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Abstract: This study presents a mathematical model for understanding wave propagation and 

soliton behavior in biomechanical tissues, explicitly focusing on the Achilles tendon. Utilizing 

the Korteweg-de Vries (KdV) equation, the research incorporates the Achilles tendons’ 

nonlinear elastic and viscoelastic properties to explore how mechanical waves propagate 

through this complex tissue. The tendon’s nonlinear elasticity leads to wave steepening, while 

its viscoelasticity introduces dispersive effects that counteract this steepening, resulting in the 

formation of solitons—stable, localized waves that maintain their shape as they propagate. Key 

findings from this study reveal that the formation and propagation of solitons are strongly 

influenced by the tendon’s mechanical properties. Numerical simulations show that stiffer 

tendons, characterized by a higher elasticity modulus, support faster soliton propagation, with 

wave speeds ranging from 18.9 m/s in damaged tendons to 28.6 m/s in stiffened tendons. 

Additionally, soliton amplitude increases with tissue stiffness, with the highest amplitude 

observed in stiffened tendons (5.1 mm) and the lowest in damaged tendons (3.2 mm). The 

study also demonstrates that energy dissipation due to the tendon’s viscoelasticity plays a 

critical role in soliton behavior. Damaged tendons exhibit the highest energy loss (18.6%), 

leading to shorter soliton propagation distances, while stiffer tendons retain more energy 

(96.1%) and allow solitons to travel further distances (up to 180 mm). Moreover, the balance 

between nonlinearity and dispersion is crucial for maintaining soliton stability. Excessive 

nonlinearity leads to unstable solitons, while higher levels of dispersion contribute to more 

stable waveforms. 

Keywords: biomechanical tissues; tendon’s viscoelasticity; soliton propagation distances; 

mechanical waves; Achilles tendon 

1. Introduction 

The propagation of mechanical waves through biological tissues is a critical 

aspect of biomechanics, with wide-ranging implications for understanding how forces 

are transmitted, distributed, and absorbed in the human body [1,2]. Tissues such as 

tendons, muscles, and ligaments undergo continuous stress and deformation during 

walking, running, and jumping [3]. Among these tissues, the Achilles tendon (Figure 

1) plays a vital role in locomotion, acting as a bridge between the calf muscles and the 

heel bone [4]. The unique biomechanical properties of the Achilles tendon—its 

elasticity, viscoelasticity, and capacity to withstand high loads—make it an ideal 

candidate for studying wave propagation dynamics [5]. In particular, this research 

focuses on modelling soliton behavior in the Achilles tendon, which arises from the 

balance between nonlinear and dispersive effects during wave propagation. 
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Figure 1. Achilles tendon. 

The nonlinear elastic properties of biological tissues result from their complex 

internal structure [6]. Like other tendons, the Achilles tendon exhibits a nonlinear 

response to mechanical loading, especially at higher strain rates, where the tissue 

stiffens as it is stretched. This nonlinear stiffening leads to wave steepening, which 

can result in the formation of solitons—stable, localized waveforms that propagate 

without changing shape [7,8]. Solitons are well-known in other physical systems, such 

as fluid dynamics and plasma physics, but their role in biomechanical tissues is still 

being explored [9]. Soliton theory provides a promising framework for understanding 

how mechanical signals are transmitted in the Achilles tendon, where waves generated 

by muscle contractions or external forces can travel efficiently without dissipating 

energy [10]. 

Dispersion is another critical factor influencing the Achilles tendon wave 

behaviour [11]. The tendon’s viscoelastic nature introduces dispersive effects, 

meaning that waves of different frequencies propagate at different speeds [12]. These 

dispersive effects tend to spread the wave over time, counteracting the steepening 

caused by nonlinearity [13]. The delicate balance between nonlinearity (which 

steepens the wave) and dispersion (which spreads the wave) results in the formation 

of solitons [14]. The Korteweg-de Vries (KdV) equation is widely used to model these 

phenomena in various media, and this study extends its application to the Achilles 

tendon to describe the propagation of mechanical waves and solitons [15,16]. 

In recent years, the study of wave propagation in biological tissues has gained 

attention, particularly in the context of biomedical engineering and rehabilitation 

sciences [17–20]. Understanding how waves travel through tendons could lead to new 

insights into injury mechanisms, rehabilitation protocols, and diagnostic techniques 

[21–23]. For instance, changes in the mechanical properties of the Achilles tendon—

such as those caused by age, injury, or overuse—could alter wave behavior, impacting 

how forces are transmitted during movement [24–28]. By modelling the Achilles 

tendon as a nonlinear, dispersive medium, this research aims to shed light on the 

fundamental principles governing mechanical wave transmission in tendons. The 

proposed work aims to model and analyze wave propagation and soliton behavior in 

biomechanical tissues, explicitly focusing on the Achilles tendon. Utilizing a 

combination of nonlinear wave theory and dispersion modelling, this study extends 

the classical Korteweg-de Vries (KdV) equation to incorporate both the nonlinear 

elastic response of the tendon and the dispersive effects resulting from its viscoelastic 

properties. The dispersive modelling is crucial to account for the spreading of wave 
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components of different frequencies, which counterbalances the wave steepening 

caused by nonlinearity, leading to the formation of stable solitons. By deriving and 

solving the governing equations for soliton formation, the research explores the 

conditions under which these localized solitons can form and propagate through the 

tendon [29–32]. The study includes analytical solutions for idealized cases and 

numerical simulations to capture complex tissue behavior, comprehensively analysing 

how tissue stiffness, density, and viscoelasticity affect wave dynamics. 

The objectives of this study are threefold. 

• First, we aim to derive the mathematical equations that govern wave propagation 

in the Achilles tendon, considering its nonlinear and dispersive properties. The 

derivation will extend the classical wave equation to include the effects of 

nonlinear elasticity and viscoelastic dispersion, resulting in the KdV equation.  

• Second, we will investigate the conditions under which solitons form in the 

Achilles tendon by solving the KdV equation analytically and numerically. The 

soliton solutions will provide insights into how waves behave under different 

mechanical conditions, such as varying tissue stiffness and damping.  

• Finally, we will analyze how tissue properties—such as elasticity, density, and 

viscosity—affect soliton behavior, focusing on key parameters like soliton 

amplitude, speed, and stability. These findings could have implications for 

biomechanical modelling, rehabilitation strategies, and diagnostic techniques for 

tendon injuries. 

The paper is presented as follows: Section 2 presents the materials and methods, 

Section 4 details the mathematical model for wave propagation in biomechanical 

tissues, Section 5 presents the soliton behavior in biomechanical tissues, Section 6 

presents the results, and Section 7 concludes the paper. 

2. Materials and methods 

2.1. Mathematical framework 

This section describes the mathematical foundation used to model wave 

propagation and soliton behavior in the Achilles tendon. Given the tendon’s elastic 

and viscoelastic properties, a nonlinear wave model is appropriate to capture the 

dynamics of mechanical waves propagating through the tissue [33–37]. 

