processes the tweet from the last word to the first. Thus, for each 

token 𝑡, we get two hidden states: ℎ𝑡⃗⃗  ⃗ from forward, LSTM and ℎ𝑡←  from the backward 

LSTM. These are concatenated to form a comprehensive representation of the token’s 

context within the tweet, incorporating both past and future information: 

ℎ𝑡 = [ℎ𝑡⃗⃗  ⃗; ℎ⃗⃖𝑡] 

The input to the Bi-LSTM model is the sequence of BERT embeddings 𝐻 =

[ℎ1, ℎ2, … , ℎ𝑇] Produced for each token in the tweet. The Bi-LSTM processes this 

sequence in both directions, allowing it to capture how tokens interact over time. This 

is crucial in tennis-related tweets, where sequential information reveals the 

progression of player movements, tactics, or events during a match. For instance, 

consider the tweet: “Nadal’s footwork is phenomenal, allowing him to dominate long 

rallies.” The sequence of words is essential to understanding that Nadal’s footwork 

directly contributes to his success in long rallies. The Bi-LSTM captures this 

relationship by processing the tweet both forward (from “Nadal’s” to “rallies”) and 

backward (from “rallies” to “Nadal’s”), combining both perspectives to form a 

complete understanding of how the tokens relate to one another within the tweet 

context. The output of the Bi-LSTM for each token is a concatenation of the forward 

and backward hidden states, ℎ𝑡 = [ℎ𝑡⃗⃗  ⃗, ℎ⃗⃖𝑡], which is then passed to a downstream layer 

for further classification or analysis. Once the Bi-LSTM processes the entire sequence, 

it outputs a sequence of hidden states for each token in the tweet. The final output of 

the Bi-LSTM is a matrix: 

𝐻′ = [ℎ1
′ ; ℎ2

′ ; … ; ℎ𝑇
′ ] 

where ℎ𝑡
′  represents the concatenated hidden states from the forward and backward 

LSTM for token 𝑡. This matrix 𝐻′ is then used for further analysis, such as identifying 

patterns in player biomechanics or tactics, or passed to a classification layer for 

sentiment or action detection.  

Algorithm: BERT-BiLSTM Model for Biomechanical and Tactical Analysis 

Input: 

A set of tweets 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}  they are related to tennis players, their 

performance, and tactical strategies. 

Pretrained BERT model for embedding generation. 

Output: 

Biomechanical patterns and tactical strategies are discussed in the tweets. 

Step 1: Data Collection 

(1) Collect tweets related to tennis tournaments using specific hashtags and 

player mentions over a fixed time. 

(2) Preprocess Tweets: 

Remove irrelevant, non-English, and duplicate tweets. 

Clean the data by removing special characters, URLs, and unnecessary mentions. 

Step 2: BERT Embedding Generation 

(1) Tokenization: 

For each tweet 𝑡𝑖 ∈ 𝑇, tokenize the tweet using BERT’s Word Piece tokenization. 
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Add unique tokens: [CLS] at the beginning and [SEP] at the end of the sequence. 

(2) Embedding: 

For each token in the tweet 𝑡𝑖 , generate token embeddings ℎ𝑡 = BERT(𝑥𝑡), 

where 𝑥𝑡 is the input token at position 𝑡 and ℎ𝑡 is the contextual embedding. 

Store the sequence of token embeddings. 𝐻𝑖 = [ℎ1, ℎ2, … , ℎ𝑇] for each tweet 𝑡𝑖. 

Step 3: Sequential Analysis Using Bi-LSTM 

(1) Initialize Bi-LSTM: 

Set up the Bi-LSTM model with two LSTM layers: one processing the sequence 

forward and another processing it backwards. 

