
Molecular & Cellular Biomechanics 2024, 21(2), 397. 

https://doi.org/10.62617/mcb.v21i2.397 

1 

Article 

Biomechanical and machine learning approaches to automating the 

identification of musical styles and emotions through human motion analysis 

Yuan Ding 

Nantong Normal College, Nantong 226010, China; YuanDing19@outlook.com 

Abstract: This study explores the intricate relationship between biomechanical movements 

and musical expression, focusing on the identification of musical styles and emotions. Violin 

performance is characterized by complex interactions between physical actions—such as 

bowing techniques, finger placements, and posture—and the resulting acoustic output. Recent 

advances in motion capture technology and sound analysis have enabled a more objective 

examination of these processes. However, the current literature frequently addresses 

biomechanics and acoustic features in isolation, lacking an integrated understanding of how 

physical movements translate into specific musical expressions. Machine Learning (ML), 

particularly Long Short-Term Memory (LSTM) networks, provides a promising avenue for 

bridging this gap. LSTM models are adept at capturing temporal dependencies in sequential 

data, making them suitable for analyzing the dynamic nature of violin performance. In this 

work, they have proposed a comprehensive model that combines biomechanical analysis with 

Mel-spectrogram-based LSTM modeling to automate the identification of musical styles and 

emotions in violin performances. Using motion capture systems, Inertial Measurement Units 

(IMUs), and high-fidelity audio recordings, we collected synchronized biomechanical and 

acoustic data from violinists performing various musical excerpts. The LSTM model was 

trained on this dataset to learn the intricate connections between physical movements and the 

acoustic features of each performance. Key findings from the study demonstrate the 

effectiveness of this integrated approach. The LSTM model achieved a validation accuracy of 

92.5% in classifying musical styles and emotions, with precision, recall, and F1-score reaching 

94.3%, 92.6%, and 93.4%, respectively, by the 100th epoch. The analysis also revealed strong 

correlations between specific biomechanical parameters, such as shoulder joint angle and 

bowing velocity, and acoustic features, like sound intensity and vibrato amplitude. 

Keywords: biomechanical movements; machine learning; musical styles; emotions; physical 

movements; joint angle and bowing velocity; motion capture 

1. Introduction 

Music performance, particularly in instruments like the violin, is a complex 

interplay of Physical Movements (PM) and Emotional Expression (EE) [1,2]. 

Violinists convey a wide range of emotions and musical styles through precise 

control of their movements, such as bowing techniques, finger placements, and body 

posture [3,4]. The study of these movements and their impact on musical output has 

been a subject of interest in fields like musicology, biomechanics, and music 

cognition [5]. Traditionally, research in this area has focused on qualitative analyses 

and subjective interpretations to understand how musicians produce expressive 

performances [6–8]. However, these methods frequently lack the precision to fully 

capture the intricate biomechanical processes involved in violin playing [9]. 
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In recent years, technological advancements have enabled more detailed 

investigations into the biomechanics of musical performance [10–12]. Current studies 

employ motion capture systems and Inertial Measurement Units (IMUs) to record the 

PM of musicians, offering a more objective view of how different playing techniques 

contribute to ME [13,14]. Similarly, acoustic analysis, mainly through the use of Mel-

spectrograms, has provided insights into the audio features that correspond with 

emotional and stylistic variations in music [15,16]. Despite these advances, the 

relationship between Biomechanical Movements (BM) and acoustic features remains 

underexplored in an integrated and automated manner [17]. Most existing research 

approaches this relationship through isolated analyses, frequently lacking a unified 

framework that comprehensively connects performance’s physical and acoustic 

aspects [18]. This limitation makes it challenging to understand how specific 

movements influence the perceived musical output. 

Machine Learning (ML), particularly Neural Network (NN) models like Long 

Short-Term Memory (LSTM), offers a promising solution to this problem [19]. LSTM 

networks can model complex temporal dependencies in sequential data, making them 

ideal for analyzing the dynamic nature of music performance [20]. They can capture 

long-term relationships between a violinist’s movements and the resulting sound, 

facilitating identifying patterns corresponding to various musical styles and emotional 

contexts. Unlike traditional analysis methods, ML can process large, multi-

dimensional datasets, allowing for a more nuanced and automated analysis of the 

interplay between biomechanics and music [21–25]. This provides an opportunity to 

move beyond subjective evaluation and uncover the underlying mechanisms of ME 

with greater accuracy and detail [26–30]. 