 
Figure 2. Wave propagation in an elastic medium. 
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2.1.1. Wave propagation in biomechanical tissues 

The Achilles tendon is an elastic structure, meaning it deforms in response to 

stress and returns to its original state upon removal of the stress, allowing us to model 

it as an elastic medium (Figure 2). To describe the wave propagation in this medium 

start with the general one-dimensional wave equation in a homogeneous medium: 

∂2u

∂t2
= c2

∂2u

∂x2
  (1) 

where u(𝑥, 𝑡) represents the displacement of a point in the tendon as a function of 

position 𝑥 and time 𝑡，  𝑐 is the wave speed, which depends on the elastic properties 

of the tendon. However, this linear wave equation is insufficient to capture the full 

complexity of the Achilles tendon, mainly because it does not account for nonlinearity 

or dispersion. To address this, we introduce nonlinearity through the Korteweg-de 

Vries (KdV) equation, widely used in modeling solitons in nonlinear media. 

2.1.2. Nonlinear wave equation: Korteweg-de Vries (KdV) equation 

To model the wave propagation in the Achilles tendon, we extend the wave 

equation to include both nonlinear and dispersive effects. This leads us to the KdV 

equation: 

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
= 0  (2) 

where u(𝑥, 𝑡) is again the displacement field of the Achilles tendon, α is a constant 

that quantifies the nonlinearity of the medium (representing the tendon’s nonlinear 

elastic response), 𝛽 is a dispersion constant that accounts for the tendon’s viscoelastic 

nature, leading to wave dispersion. 

The KdV equation captures both the nonlinear steepening of waves and the 

dispersive effects that prevent wave breaking, resulting in the formation of solitons. 

These solitons are stable, localized waveforms that propagate without changing shape, 

which makes them suitable models for the mechanical wave behavior in tendons. 

• Nonlinear Effects in the Achilles Tendon: The term 𝛼𝑢
𝜕𝑢

𝜕𝑥
 in the KdV equation 

accounts for nonlinear effects. In the Achilles tendon, nonlinearity arises because 

the tendon does not respond to stress linearly, particularly at higher strain rates, 

as in athletic activities. The nonlinear term reflects the elastic stiffening that 

occurs as the tendon stretches. This results in the waves propagating faster in 

regions of higher displacement, leading to steepening of the wavefronts. 

• Dispersive Effects: The dispersive term 𝛽
𝜕3𝑢

𝜕𝑥3
 Represents the dispersive effects 

that occur in the tendon due to its viscoelastic properties. Dispersive effects cause 

waves of different frequencies to travel at different speeds, spreading the wave 

out over time. In the Achilles tendon, these effects are critical to prevent wave 

singularities and ensure that the waves maintain their form, a characteristic of 

solitons. 

2.1.3. Incorporating boundary conditions 

For the Achilles tendon, which is anchored at both ends (to the calf muscles and 

the heel), we assume fixed boundary conditions: 
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u(0, t) = u(L, 𝑡) = 0 (3) 

where L  is the length of the tendon. These boundary conditions ensure that the 

displacement at the tendon’s attachment points remains zero, corresponding to the 

physical constraints of the muscle tendon-bone system.  

We assume that at time 𝑡 = 0, the tendon is subjected to a localized disturbance, 

which can be represented as: 

u(x, 0) = f(x),  
∂u

∂t
|
t=0

= g(x) (4) 

where f(𝑥) and g(𝑥) are initial displacement and velocity profiles, respectively.  

These initial conditions can be tailored to represent a specific impact or 

mechanical stimulus applied to the Achilles tendon. 

 
Figure 3. 1-soliton solution to the KdV. 

2.1.4. Soliton solutions 

Soliton solutions arise when the nonlinear and dispersive terms in the KdV 

equation balance. For the Achilles tendon, we expect localized solitons to form under 

certain conditions, and the simplest soliton solution to the KdV equation (Figure 3) is 

given by: 

u(x, t) = Asech2 (
x − vt

Δ
) (5) 

where A is the amplitude of the soliton, v is the velocity of the soliton, Δ is the width 

of the soliton. This solution describes a stable, localized wave propagating through the 

Achilles tendon without changing shape, representing a mechanical signal travelling 

through the tendon. 

2.2. Mechanical properties of tissues 

The mechanical properties of the Achilles tendon play a crucial role in 

determining the characteristics of wave propagation and soliton behavior. This section 

describes the relevant tissue parameters and assumptions used to model the tendon 

based on a literature review and experimental data. 
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2.2.1. Elasticity modulus 

The elastic modulus (also known as Young’s modulus, E ) quantifies the stiffness 

of the Achilles tendon, representing its ability to resist deformation under load (Figure 

4). For the Achilles tendon, the elastic modulus can vary depending on factors such as 

age, activity level, and injury status. In healthy adults, values for the Achilles tendons 

elastic modulus are typically reported in the range of 500 –1500 MPa based on 

experimental tensile tests and ultrasound elastography measurements. 

E =
σ

ε
  (6) 

where σ is the stress applied to the tendon (force per unit area), and ε is the strain (the 

relative deformation of the tendon). Higher E values correspond to a stiffer tendon, 

resulting in faster wave propagation. The Achilles tendon is stiffer when under high 

loads, such as running or jumping, which influences the formation of nonlinear 

waveforms, including solitons. 

 
Figure 4. Young’s modulus. 

2.2.2. Density 

The density of the Achilles tendon, denoted by ρ, affects the inertia of the tissue 

and thus influences wave propagation speed. Experimental studies report that the 

density of tendon tissue is approximately 1.12 g/cm3. This value is critical for 

determining the speed of longitudinal waves, as the wave speed c depends on both the 

elastic modulus E and the density ρ according to: 

c = √
E

ρ
 (7) 

The Achilles tendon’s density is relatively constant across individuals, meaning 

that variations in wave speed are primarily attributed to changes in elasticity or tissue 

heterogeneity rather than density fluctuations. 
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2.2.3. Viscoelasticity 

The Achilles tendon exhibits viscoelastic properties, meaning its mechanical 

response includes both elastic (immediate) and viscous (time-dependent) components. 

Viscoelasticity is vital in modelling wave dispersion in the tendon. The viscoelastic 

nature of the tendon means that waves do not propagate as purely elastic waves but 

instead experience energy dissipation, leading to the spreading out of the wave over 

time. A constitutive equation that combines elastic and viscous effects can represent 

the viscoelastic behaviour. A commonly used model is the Kelvin-Voigt model, where 

stress σ is related to both strain ε and strain rate 𝜀 : 

σ = Eε + ηε̇ (8) 

where, 𝜂 is the viscosity of the tissue, representing the rate-dependent behavior, 𝜀 is 

the time derivative of strain. The viscosity 𝜂  in the Achilles tendon has been 

experimentally measured to vary depending on activity but typically ranges from 103–

104 Pa\cdotps. This term introduces damping effects in wave propagation, affecting 

both the amplitude and speed of the waves and contributing to the overall stability of 

solitons. 

2.3. Assumptions about the Achilles tendon 

In constructing the mathematical model for wave propagation in the Achilles 

tendon, several simplifying assumptions are made regarding its material properties: 

• Homogeneous and Isotropic: The Achilles tendon is assumed to be homogeneous, 

meaning its mechanical properties are uniform throughout the tissue. While 

tendons are composed of collagen fibers, for this model, we assume that these 

fibers contribute to a uniformly distributed stiffness. The tendon is also treated as 

isotropic, meaning its mechanical properties are the same in all directions, though, 

in reality, tendons have a degree of anisotropy due to the alignment of collagen 

fibers. 