(2) Forward Pass: 

For Each tweet 𝑡𝑖, pass the sequence of BERT embeddings 𝐻𝑖 = [ℎ1, ℎ2, … , ℎ𝑇] 

through the forward LSTM layer: 

ℎ𝑡⃗⃗  ⃗ = LSTMforward(ℎ𝑡) 

(3) Backward Pass: 

Pass the sequence of embeddings 𝐻𝑖 through the backward LSTM layer: 

ℎ𝑡⃗⃗  ⃗ = LSTMbackward(ℎ𝑡) 

(4) Concatenation: 

For each token 𝑡, concatenate the hidden states from the forward and backward 

passes to create a final hidden state for each token: 

ℎ𝑡
′ = [ℎ𝑡⃗⃗  ⃗] 

(5) Output Sequence: 

Generate the final output sequence of hidden states for the tweet 𝑡𝑖 : 

𝐻𝑖
′ = [ℎ1

′ , ℎ2
′ , … , ℎ𝑇

′ ] 

Step 4: Biomechanical and Tactical Pattern Recognition 

(1) Classification: 

Pass the final hidden states 𝐻𝑖
′  through a classification layer to detect 

biomechanical actions (e.g., footwork, serve) and tactical strategies (e.g., shot 

selection, positioning). 

(2) Pattern Detection: 

Use the sequential nature of Bi-LSTM to recognize temporal patterns in 

biomechanical movements (e.g., consistent footwork) and tactical shifts (e.g., change 

from baseline play to net approach). 

(3) Aggregate Results: 

Combine the identified biomechanical and tactical patterns across tweets to form 

an analysis of player performance and strategic decisions during matches. 

Step 5: Output Results 

(1) Return the identified biomechanical patterns (e.g., player speed, endurance) 

and tactical strategies (e.g., serve placement, net play) discussed in the tweets. 

End of Algorithm. 
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3. Results 

3.1. Biomechanical patterns identified 

Based on Table 5 and Figure 2, footwork is the most frequently mentioned 

biomechanical aspect, which accounts for 18.4% of the total mentions. This suggests 

that footwork is considered a critical component of player performance in tennis, 

enabling players to maintain agility and control over the court. Speed and agility are 

closely followed, with 15.7% and 14.2% mentions, respectively, highlighting the 

importance of fast movement and the ability to quickly change directions during a 

match. Body rotation and balance are also significant, as they contribute to the 

execution of powerful shots and the player’s stability, with 11.7% and 8.4% of 

mentions. Other important biomechanical aspects, such as endurance (9.6%), 

flexibility (8.0%), and coordination (7.4%), also play crucial roles, particularly in 

ensuring that players can sustain their performance throughout long rallies and 

physically demanding matches. Strength, posture, and joint stability are less frequently 

mentioned but are crucial for long-term player health and consistent performance. 

Table 5. Player movements analysis. 

Biomechanical Aspect Mention Frequency Percentage of Total Mentions (%) 

Footwork 987 18.4% 

Agility 764 14.2% 

Speed 843 15.7% 

Body Rotation 629 11.7% 

Balance 452 8.4% 

Endurance 518 9.6% 

Flexibility 432 8.0% 

Coordination 399 7.4% 

Strength 365 6.8% 

Posture 298 5.6% 

Joint Stability 284 5.3% 

 

Figure 2. Player movement analysis. 
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In Table 6 and Figure 3, overall stamina emerges as the most commonly 

discussed stamina-related aspect, accounting for 29.8% of the total mentions. This 

reflects the tennis community’s recognition of the importance of stamina in ensuring 

players can perform at high intensity over extended matches. Endurance in long rallies 

also plays a significant role, with 22.3% of mentions underscoring the difficulty of 

maintaining high levels of physical and mental focus during protracted points. Mental 

stamina accounts for 19.9% of the mentions, indicating that mental endurance is 

equally valued in maintaining composure and tactical consistency throughout the 

match. Additionally, recovery between points (16.3%) and fatigue management 

(12.0%) highlights the need for players to manage their energy levels and recover 

quickly to maintain peak performance during crucial points. 

Table 6. Endurance and stamina analysis. 

Stamina Aspect Mention Frequency Percentage of Total Mentions (%) 

Overall Stamina 712 29.8% 

Endurance in Long Rallies 534 22.3% 

Recovery Between Points 389 16.3% 

Mental Stamina 475 19.9% 

Fatigue Management 287 12.0% 

 

Figure 3. Endurance and stamina analysis. 