The proposed work aims to address the limitations of current research by 

developing a framework that integrates biomechanical analysis with a Mel-

spectrogram-based LSTM model to automate the identification of musical styles and 

emotions in violin performances. The proposed work explores the intricate 

relationship between BM and sound features in violin performances to automate the 

identification of musical styles and emotions. By combining Motion Capture (MC) 

technology, IMUs, and audio recording, detailed data on joint angles, forces, and 

sound characteristics are collected from violinists performing a variety of musical 

excerpts. Mel-spectrograms are used to extract time-frequency features from the 

audio, providing a nuanced representation of the music’s expressive elements. The 

study leverages a Mel-spectrogram-based LSTM model to analyze this multi-

dimensional dataset. The LSTM, trained on synchronized biomechanical and acoustic 

data, learns to recognize patterns corresponding to different musical styles and 

emotional contexts. The work not only enhances the understanding of how PM 

contributes to ME but also demonstrates the potential of ML in automating the analysis 

of performance characteristics in music. 

The paper is organized as follows: Section 2 presents the methodology, Section 

3 presents the methodology, Section 4 presents the analysis, and Section 5 concludes 

the paper. 
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2. Methodology 

2.1. Participants 

The study involved 17 violinists, comprising 11 Males and 6 Females, aged 

between 20 and 35 years, with a mean age of 27.4 years. All participants were skilled 

violinists with varying experience levels, ensuring diverse performance styles and 

emotional expressions. Specifically, 10 participants were professional violinists with 

over five years of experience performing in various settings such as orchestras, 

chamber music groups, and solo performances. The remaining 7 participants were 

advanced amateurs with at least three years of dedicated practice and performance 

experience, often participating in community orchestras, ensembles, or solo recitals. 

This blend of professional and amateur musicians provided a rich dataset for 

examining the biomechanical nuances of violin playing across different levels of 

expertise [31,32]. 

Participants were selected based on their familiarity with a broad repertoire of 

musical styles, including classical, contemporary, and folk music. This variety ensured 

that their physical expressions—such as bowing techniques, posture, and body 

movement—could be analyzed concerning different musical genres and emotional 

contexts. Educational backgrounds varied, with 13 participants holding formal music 

education degrees, ranging from undergraduate to master’s levels in violin 

performance. The remaining 4 participants, while not formally educated in music, had 

extensive training through private lessons and had performed regularly in semi-

professional settings. 

Each participant provided informed consent and completed a detailed 

questionnaire outlining their performance experience, preferred musical genres, and 

previous participation in biomechanical or music cognition studies. This information 

helped contextualize their movement patterns during the study. By focusing solely on 

violinists, the study aimed to explore the intricate relationship between a musician’s 

physical motion—such as bowing dynamics, hand movements, and body posture—

and the expressive qualities of their performance, thus contributing to the 

understanding of how musical styles and emotions are embodied in the art of violin 

playing. 

2.2. Measurements 

To comprehensively analyze the biomechanical and expressive elements of violin 

performance, a multi-dimensional set of measurements was employed (Table 1), 

capturing various aspects of the participants’ movements, posture, and the resulting 

musical output. Kinematic, kinetic, and acoustic parameters were the primary 

categories of measurements used to gain a holistic understanding of how violinists 

express musical styles and emotions. 

1) Kinematic Measurements were primarily obtained through the motion capture 

system and IMUs. These measurements included joint angles at the shoulder, 

elbow, and wrist to assess the range of motion and the fluidity of bowing and 

fingering movements. Segmental velocities, both linear and angular, of the upper 

arm, forearm, and hand were also recorded to understand the speed and dynamics 
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of the violinists’ techniques. The trajectory and angle of the bow relative to the 

strings were meticulously tracked, providing insights into the nuances of bowing 

style and technique that are essential for identifying variations in musical 

expression. Additionally, postural adjustments of the head, torso, and lower body 

were monitored to evaluate the violinists’ overall posture and balance, capturing 

subtle shifts in body movement that might indicate emotional expression or 

stylistic interpretation. 