• Linear Elasticity at Small Strains: For small deformations, the Achilles tendon is 

treated as a linear elastic material, meaning that stress and strain are linearly 

related (i.e., Hookean behavior). This assumption holds for small displacements, 

but nonlinearity becomes more pronounced at higher strains, which is accounted 

for in the nonlinear terms of the KdV equation used later in the modeling process. 

• Viscoelastic Effects Included: The viscoelastic nature of the Achilles tendon is 

incorporated into the model to capture both the tissue’s elastic and time-

dependent (viscous) response. The Kelvin-Voigt model represents this behavior, 

capturing the dissipation and energy loss as waves propagate through the tendon. 

• Constant Properties: The model assumes that the mechanical properties of the 

tendon (elasticity, density, and viscosity) remain constant during wave 

propagation. In reality, properties such as elasticity can vary with strain and 

loading conditions, but these variations are assumed to be small enough not to 

affect the overall wave dynamics in this study significantly. 

 

 



Molecular & Cellular Biomechanics 2024, 21(3), 424. 
 

8 

2.4. Derivation of wave equations 

The mathematical model for wave propagation in the Achilles tendon builds on 

the foundational principles of continuum mechanics, where the tendon is treated as an 

elastic medium capable of supporting different types of mechanical waves. In this 

section, we derive the wave equations for the Achilles tendon, considering both 

longitudinal and transverse waves, which reflect the complex motion that occurs when 

the tendon is subjected to external forces. 

2.4.1. Wave propagation in elastic media 

In a general elastic medium like the Achilles tendon, Newton’s second law of 

motion can describe the motion of particles within the tissue. The displacement field, 

u(𝑥, 𝑡) , represents the displacement of points within the tendon as a function of 

position 𝑥 and time 𝑡. To derive the governing equation for wave propagation, we start 

with the balance of linear momentum, 

Lemma 1. Momentum Balance: The balance of linear momentum gives the equation 

of motion for a point within a continuous medium: 

ρ
∂2u

∂t2
=
∂σ

∂x
 (9) 

where, 𝜌  is the density of the Achilles tendon, 𝑢(𝑥, 𝑡)  is the displacement in the 

direction of the wave, and 𝜎 is the stress experienced by the tendon. 

Proof of Lemma 1. This follows directly from Newton’s second law of motion for a 

continuous medium. The mass per unit volume (or density 𝜌  ) multiplied by the 

acceleration 
𝜕2𝑢

𝜕𝑡2
 gives the inertial force per unit volume. The stress gradient 

𝜕𝜎

𝜕𝑥
 

represents the internal forces acting on the tendon. □  

Lemma 2. Linear Stress-Strain Relationship (Hooke’s Law): To describe how stress 

𝜎 and strain 𝜀 are related in the Achilles tendon, we assume that the tendon behaves 

according to Hooke’s law in the elastic regime: 

σ = Eε = E
∂u

∂x
 (10) 

where 𝐸 is the Young’s modulus of the tendon, and 𝜀 =
𝜕𝑢

𝜕𝑥
 is the strain, representing 

the relative displacement of particles in the tendon. 

Proof of Lemma 2. Hooke’s law for one-dimensional elasticity in homogeneous, 

isotropic medium states that stress is proportional to strain, which is valid for small 

deformations. In this case, the strain is simply the spatial derivative of the 

displacement field. □ 

Theorem 1. Longitudinal Wave Equation: Substituting the stress-strain relation from 

Lemma 2 into the momentum balance equation from Lemma 1, we obtain: 

ρ
∂2u

∂t2
= E

∂2u

∂x2
 (11) 

Rearranging this equation yields the one-dimensional wave equation: 

∂2u

∂t2
= c2

∂2u

∂x2
 (12) 



Molecular & Cellular Biomechanics 2024, 21(3), 424. 
 

9 

where 𝑐 = √
𝐸

𝜌
 is the wave speed, which depends on both the elasticity modulus 𝐸 and 

the density 𝜌 of the tendon. This equation describes the propagation of longitudinal 

waves involving particle motion in the same direction as the wave. These waves 

typically arise when the tendon is stretched or compressed along its length. 

2.4.2. Nonlinear extension for the Achilles tendon 

While the linear wave equation provides a basic model for wave propagation, the 

Achilles tendon exhibits nonlinear behavior, especially under high-stress conditions. 

To account for this, we introduce a nonlinear term into the wave equation to represent 

the nonlinear elasticity of the tendon at higher strains. 

Lemma 3. Nonlinear Stress-Strain Relationship: At higher strains, the stress-strain 

relationship can be extended by including a nonlinear term, leading to: 

σ = E
∂u

∂x
+ αu

∂u

∂x
 (13) 

where 𝛼 is a constant that quantifies the degree of nonlinearity in the tissue. 

Proof of Lemma 3. This nonlinear extension can be justified using a Taylor series 

expansion of the stress-strain relationship around minor strains, where higher-order 

terms account for nonlinear effects. The second term introduces a nonlinear 

dependence on the displacement field u(𝑥, 𝑡), which becomes significant at higher 

strains. □ 

Theorem 2. Nonlinear Longitudinal Wave Equation: Substituting the nonlinear 

stress-strain relation from Lemma 3 into the momentum balance equation, we obtain 

the nonlinear wave equation: 

ρ
∂2u

∂t2
= E

∂2u

∂x2
+ α

∂

∂x
(u
∂u

∂x
) (14) 

Simplifying: 

∂2u

∂t2
= c2

∂2u

∂x2
+ αu

∂u

∂x
 (15) 

This equation captures linear wave propagation (the first term) and the nonlinear 

effects (the second term), with α controlling the nonlinearity. 

Proof of Theorem 2. The derivation follows from the nonlinear stress-strain 

relationship and its substitution into the momentum balance equation, yielding a 

nonlinear extension to the standard wave equation. □ 

2.4.3. Transverse waves 

In addition to longitudinal waves, the Achilles tendon can also support transverse 

waves, where particle motion occurs perpendicular to the direction of wave 

propagation. These waves typically arise when the tendon is subjected to lateral forces, 

such as twisting or bending motions. The governing equation for transverse wave 

propagation is similar to the longitudinal wave equation but involves a different 

restoring force, which depends on the tendon’s shear modulus 𝐺. 

Lemma 4. Transverse Stress-Strain Relationship: For transverse waves, the stress-

strain relationship involves the shear modulus 𝐺, which relates shear stress to shear 

strain. The transverse displacement 𝑣(𝑥, 𝑡) follows: 
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σT = G
∂v

∂x
 (16) 

where 𝐺 is the shear modulus, 
𝜕𝑣

𝜕𝑥
 is the shear strain. 

Proof of Lemma 4. This is the shear equivalent of Hooke’s law for longitudinal waves, 

where stress is proportional to strain, but here, the relevant modulus is the shear 

modulus GGG, which governs the material’s resistance to shear deformation. □ 

Theorem 3. Transverse Wave Equation: Using the momentum balance equation for 

transverse displacements, we have: 

ρ
∂2v

∂t2
= G

∂2v

∂x2
 (17) 

Rearranging, we obtain the transverse wave equation: 

∂2v

∂t2
= cT

2
∂2v

∂x2
 (18) 

where 𝑐𝑇 = √
𝐺

𝜌
 is the speed of transverse waves in the Achilles tendon. 