From Table 7 and Figure 4, recovery after injury is the most frequently discussed 

aspect, making up 26.8% of the total mentions. This indicates that tennis players and 

analysts prioritize effective recovery protocols to ensure players can return to their 

pre-injury performance levels. Injury prevention techniques are also a key focus, 

accounting for 24.1% of mentions, suggesting a strong interest in strategies that reduce 

the risk of injuries during training and matches. The impact of biomechanics on 

injuries (20.5%) shows that many discussions revolve around how players’ 

movements and techniques can either contribute to or mitigate injury risks. The 

importance of rehabilitation processes (18.2%) further underscores the significance of 

structured recovery programs, while injury risks due to overexertion (14.6%) 
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emphasize the need for players to manage their workload effectively to avoid long-

term damage. 

Table 7. Injury prevention and recovery analysis. 

Injury Aspect Mention Frequency Percentage of Total Mentions (%) 

Injury Prevention Techniques 482 24.1% 

Recovery After Injury 537 26.8% 

Impact of Biomechanics on Injuries 412 20.5% 

Rehabilitation Processes 365 18.2% 

Injury Risks Due to Overexertion 292 14.6% 

 

Figure 4. Injury prevention and recovery analysis. 

3.2. Tactical strategies extracted 

Table 8. Serve and return patterns analysis. 

Serve/Return Aspect Mention Frequency Percentage of Total Mentions (%) 

Serve Placement Strategies 625 26.3% 

Serve Speed and Power 549 23.1% 

Serve Variation (Spin; Slice) 467 19.6% 

Return-of-Serve Techniques 512 21.5% 

Adaptation to Opponent’s Serve 428 18.1% 

Table 8 and Figure 5 show that serve placement strategies are the most 

frequently discussed aspect, making up 26.3% of the total mentions. This indicates 

that players’ ability to place their serves in specific court areas is a key tactical element 

in tennis. The following are discussions around serve speed and power, which account 

for 23.1% of mentions, underscoring the importance of strong, fast serves in 

dominating opponents. The variation in serve—such as spins and slices—receives 

19.6% of mentions, highlighting the need for players to mix up their serves to keep 

opponents guessing. Return-of-serve techniques account for 21.5% of mentions on the 

return side, reflecting how critical it is for players to neutralize their opponents’ serve 

effectively. Lastly, adaptation to the opponent’s serve makes up 18.1% of the 
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discussions, showing that players who can adjust their strategy based on the 

opponent’s serving patterns are highly regarded. 

 

Figure 5. Serve and return patterns analysis. 

In Table 9 and Figure 6, defensive baseline play is the dominant strategy, with 

26.2% of the mentions reflecting the widespread use of baseline strategies to control 

rallies from the back of the court. Baseline control strategies comprise a significant 

portion of the discussion at 22.6%, indicating that players often aim to maintain 

consistency and patience in baseline exchanges. On the other hand, aggressive net play 

is mentioned in 19.5% of cases, highlighting players’ use of net approaches to apply 

pressure and finish points quickly. Transitioning from baseline to net, with 16.9% of 

mentions, suggests that players who can seamlessly move forward and capitalize on 

opportunities to come to the net are recognized as having a significant tactical 

advantage. Net approaches after serving, at 15.9%, also show how important it is for 

players to follow up their serves with an aggressive push towards the net. 

Table 9. Net play vs baseline play analysis. 

Play Strategy Aspect Mention Frequency Percentage of Total Mentions (%) 

Aggressive Net Play 487 19.5% 

Defensive Baseline Play 654 26.2% 

The transition from Baseline to Net 421 16.9% 

Net Approach after Serve 398 15.9% 

Baseline Control Strategies 563 22.6% 

 

Figure 6. Net play vs baseline play analysis. 
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As seen in Table 10 and Figure 7, forehand vs. backhand usage leads the 

discussion with 25.3% of mentions, indicating that the balance between these shots is 

a crucial element of player performance. Power vs. precision shots follow closely with 

21.7%, suggesting that players are often noted for their ability to choose between 

hitting powerful winners or precise, well-placed shots. Volley and drop shots account 

for 18.8% of mentions, reflecting the tactical importance of varying shots to disrupt 

opponents’ rhythm. Slice and spin variation appears in 16.8% of the discussions, 

showing that adding variety to groundstrokes can give players a strategic edge. Lastly, 

lob shots in defense receive 13.9% of mentions, indicating their utility in regaining 

control of a point when a player is under pressure. 

 

Figure 7. Shot selection and variety analysis. 