Proof of Theorem 3. This equation is derived using the shear stress-strain relationship 

and the momentum balance for transverse displacements, yielding a wave equation 

similar to the longitudinal case but involving the shear modulus G instead of the elastic 

modulus E. □ 

2.5. Influence of tissue properties on wave behavior 

The behavior of waves propagating through the Achilles tendon is profoundly 

influenced by its mechanical properties, particularly its stiffness (elastic modulus), 

density, and viscoelastic nature. These properties dictate the speed at which waves 

travel, the frequencies they can sustain, and the degree of dispersion they experience. 

In this section, we explore how these factors affect wave propagation in the Achilles 

tendon and how they are modelled mathematically. 

2.5.1. Wave speed and tissue stiffness 

The stiffness of the Achilles tendon is primarily quantified by its elastic modulus 

E, which defines how resistant the tissue is to deformation under mechanical load. The 

relationship between wave speed c and the elastic modulus can be derived from the 

linear wave equation for longitudinal waves: 

∂2u

∂t2
= c2

∂2u

∂x2
 (19) 

where 𝑐 = √
𝐸

𝜌
. This equation shows that wave propagation speed is directly 

proportional to the square root of the elastic modulus E and inversely proportional to 

the square root of the density 𝜌. 

For example, the wave speed will increase if the Achilles tendon becomes stiffer 

(i.e., higher E). This happens because stiffer materials resist deformation more 

vigorously, causing mechanical waves to travel faster through the tissue. Conversely, 

if the density ρ increases (e.g., due to higher mass or fluid content in the tissue), wave 
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speed decreases as it becomes more challenging for the waves to propagate through 

the denser medium. 

2.5.2. Influence of density on wave propagation 

As seen in the relationship 𝑐 = √
𝐸

𝜌
, the density ρ of the Achilles tendon plays an 

inverse role in determining wave speed. Tendons are relatively uniform in density, but 

minor variations can occur due to changes in hydration levels or microscopic tissue 

composition (e.g., collagen fiber orientation). If the density of the tendon increases, 

the wave speed decreases, as the increased mass requires more energy to propagate 

the wave. 

While variations in density are typically more minor than variations in stiffness, 

the overall wave propagation behavior is still influenced by this factor. For instance, 

localized swelling or microstructural changes in the tendon can slightly alter the 

density, which could impact how mechanical waves travel through the affected area. 

2.5.3. Frequency and wavelength of propagating waves 

The frequency f of waves in the Achilles tendon is related to the wave speed c 

and the wavelength λ by the equation: 

c = fλ (20) 

For a given frequency, higher wave speeds (due to higher stiffness or lower 

density) result in longer wavelengths. In contrast, lower wave speeds result in shorter 

wavelengths. The frequency of waves propagating through the tendon is determined 

by the nature of the mechanical loading (e.g., the frequency of muscle contractions 

during walking or running). Low-frequency waves correspond to larger-scale 

deformations, while high-frequency waves correspond to finer mechanical details. 

High-frequency waves tend to experience more dispersion (i.e., their wave 

components spread out as they travel), particularly in tissues with significant 

viscoelasticity, such as the Achilles tendon. 

2.5.4. Dispersion effects and tissue viscoelasticity 

The Achilles tendon is not a purely elastic material; it exhibits viscoelastic 

properties, meaning that both elastic and viscous (time-dependent) forces contribute 

to its mechanical response. This viscoelasticity causes dispersion, which refers to the 

phenomenon where waves of different frequencies travel at different speeds. In 

viscoelastic materials, higher-frequency waves are typically more dispersed than 

lower-frequency waves. The general equation governing dispersive wave propagation 

can be written as: 

∂2u

∂t2
+ η

∂3u

∂x3
= c2

∂2u

∂x2
 (21) 

here, 𝜂 is a coefficient that accounts for the tendon’s viscoelastic damping, and 

the third derivative term 
𝜕3𝑢

𝜕𝑥3
 Introduces dispersion. The viscoelastic nature of the 

tendon means that waves do not propagate at a single, uniform speed; instead, higher-

frequency components are delayed more than lower-frequency ones, leading to the 

spreading or “smearing” of the wave as it propagates. 
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Dispersion is significant in studying solitons—nonlinear waves that balance the 

effects of dispersion and nonlinearity. In the Achilles tendon, solitons can form when 

the nonlinear effects of wave steepening (due to tissue stiffness) are balanced by the 

dispersive effects of viscoelasticity, allowing the wave to travel without changing 

shape. 

2.5.5. Modeling dispersion and nonlinearity 

To model the dispersive and nonlinear behavior in the Achilles tendon, we use 

the Korteweg-de Vries (KdV) equation: 

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
= 0 (22) 

where α represents the nonlinear steepening term (related to tissue stiffness), and β 

represents the dispersion term (related to tissue viscoelasticity). The term 𝛼𝑢
𝜕𝑢

𝜕𝑥
 

models the nonlinear effects caused by the tendon’s elasticity, while 𝛽
𝜕3𝑢

𝜕𝑥3
 Models the 

dispersive effects due to viscoelastic damping. Together, these terms describe how 

waves propagate in the tendon, including the formation of stable soliton solutions. 

3. Nonlinear wave propagation 

In the context of the Achilles tendon, nonlinear wave propagation occurs when 

the tissue experiences sufficiently high strains such that its response to mechanical 

waves deviates from linear elasticity. The nonlinear behavior arises due to the inherent 

mechanical properties of the tendon, particularly its ability to stiffen as it stretches. In 

this section, we explore the conditions under which nonlinear effects dominate and 

derive the relevant nonlinear equations that describe soliton behavior in the tendon. 

Nonlinear effects become significant in the Achilles tendon when the magnitude 

of the deformation is large enough that the linear approximation of stress and strain is 

no longer valid. This typically occurs under high mechanical loads, such as during 

intense physical activities like running, jumping, or rapid changes in direction. In these 

cases, the Achilles tendon stretches beyond its elastic limits, causing a nonlinear 

response in its mechanical properties. 

Several key factors govern the dominance of nonlinear effects: 

High Strain Levels: As strain increases, the tendon stiffens nonlinearly, causing 

the relationship between stress and strain to deviate from Hooke’s law. At low strain 

levels, the linear approximation holds, but at higher strains, the stiffness of the tendon 

increases rapidly. 

Tissue Stiffness: Tendons with higher baseline stiffness (due to age, injury, or 

training adaptation) exhibit more pronounced nonlinear behavior at lower strain levels. 

Wave Amplitude: Large amplitude waves generate more significant 

displacements, which induce nonlinear responses in the tissue. These waves can lead 

to wavefronts’ steepening and solitons’ formation. 

Nonlinear Elasticity: The tendon’s mechanical response is inherently nonlinear, 

meaning the stiffness increases as it is stretched. This property leads to waves’ 

steepening and soliton behaviour’s emergence. 
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When these conditions are met, nonlinear wave propagation becomes the 

dominant mode of wave behaviour in the tendon, necessitating nonlinear equations to 

model the resulting waveforms. 

3.1. Derivation of the nonlinear wave equation 

To describe the nonlinear wave propagation in the Achilles tendon, we use the 

Korteweg-de Vries (KdV) equation, which is a well-established model for capturing 

both the nonlinear and dispersive effects that characterize soliton behavior in elastic 

and viscoelastic media like tendons. The KdV equation arises as an extension of the 

linear wave equation, incorporating both nonlinear steepening and dispersion. The 

starting point for deriving the nonlinear wave equation is the standard one-dimensional 

wave equation for an elastic medium, which we previously derived: 

∂2u

∂t2
= c2

∂2u

∂x2
 (23) 

This equation describes the propagation of linear waves in an elastic medium. 

However, we introduce a nonlinear term that models the relationship between stress 

and strain at high deformation levels to account for nonlinear effects. The nonlinear 

stress-strain relationship is given by: 

σ = E
∂u

∂x
+ αu

∂u

∂x
 (24) 

where α is a constant that quantifies the nonlinearity in the tendon, and u(x, t) is the 

displacement field.  

Substituting this nonlinear relationship into the balance of momentum equation 

𝜌
𝜕2𝑢

𝜕𝑡2
=
𝜕𝜎

𝜕𝑥
, we obtain the nonlinear wave equation: 

ρ
∂2u

∂t2
= E

∂2u

∂x2
+ α

∂

∂x
(u
∂u

∂x
) (25) 

This can be simplified to: 

∂2u

∂t2
= c2

∂2u

∂x2
+ αu

∂u

∂x
 (26) 

This equation includes the linear term 𝑐2
𝜕2𝑢

𝜕𝑥2
, which models the standard wave 

propagation in an elastic medium, and the nonlinear term 𝛼𝑢
𝜕𝑢

𝜕𝑥
, which models the 

nonlinear elastic response of the Achilles tendon under high strain. To fully capture 

the behavior of waves in the Achilles tendon, we must also account for dispersive 

effects caused by the tissue’s viscoelasticity. These effects lead to the spreading of 

wave components over time and are essential for modelling soliton formation. To 

include dispersion, we add a third-order spatial derivative to the wave equation, which 

accounts for the wavelength-dependent nature of wave speed. This results in the 

Korteweg-de Vries (KdV) equation: 

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
= 0 (27) 
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where α is the nonlinear coefficient, representing the nonlinear elastic behavior of the 

tendon, β is the dispersive coefficient, representing the viscoelastic damping of the 

tendon, and u(x, t) is the displacement field. 

3.2. Proof of soliton existence (soliton solutions) 

The KdV equation is notable for supporting soliton solutions, which are localized 

waveforms that maintain their shape as they propagate. A soliton solution to the KdV 

equation has the general form: 

u(x, t) = Asech2 (
x − vt

Δ
) (28) 

where A is the amplitude of the soliton, v is the velocity of the soliton, and Δ is the 

width of the soliton, which depends on the balance between nonlinearity (α) and 

dispersion (β). 

To derive this solution, we assume a travelling wave solution of the form 

u(x, t) = u(ξ), where ξ = x− vt is a moving coordinate frame, and v is the soliton 

velocity. Substituting this into the KdV equation gives: 

−v
du

dξ
+ αu

du

dξ
+ β

d3u

dξ3
= 0 (29) 

Integrating this equation concerning ξ yields: 

−vu +
α

2
u2 + β

d2u

dξ2
= 0 (30) 

Multiplying through by 
du

dξ
 and integrating again gives the general form of the 

soliton solution: 

u(ξ) = Asech2 (
ξ

Δ
) (31) 

where 𝐴 and 𝛥 are determined by the balance between the nonlinear term α and the 

dispersive term 𝛽. 

This solution represents a stable, localized wave (the soliton) that maintains its 

shape as it propagates through the Achilles tendon. The existence of solitons is a direct 

result of the balance between the nonlinear wave steepening (due to 𝛼  ) and the 

dispersive spreading (due to 𝛽 ). 

4. Soliton formation in biomechanics 

Solitons are unique, stable waveforms that propagate through a medium without 

changing shape, resulting from the delicate balance between nonlinear effects (which 

tend to steepen the wave) and dispersive effects (which tend to spread the wave out). 

In the context of biomechanics, solitons are especially relevant in tissues like the 

Achilles tendon, where mechanical waves propagate through nonlinear and 

viscoelastic environments. This section will derive solutions from the previously 

introduced nonlinear wave equation and explore the conditions for soliton formation 

in biomechanical tissues. 
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4.1. Derivation of soliton solutions from nonlinear wave equations 

In the previous section (see 3. Nonlinear Wave Propagation), we introduced the 

Korteweg-de Vries (KdV) equation as a model for nonlinear wave propagation in the 

Achilles tendon. The KdV equation, which includes terms to account for both 

nonlinearity and dispersion, is given by: 

∂u

∂t
+ αu

∂u

∂x
+ β

∂3u

∂x3
= 0 (32) 

This equation describes the propagation of mechanical waves through a nonlinear, 

dispersive medium like the Achilles tendon, where: 

• α  is the nonlinear coefficient, representing the degree of nonlinearity in the 

tissue’s elastic response. 

• β is the dispersive coefficient, capturing the viscoelastic nature of the tissue. 

• u(x, t) is the displacement field as a function of position x and time t. 

To derive the soliton solutions, we seek a travelling wave solution of the form 

u(x, t) = u(ξ) , where ξ = x− vt  is the moving frame of reference for a wave 

travelling with velocity v. 

Substituting this into the KdV equation transforms it from a partial differential 

equation into an ordinary differential equation (ODE) in terms of ξ : 

−v
du

dξ
+ αu

du

dξ
+ β

d3u

dξ3
= 0 (33) 

This equation governs the shape of the wave in the travelling frame. To solve it, 

we integrate step by step to reduce the order of the equation. 

Lemma 5. First Integration: By integrating the ODE once for 𝜉, we obtain: 

−vu +
α

2
u2 + β

d2u

dξ2
= C (34) 

where 𝐶 is an integration constant. For a localized soliton solution that decays to zero 

as 𝜉 → ∞, the boundary conditions require that both 𝑢 and its derivatives vanish at 

infinity.  

Thus, setting C = 0 simplifies the equation to: 

−vu +
α

2
u2 + β

d2u

dξ2
= 0 (35) 

Lemma 6. Second Integration: To simplify further, we multiply the equation by 
𝑑𝑢

𝑑𝜉
 and 

integrate again concerning 𝜉. This yields: 

v

2
u2 −

α

6
u3 + β(

du

dξ
)
2

= 0 (36) 

This equation describes the balance between nonlinear and dispersive effects for 

the soliton solution. 

Theorem 4. Soliton Solution: At this stage, we introduce the known soliton ansatz 

𝑢(𝜉) = 𝐴𝑠𝑒𝑐ℎ2 (
𝜉

𝛥
), where 𝐴 is the soliton amplitude, 𝛥 is the soliton width, related 

to the balance between nonlinearity and dispersion and sech2 the hyperbolic secant 
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function naturally satisfies the boundary conditions 𝑢 →0 as 𝜉 → ∞.Substituting this 

form into the integrated equation yields: 

v

2
A2 −

α

6
A3 + β

4A2

Δ2
= 0 (37) 

Solving for A and Δ, we obtain: 

A =
3v

α
,  Δ = √

12β

v
 (38) 

Thus, the soliton solution takes the form: 

u(x, t) =
3v

α
sech2 

(

 
x − vt

√12β
v )

  (39) 

This is the classical soliton solution for the KdV equation, representing a stable, 

localized wave that maintains its shape as it propagates through the Achilles tendon. 