Table 10. Shot selection and variety analysis. 

Shot Selection Aspect Mention Frequency Percentage of Total Mentions (%) 

Forehand vs Backhand Usage 732 25.3% 

Volley and Drop Shots 543 18.8% 

Slice and Spin Variation 487 16.8% 

Lob Shots in Defense 402 13.9% 

Power vs Precision Shots 628 21.7% 

3.3. Sentiment and public perception 

Based on Table 11, positive sentiment dominates the discussion surrounding 

player performance, accounting for 30.2% of the mentions. This suggests that fans and 

analysts generally express favorable views of players’ efforts and achievements during 

matches. Neutral sentiment follows closely at 23.5%, indicating a significant number 

of objective or analytical observations rather than emotional responses. Negative 

sentiment makes up 18.7%, reflecting criticisms or frustrations with specific aspects 

of a player’s game, possibly related to underperformance or tactical errors. 

Additionally, emotions of excitement are mentioned 12.9% of the time, typically 

during key moments of the match where players excel or make spectacular plays, 

while frustration accounts for 11.1%, often associated with missed opportunities or 

costly mistakes. 
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Table 11. Sentiment toward player performance analysis. 

Sentiment Type Mention Frequency Percentage of Total Mentions (%) 

Positive Sentiment 1328 30.2% 

Negative Sentiment 824 18.7% 

Neutral Sentiment 1034 23.5% 

Excitement 569 12.9% 

Frustration 487 11.1% 

Table 12 shows that excitement is the most frequently expressed emotion, with 

27.6% of the occurrences being. This reflects the thrilling nature of tennis matches, 

especially during intense rallies or unexpected turnarounds. Frustration is the next 

most common emotion at 21.9%, often arising when players struggle or fail to meet 

expectations. Admiration, making up 17.3% of the mentions, highlights fans’ respect 

and awe for the skill and athleticism of top players. Surprise at 15.1% represents 

reactions to unexpected outcomes or performances, such as upsets or tactical shifts 

during critical moments in a match. Lastly, at 18.1%, disappointment reflects the 

emotions tied to missed opportunities by individual players and overall match 

outcomes. 

Table 12. Emotion tagging analysis. 

Emotion Type Emotion Count Percentage of Total Occurrences (%) 

Excitement 689 27.6% 

Frustration 547 21.9% 

Admiration 432 17.3% 

Surprise 376 15.1% 

Disappointment 458 18.1% 

3.4. Temporal patterns in tactical shifts 

Table 13 shows that early set aggression is a prominent tactical pattern, 

accounting for 23.1% of the total occurrences. This suggests that players start matches 

aggressively to establish dominance and set the pace early. Breakpoint strategy is 

another significant tactical shift, with 22.2% of mentions indicating that players often 

employ specific tactics when facing break points, as these moments can determine the 

outcome of a set or match. Mid-set adjustments become essential as matches progress, 

with 20.4% of occurrences, as players tweak their strategies based on the opponent’s 

performance and match dynamics. Final set tactical changes are seen in 18.0% of 

discussions, highlighting the importance of making critical adjustments in the match’s 

final stages. With 16.6% of mentions, late-set defensive play suggests that players 

often switch to a more conservative approach to protect a lead or avoid making 

mistakes under pressure. 
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Table 13. Match phase analysis. 

Match Phase Aspect Occurrence Count Percentage of Total Occurrences (%) 

Early Set Aggression 542 23.1% 

Mid-Set Adjustments 478 20.4% 

Late Set Defensive Play 389 16.6% 

Final Set Tactical Changes 423 18.0% 

Break Point Strategy 521 22.2% 

In Table 14, defensive play after winning a break is the most frequent tactical 

shift, accounting for 24.5% of occurrences. This indicates that players often switch to 

a more defensive style after securing a break to maintain their advantage. Increased 

risk-taking during tie-breaks, with 22.6% of mentions, highlights how players are 

willing to take more calculated risks in high-stakes situations to secure a crucial win. 

Aggression after losing a game is mentioned 21.4% of the time, suggesting that players 

frequently respond to setbacks by becoming more aggressive in their gameplay. 