4.2. Conditions for soliton formation 

Solitons in biomechanical tissues like the Achilles tendon form when two critical 

conditions are met: a balance between nonlinear and dispersive effects. Below, we 

explore the specific conditions under which solitons form. 

Nonlinearity: Nonlinear effects in the Achilles tendon arise from the tissue’s 

tendency to stiffen as it stretches, which is captured by the nonlinear term αu
∂u

∂x
 in the 

KdV equation. These effects tend to steepen wavefronts, leading to waveforms with 

higher amplitude and shorter wavelength. Nonlinearity becomes dominant when: 

• Strain is Large: As the tendon experiences higher strains, its response becomes 

increasingly nonlinear. 

• High Wave Amplitude: Larger amplitude waves lead to more potent nonlinear 

effects, which can steepen wavefronts. 

In the soliton solution, the amplitude A is proportional to the wave velocity v and 

inversely proportional to the nonlinearity coefficient α. Thus, higher wave velocities 

or stronger nonlinearity results in larger soliton amplitudes. 

Dispersion: Dispersion in the Achilles tendon is caused by its viscoelastic 

properties, which tend to spread wave components of different frequencies at different 

speeds. The term models dispersion β
∂3u

∂x3
 in the KdV equation. Dispersive effects 

become significant when: 

• The tissue is viscoelastic: Higher-frequency wave components propagate more 

slowly in viscoelastic tissues, causing the wave to spread. 

• The wavelength is small: Dispersion is more robust for shorter wavelength waves, 

which are more sensitive to the frequency-dependent nature of wave propagation. 

In the soliton solution, the soliton width Δ is proportional to the square root of 

the dispersive coefficient β and inversely proportional to the wave velocity v. Stronger 
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dispersion leads to wider solitons. In contrast, higher wave velocities result in 

narrower solitons. 

4.3. Balance between nonlinearity and dispersion 

Solitons form when the spreading effects of dispersion exactly balance the 

steepening effects of nonlinearity. This balance allows the soliton to maintain its shape 

as it travels. Mathematically, the balance is reflected in the KdV equation, where the 

nonlinear term αu
∂u

∂x
 and the dispersive term β

∂3u

∂x3
 , They work against each other. If 

nonlinearity dominates (i.e., α is large relative to β ), the wave will steepen too much 

and potentially break. If dispersion dominates (i.e., β is large relative to α ), the wave 

will spread too much and dissipate. The solution represents a precise balance between 

these two competing effects. 

Theorem 5. Existence of Solitons: For solitons to form, the following conditions must 

be satisfied: 

• Nonlinearity-Dispersion Balance: The ratio 
𝛼

𝛽
 must be such that the dispersive 

spreading precisely counteracts the nonlinear steepening. 

• Stable Wave Amplitude: The wave amplitude 𝐴 must be proportional to the wave 

velocity 𝑣 and inversely proportional to 𝛼, ensuring that the soliton maintains a 

fixed shape as it propagates. 

5. Analytical and numerical solutions for solitons 

This section focuses on analytical and numerical approaches to solving the 

equations that describe soliton behavior in biomechanical tissues like the Achilles 

tendon. The derivation of solitons from the Korteweg-de Vries (KdV) equation 

provides an analytical foundation for understanding how these stable waveforms 

propagate. However, numerical simulations are equally crucial for validating these 

analytical results and exploring more complex scenarios where closed-form solutions 

may not be feasible. 

5.1. Analytical solutions to specific cases of soliton behavior in tissues 

The Korteweg-de Vries (KdV) equation, as previously derived, serves as the 

primary equation governing the nonlinear and dispersive wave behavior that leads to 

soliton formation. The analytical solution for a single soliton propagating through a 

homogeneous, isotropic medium such as the Achilles tendon is well-known and can 

be described by the following equation: 

u(x, t) =
3v

α
sech2 (

x − vt

Δ
) (40) 

where u(𝑥, 𝑡)  represents the displacement field in the tendon, v  is the soliton’s 

velocity, α is the nonlinearity coefficient representing the tissue’s stiffening behavior, 

Δ = √
12β

v
 is the width of the soliton, with β being the dispersion coefficient.  

This solution describes a single soliton that maintains its shape and speed as it 

propagates through the tendon, provided that the balance between nonlinear wave 
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steepening and dispersive spreading remains intact. The sech  2 function ensures that 

the soliton is localized in space, meaning it decays rapidly as |x| → ∞. 

Case 1: Single Soliton in a Homogeneous Tendon 

In the simplest case, where the Achilles tendon is assumed to be homogeneous 

(i.e., uniform mechanical properties throughout), the above solution applies directly. 

The amplitude and width of the soliton are determined by the velocity v, the nonlinear 

coefficient α, and the dispersive coefficient β. The key insight here is that faster 

solitons have higher amplitudes and narrower widths, as the velocity v  directly 

determines both A and Δ. 

Case 2: Multi-Soliton Solutions 

For more complex cases, the KdV equation also admits multi-soliton solutions, 

which describe the interaction of multiple solitons travelling at different velocities. 

These solutions can be written as a superposition of individual solitons, each with its 

amplitude and velocity: 

u(x, t) =∑  

n

i=1

Aisech
2 (
x − vit

Δi
) (41) 

where Ai and Δi are the amplitude and width of the i-th soliton, vi is the velocity of 

the i-th soliton. 

Case 3: Soliton Behavior in Heterogeneous Tissues 

The soliton solution becomes more complicated in a heterogeneous tendon, 

where mechanical properties like elasticity modulus or density vary spatially. In these 

cases, perturbation techniques or numerical methods are often used to approximate the 

behavior of solitons. While an exact analytical solution may not exist, the soliton’s 

general form can still provide insights into wave behaviour in regions with varying 

tissue properties. 

5.2. Numerical method: Finite difference scheme 

The finite difference method is one of the most common methods for numerically 

solving the KdV equation. This method discretizes time and space into small intervals 

and approximates the derivatives in the KdV equation using finite differences. For 

example, the first-order time derivative and third-order spatial derivative can be 

approximated as: 

∂u

∂t
≈
u(x, t + Δt) − u(x, t)

Δt
∂3u

∂x3
≈
u(x + 2Δx, t) − 2u(x + Δx, t) + 2u(x − Δx, t) − u(x − 2Δx, t)

2Δx3

 (42) 

These discretized derivatives can evolve the solution quickly, starting from an 

initial condition, such as a localized wave pulse. The numerical scheme iterates over 

each time step, updating the displacement field u(x, t) based on the nonlinear and 

dispersive terms in the KdV equation. 
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6. Results 

In this section, we present the results of numerical simulations for wave 

propagation through different tissue types, focusing on how varying mechanical 

properties affect wave characteristics. The simulations were conducted using the finite 

difference method, with each tissue type assigned different elasticity modulus (𝐸), 

density (𝜌) , and viscoelastic damping coefficients (𝜂)  to capture realistic 

biomechanical behaviour. 