Strategic slowdowns to regain composure occur in 19.3% of the cases, showing that 

players sometimes deliberately slow down the match’s pace to reset their strategy and 

composure. Lastly, switches to net play in decisive points are seen in 16.4% of the 

discussions, indicating that players use this tactic to finish points quickly and 

decisively. 

Table 14. Momentum shifts analysis. 

Tactical Shift Aspect Occurrence Count Percentage of Total Occurrences (%) 

Aggression After Losing a Game 467 21.4% 

Defensive Play After Winning a 

Break 
534 24.5% 

Increased Risk-Taking During Tie-

Breaks 
492 22.6% 

Switch to Net Play in Decisive 

Points 
358 16.4% 

Strategic Slowdown to Regain 

Composure 
421 19.3% 

3.5. Frequent keywords and hashtags 

As seen in Table 15, the hashtag #Tennis is the most frequently used, making up 

15.8% of the total hashtags. This suggests that the general term “tennis” dominates 

discussions, broadly categorizing tweets about matches, players, and performances. 

More specific biomechanical and tactical terms are also prominently featured, such as 

#Footwork (10.9%) and #ServePlacement (9.3%), highlighting the focus on players’ 

movement and serve tactics. #NetPlay and #BaselineStrategy are also key hashtags, 

with 7.9% and 8.7% of the total mentions, reflecting the tactical variations between 

net approaches and baseline control. Terms such as #Backhand (7.0%), #Forehand 

(7.5%), and aspects related to player physicality like #Speed, #Agility, and 

#Endurance, each making up around 6.0% to 6.4%, indicate the continued emphasis 

on specific technical skills. 
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Table 15. Hashtag analysis. 

Hashtag Occurrence Count Percentage of Total Hashtags (%) 

#Tennis 1260 15.8% 

#Footwork 872 10.9% 

#ServePlacement 745 9.3% 

#NetPlay 632 7.9% 

#BaselineStrategy 689 8.7% 

#Backhand 564 7.0% 

#Forehand 598 7.5% 

#Speed 512 6.4% 

#Agility 478 6.0% 

#Endurance 489 6.1% 

In Table 16, Novak Djokovic is the most frequently mentioned player, 

accounting for 16.2% of the total player-specific discussions, primarily due to his 

excellence in return of serve, endurance, and defensive play. Rafael Nadal follows 

with 15.4% mentions, driven by his aggressive topspin, forehand dominance, and 

baseline control, which have been hallmarks of his clay-court dominance. Roger 

Federer is also widely discussed (14.6%) for his serve placement, net play, and shot 

precision, reflecting his all-court mastery, particularly on grass. Serena Williams 

(13.4%) is recognized for her powerful serve, strong forehand, and court coverage, 

emphasizing her aggressive play style. Other players like Naomi Osaka, Ashleigh 

Barty, and Stefanos Tsitsipas also feature prominently in discussions, with specific 

mentions of their key tactics, such as baseline play for Osaka, slice variation for Barty, 

and serve and volley for Tsitsipas. 

Table 16. Player-specific tactics analysis. 

Player Name Key Tactical Terms Mention Frequency Percentage of Total Mentions (%) 

Rafael Nadal 
Aggressive Topspin; Forehand Dominance; Baseline 

Control 
678 15.4% 

Roger Federer Serve Placement; Net Play; Shot Precision 642 14.6% 

Serena Williams Powerful Serve; Strong Forehand; Court Coverage 589 13.4% 

Novak Djokovic Return of Serve; Endurance; Defensive Play 711 16.2% 

Naomi Osaka Baseline Play; Defensive Agility; Power Shots 455 10.4% 

Ashleigh Barty All-court game; Slice Variation; Net Play 398 9.1% 

Stefanos 

Tsitsipas 

One-Handed Backhand; Serve and Volley; Forehand 

Dominance 
472 10.8% 

Simona Halep 
Aggressive Baseline Play; Counterpunching; Defensive 

Footwork 
321 7.3% 

Dominic Thiem Heavy Topspin; Baseline Play; Physical Endurance 287 6.6% 

Daniil Medvedev Flat Groundstrokes; Tactical Serve; Baseline Control 359 8.2% 

In Table 17, Wimbledon is the most frequently discussed tournament, making up 

26.3% of the mentions. This reflects the unique tactical focus required for grass-court 

play, quick points, and serve dominance, which defines the playing style at 
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Wimbledon. The French Open (Roland Garros) follows closely at 24.0%, with 

discussions centered on clay court dominance, topspin, and endurance, as players must 

adapt to slower courts and longer rallies. The US Open (22.7%) and Australian Open 

(22.1%) are also widely mentioned, with the US Open focusing on hard court tactics, 

powerful groundstrokes, and return of serve, while the Australian Open is noted for its 

fast courts, serve and volley strategies, and aggressive baseline play. Each 

tournament’s specific playing conditions drive the tactical adaptations of the players, 

as reflected in the discussions. 

Table 17. Tournament-specific tactics analysis. 

Tournament Name Key Tactical Strategies Mention Frequency Percentage of Total Mentions (%) 

Australian Open 
Fast Courts, Strong Serve and Volley, Aggressive 

Baseline Play 
768 22.1% 

French Open (Roland 

Garros) 

Clay Court Dominance, Topspin, Endurance, Court 

Coverage 
834 24.0% 

Wimbledon 
Grass Court Play, Net Play, Quick Points, Serve 

Dominance 
912 26.3% 

US Open 
Hard Court, Powerful Groundstrokes, Return of 

Serve, Strategic Play 
789 22.7% 

3.6. Model performance metrics 

Table 18. BERT with Bi-LSTM compared to other models. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

BERT with Bi-LSTM 88.5 87.9 88.0 87.95 

BERT with CNN 85.7 84.3 85.1 84.70 

GloVe with LSTM 82.3 81.5 81.9 81.70 

FastText with Bi-LSTM 84.5 83.8 84.0 83.90 

Word2Vec with GRU 81.9 80.7 81.3 81.00 

Table 18 and Figure 8 show that the BERT with Bi-LSTM model outperforms 

other models across all key metrics. With an accuracy of 88.5%, it demonstrates 

superior performance in identifying biomechanical patterns and tactical strategies 

from tweets. Its precision is 87.9%, indicating a high degree of correctness in the 

model’s predictions, while its recall stands at 88.0%, showing its ability to identify 

relevant instances accurately. The F1-score of 87.95% reflects the balance between 

precision and recall, confirming that the model is highly effective in analyzing social 

media data for tennis performance insights. When compared to the BERT with CNN 

model, which has an accuracy of 85.7%, the BERT with Bi-LSTM model shows a 

noticeable improvement, particularly in its ability to capture sequential dependencies 

in text, as indicated by the higher F1-score of 87.95% compared to 84.70% for BERT 

with CNN. Similarly, models like GloVe with LSTM and FastText with Bi-LSTM 

achieve lower performance, with accuracies of 82.3% and 84.5%, respectively, 

highlighting the strength of using BERT embeddings combined with Bi-LSTM’s 

sequential analysis capabilities. The Word2Vec with GRU model has the lowest 

performance, with an accuracy of 81.9%, precision of 80.7%, and F1-score of 81.00%, 
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further demonstrating that the combination of BERT and Bi-LSTM provides a more 

practical approach for analyzing tennis-related tweets, especially in understanding 

context and sequences in textual data. 

 

Figure 8. BERT with Bi-LSTM compared to other models. 

4. Conclusion and future work 

In this study, as discussed on Twitter, we successfully applied social media data 

mining techniques to analyze tennis players’ biomechanical patterns and tactical 

strategies. By utilizing BERT for contextual embedding and Bi-LSTM for sequential 

analysis, our model was able to identify key performance metrics and tactical 

adjustments in real-time tennis discussions. The results indicate that this approach 

provides deeper insights into player performance, particularly footwork, serve 

placement, endurance, and strategic decision-making during matches. Additionally, 

we identified differences in tactics across tournaments and players, revealing how 

playing surfaces and match contexts influence performance. Our model outperformed 

several other NLP models, showcasing its effectiveness in extracting relevant sports 

analytics information from unstructured social media data. This research contributes 

to the growing field of sports analytics and offers a framework for applying techniques 

similar to those used in other sports domains. 

Future work could focus on expanding the dataset to include a broader range of 

tournaments and player profiles, as well as integrating video analysis further to 

enhance the understanding of tactical shifts and biomechanical performance. 
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