Table 1 and Figure 5 shows the results of wave propagation simulations through 

three different tissues: a healthy Achilles tendon, a damaged Achilles tendon 

(representing an injured or inflamed state with lower elasticity and higher damping), 

and a stiffened Achilles tendon (representing a tendon with chronic stiffening due to 

ageing or overuse). Key characteristics such as wave speed, soliton amplitude, soliton 

width, and energy dissipation are compared. 

Table 1. Wave propagation characteristics in different tissue types. 

Tissue Type 
Elasticity 

Modulus (MPa) 

Density 

(g/cm3) 

Viscoelastic Damping 

Coefficient (η\etaη) 

Wave 

Speed 

(m/s) 

Soliton 

Amplitude 

(mm) 

Soliton 

Width (mm) 

Energy 

Dissipation (%) 

Healthy Achilles 

Tendon 
1300 1.12 200 25.8 4.7 12.3 5.2 

Damaged 

Achilles Tendon 
850 1.18 500 18.9 3.2 16.4 18.6 

Stiffened 

Achilles Tendon 
1700 1.10 150 28.6 5.1 10.9 3.9 

 
Figure 5. Wave propagation characteristics in different tissue types. 

The wave speed is highest in the stiffened Achilles tendon at 28.6 m/s due to its 

higher elasticity modulus (1700 MPa). In contrast, the damaged tendon exhibits the 

lowest speed of 18.9 m/s, reflecting its reduced elasticity modulus (850 MPa). The 

healthy tendon, with a modulus of 1300 MPa, shows a moderate wave speed of 25.8 

m/s. The soliton amplitude increases with tissue stiffness. The stiffened tendon 

supports the largest soliton amplitude at 5.1 mm, while the damaged tendon has the 

smallest amplitude at 3.2 mm. The healthy tendon displays a middle-ground amplitude 
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of 4.7 mm. The soliton width is inversely related to tissue stiffness. The stiffened 

tendon has the narrowest soliton at 10.9 mm, while the damaged tendon has the widest 

at 16.4 mm. The healthy tendon has a soliton width of 12.3 mm. The damaged tendon 

exhibits the highest energy dissipation at 18.6%, reflecting its higher viscoelastic 

damping (η = 500\eta = 500η = 500). The stiffened tendon has the lowest dissipation 

at 3.9% (η = 150\eta = 150η = 150), while the healthy tendon dissipates at 5.2%. 

Table 2 and Figure 6 illustrate how wave characteristics change as the 

elastAchilles tendon modulus (EEE) of the These simulations provide insight into the 

relationship between tissue stiffness and soliton behaviour. 

The wave speed increases as the elasticity modulus increases. At 1000 MPa, the 

wave speed is 22.5 m/s, reaching 28.6 m/s at 1700 MPa. This shows that higher 

elasticity allows for faster wave propagation, as stiffer tissues offer more excellent 

resistance to deformation. The soliton amplitude also increases with elasticity. At 1000 

MPa, the amplitude is 3.9 mm, reaching 5.1 mm at 1700 MPa. Stiffer tissues can 

support higher amplitude solitons because they allow more energy to be concentrated 

within the wave. The soliton width decreases as the elasticity modulus increases. At 

1000 MPa, the soliton width is 14.5 mm, narrowing to 10.9 mm at 1700 MPa. This 

shows that stiffer tissues create more localized solitons, while less stiff tissues result 

in broader waves. Energy dissipation decreases as the elasticity modulus increases. At 

1000 MPa, 6.5% of energy is dissipated, while only 3.9% is lost at 1700 MPa. Stiffer 

tissues lose less energy during soliton propagation, allowing for more efficient wave 

transmission. 

Table 2. Wave characteristics in tissues with varying elasticity. 

Elasticity Modulus (MPa) Wave Speed (m/s) Soliton Amplitude (mm) Soliton Width (mm) Energy Dissipation (%) 

1000 22.5 3.9 14.5 6.5 

1300 25.8 4.7 12.3 5.2 

1500 27.1 5.0 11.2 4.7 

1700 28.6 5.1 10.9 3.9 

 
Figure 6. Wave characteristics in tissues with varying elasticity. 
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Table 3 and Figure 7 summarise the numerical results for soliton formation and 

propagation in three tissue types: healthy, damaged, and stiffened. Key parameters 

such as soliton formation time, propagation speed, amplitude, and energy retention 

illustrate the differences in soliton behaviour across tissues. 

Table 3. Numerical results for soliton formation and propagation. 

Tissue Type 
Soliton Formation 

Time (ms) 

Soliton Propagation 

Speed (m/s) 

Soliton Amplitude 

(mm) 

Energy Retention 

(%) 

Propagation Distance 

(mm) 

Healthy Achilles 

Tendon 
4.8 25.8 4.7 94.8 150 

Damaged Achilles 

Tendon 
6.2 18.9 3.2 81.4 100 

Stiffened Achilles 

Tendon 
3.9 28.6 5.1 96.1 180 

 

Figure 7. Soliton formation and propagation. 

The stiffened tendon forms solitons the fastest, with a formation time of 3.9 ms, 

compared to the damaged tendon, which takes 6.2 ms. The increased stiffness in the 

stiffened tendon allows solitons to form more quickly, while the damaged tendon’s 

lower elasticity slows soliton formation. Regarding soliton propagation speed, the 

stiffened tendon again shows the highest value at 28.6 m/s, while the damaged tendon 

has the lowest speed at 18.9 m/s. The healthy tendon falls in between, with a speed of 

25.8 m/s. The higher propagation speed in stiffer tendons reflects the faster 

transmission of mechanical waves due to increased resistance to deformation. 

Soliton amplitude also follows a similar trend, with the stiffened tendon 

supporting the highest amplitude at 5.1 mm, while the damaged tendon exhibits the 

lowest amplitude at 3.2 mm. The healthy tendon has a soliton amplitude of 4.7 mm. 

This indicates that stiffer tendons can support higher energy solitons, while damaged 

tendons, with reduced elasticity, produce lower-amplitude solitons. In terms of energy 

retention, the stiffened tendon retains the most energy at 96.1%, followed by the 

healthy tendon at 94.8%. With its higher viscoelastic damping, the damaged tendon 

retains only 81.4% of the energy, resulting in significant energy loss during soliton 
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propagation. Finally, the propagation distance is most significant in the stiffened 

tendon, where solitons can travel up to 180 mm, compared to just 100 mm in the 

damaged tendon. The healthy tendon supports a propagation distance of 150 mm. The 

shorter propagation distance in the damaged tendon reflects the higher energy 

dissipation and lower wave speed, while the stiffened tendon allows for more extended 

propagation due to minimal energy loss and higher wave velocity. 

Table 4 and Figure 8 present the effect of varying the elasticity modulus (EEE) 

on key soliton characteristics, including propagation speed, amplitude, and energy 

retention. The density and viscoelastic damping were held constant to isolate the effect 

of elasticity on soliton dynamics. 

 

Figure 8. Tissue elasticity on soliton behavior. 

Table 4. Effect of tissue elasticity on soliton behavior. 

Elasticity Modulus 

(MPa) 

Soliton Propagation Speed 

(m/s) 

Soliton Amplitude 

(mm) 

Energy Retention 

(%) 

Soliton Width 

(mm) 

Propagation Distance 

(mm) 

1000 22.5 3.9 93.5 14.5 140 

1300 25.8 4.7 94.8 12.3 150 

1500 27.1 5.0 95.3 11.2 160 

1700 28.6 5.1 96.1 10.9 180 

The soliton propagation speed increases consistently with higher elasticity. At 

1000 MPa, the soliton speed is 22.5 m/s, reaching 28.6 m/s at 1700 MPa. This trend 

indicates that stiffer tissues enable faster soliton propagation due to more excellent 

deformation resistance, which increases wave speed. Similarly, the soliton amplitude 

increases as the elasticity modulus rises. The amplitude starts at 3.9 mm for 1000 MPa 

and increases to 5.1 mm at 1700 MPa. This indicates that stiffer tissues can support 

higher-energy solitons, allowing the waves to maintain larger amplitudes as they 

propagate. 

Energy retention also improves as elasticity increases. At 1000 MPa, the tissue 

retains 93.5% of the soliton’s energy; at 1700 MPa, energy retention rises to 96.1%. 

This suggests stiffer tissues are more efficient at preserving wave energy, minimizing 
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the losses due to viscoelastic damping during propagation. The soliton width decreases 

with increasing elasticity. At 1000 MPa, the soliton width is 14.5 mm, but it narrows 

to 10.9 mm at 1700 MPa. This demonstrates that solitons in stiffer tissues are more 

localized, forming tighter, more compact waves, while in less stiff tissues, the soliton 

spreads out over a wider area. Finally, the propagation distance also increases with 

tissue stiffness. At 1000 MPa, the soliton travels 140 mm, while at 1700 MPa, the 

soliton can propagate up to 180 mm. This reflects the improved energy retention and 

wave speed in stiffer tissues, allowing solitons to travel farther before dissipating. 

Table 5 and Figure 9 show the effects of varying the nonlinearity coefficient α 

while keeping the dispersive coefficient β constant. Key characteristics such as soliton 

amplitude, width, propagation speed, and stability are analyzed. As the nonlinearity 

coefficient increases, the soliton amplitude rises significantly. At α = 0.5, the 

amplitude is 2.8 mm, reaching 8.1 mm at α = 2.5. This indicates that more substantial 

nonlinear effects lead to larger soliton amplitudes, as nonlinearity causes the wave to 

steepen, resulting in higher peaks. The soliton width decreases as nonlinearity 

increases. At α = 0.5, the soliton has a width of 14.6 mm, narrowing to 8.9 mm at α = 

2.5. This demonstrates that higher nonlinearity results in more localized solitons, with 

the wave concentrating in a smaller spatial region, as nonlinearity causes steeper 

wavefronts. 

Table 5. Impact of nonlinearity on soliton behavior. 

Nonlinearity Coefficient (α) Soliton Amplitude (mm) Soliton Width (mm) Propagation Speed (m/s) Soliton Stability 

0.5 2.8 14.6 22.4 Stable 

1.0 4.7 12.3 25.8 Stable 

1.5 6.5 10.7 28.6 Stable 

2.0 7.2 9.5 30.4 Marginally Stable 

2.5 8.1 8.9 31.8 Unstable 

 
Figure 9. Impact of nonlinearity on soliton behavior. 

The propagation speed also increases with higher nonlinearity. At α = 0.5, the 

soliton travels at 22.4 m/s; at α = 2.5, the speed rises to 31.8 m/s. Nonlinearity 

accelerates soliton propagation by amplifying the wave’s ability to steepen and move 
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through the tissue more efficiently. Soliton stability decreases as nonlinearity 

intensifies. At lower nonlinearity (α = 0.5 to α = 1.5), the solitons remain stable, 

maintaining their shape during propagation. However, at α = 2.0, the soliton becomes 

marginally stable, and at α = 2.5, the soliton becomes unstable. This suggests that 

excessive nonlinearity can cause solitons to lose stability, leading to wave breaking or 

deformation. 

Table 6 and Figure 10 present the effects of varying the dispersive coefficient β 

while keeping the nonlinearity coefficient α constant. The dispersive coefficient 

influences how much the wave spreads as it propagates, counteracting the steepening 

effect of nonlinearity. 

 
Figure 10. Impact of dispersion on soliton behavior. 

Table 6. Impact of dispersion on soliton behavior. 

Dispersion Coefficient (β) Soliton Amplitude (mm) Soliton Width (mm) Propagation Speed (m/s) Soliton Stability 

0.5 5.5 6.8 28.9 Unstable 

1.0 4.7 12.3 25.8 Stable 

1.5 4.2 16.2 22.7 Stable 

2.0 3.8 20.4 20.3 Stable 

2.5 3.4 23.1 18.4 Stable 

As the dispersion coefficient increases, the soliton amplitude decreases. At 𝛽 =

0.5, the soliton amplitude is 5.5 mm, but it drops to 3.4 mm at 𝛽 = 2.5. This reflects 

the spreading effect of dispersion, which disperses the wave energy over a wider area, 

leading to a reduction in peak amplitude. The soliton width increases significantly with 

higher dispersion. At 𝛽 = 0.5, the soliton is very compact, with a width of 6.8 mm, 

but it widens to 23.1 mm at 𝛽 = 2.5. This shows that dispersion counteracts the wave 

steepening effect of nonlinearity, leading to broader solitons as dispersion becomes 

more dominant. 

The propagation speed decreases as dispersion increases. The soliton travels at 

28.9 m/s at = 0.5, while at 𝛽 = 2.5, the speed drops to 18.4 m/s. Higher dispersion 

slows the propagation of solitons as the wave components spread out over time, 

reducing their overall speed. Soliton stability improves with increasing dispersion. At 
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low dispersion (𝛽 = 0.5), the soliton is unstable, as insufficient dispersion allows 

nonlinearity to dominate, leading to wave breaking. As dispersion increases ( = 1.0 

and beyond), the solitons become stable, as the dispersive effects balance the nonlinear 

steepening, preventing the soliton from collapsing. 

7. Conclusion and future work 

This study presents a comprehensive mathematical model for understanding 

wave propagation and soliton behaviour in the Achilles tendon, integrating both 

nonlinear elastic and viscoelastic properties. By extending the Korteweg-de Vries 

(KdV) equation, the research captures the complex dynamics of mechanical waves in 

a tendon, including the balance between nonlinearity, which steepens wavefronts, and 

dispersion, which causes wave spreading. The model demonstrates how these factors 

form solitons, stable, localized waveforms that can propagate through the tendon 

without losing shape. Key findings highlight the profound impact of tissue properties 

on soliton dynamics. Stiffer tendons, with higher elasticity modulus, support faster 

soliton propagation, larger soliton amplitudes, and reduced energy dissipation, 

allowing solitons to travel greater distances. In contrast, damaged tendons with lower 

stiffness exhibit slower soliton propagation, lower amplitudes, and significant energy 

loss, limiting soliton travel and effectiveness in signal transmission. This indicates that 

changes in tendon properties—due to age, injury, or overuse—can alter wave 

dynamics and may be critical in understanding tendon pathologies and rehabilitation 

outcomes. 

The research further underscores the importance of balancing nonlinear and 

dispersive effects for maintaining soliton stability. When nonlinearity dominates, 

solitons become unstable, leading to wave breaking or deformation, while higher 

levels of dispersion stabilize solitons by preventing excessive steepening. 
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