2) Kinetic Measurements were collected using the force plate and IMUs to explore 

the forces and torques involved in violin performance. Ground reaction forces 

recorded by the force plate provided weight distribution and balance data during 

different performance phases, highlighting how the violinists’ stance and lower 

body dynamics contributed to their overall expressiveness. The IMUs also 

offered detailed information on the forces exerted by the arms and hands, 

including the intensity of bowing and the pressure applied to the strings, which 

are crucial for creating sound and emotional tone variations. 

3) Acoustic Measurements were captured using a high-fidelity microphone, 

synchronized with the MC and kinetic data. This allowed for a direct correlation 

between PM and the resulting sound. Acoustic parameters such as sound 

intensity, articulation, and vibrato were analyzed to understand how specific 

biomechanical actions influenced the musical output. By integrating these 

kinematic, kinetic, and sound measurements, the study aimed to unravel the 

complex interplay between a violinist’s physical movements and their expressive 

musical performance, providing a detailed framework for understanding the 

embodiment of musical styles and emotions. 

Table 1. Measurements. 

Measurement type Parameter Description Units 

Kinematic 

Joint angles Angles at shoulder, elbow, and wrist joints. Degrees (°) 

Segmental velocities Linear and angular velocities of the arm segments. 
Meters per second (m/s), Degrees 

per second (°/s) 

Bow trajectory and angle 
Path and angle of the bow relative to violin 

strings. 
Meters (m), Degrees (°) 

Postural adjustments Movements of the head, torso, and lower body. Meters (m), Degrees (°) 

Kinetic 
Ground reaction forces 

Forces exerted on the ground during the 

performance. 
Newtons (N) 

Arm and hand forces Forces applied by arms and hands. Newtons (N) 

Acoustic 

Sound intensity The volume of the sound produced. Decibels (dB) 

Articulation Clarity and distinctness of musical notes. Qualitative (Categorical) 

Vibrato characteristics Frequency and amplitude of vibrato. Hertz (Hz), Amplitude (mm) 

2.3. Conceptual framework 

The conceptual framework of this study (Figure 1) integrates biomechanics, 

music cognition, and ML to explore how violinists’ movements are linked to musical 

styles and emotional expression. The framework is built on the premise that the PM 

involved in violin playing—such as bowing techniques, finger placements, and 

postural adjustments—are not merely mechanical features but are deeply intertwined 
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with the ME. By analyzing these movements with the resulting sound, the study aims 

to decode the underlying patterns that characterize different musical styles and 

emotional contexts. 

 
Figure 1. Framework of the study. 

Central to this framework is the dual analysis of biomechanical data and audio 

output. The biomechanical feature involves capturing the violinists’ movements, 

including joint angles, segmental velocities, and force dynamics, to understand the 

physical expression of their performances. The acoustic aspect focuses on the audio 

features of the performance, with a specific emphasis on how the energy distribution 

across frequencies reflects the nuances of the music being played. By combining these 

two aspects, the framework seeks to uncover the complex relationship between a 

musician’s physical movements and the expressive qualities of their performance. 

The ML component is then employed to automate the identification of musical 

styles and emotions. By processing both biomechanical and audio data, the framework 

leverages advanced algorithms to identify patterns and correlations within this multi-

dimensional dataset. The aim is to develop a system that recognizes and categorizes 

ME by analyzing how violinists embody different styles and emotions through their 

movements. This integrated approach offers a holistic view of ME, advancing the 

understanding of how PM and sound interact in violin playing. 

2.4. Data collection 

Data collection was meticulously designed to capture both the BM of the 

violinists and the corresponding acoustic output during the performance. Participants 

were instructed to perform a series of musical excerpts that spanned a range of styles 

and emotional contexts. High-fidelity audio recordings were made of each 

performance, which were then processed to extract detailed acoustic features. This 

included capturing the music’s frequency, intensity, and timbral features, contributing 

a nuanced view of the expressive elements in each piece. 

In parallel, biomechanical data were collected using a motion capture system with 

12 high-speed infrared cameras and wearable IMUs. Reflective markers were placed 

on key anatomical landmarks, such as the head, shoulders, elbows, and wrists, to 

capture the complex motions involved in violin playing. This setup enabled the precise 

measurement of kinematic parameters, including joint angles, segmental velocities, 

and bowing trajectories. The IMUs complemented this data by providing additional 

insights into angular velocities and forces exerted by the arms and hands. A force plate 
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embedded in the floor measured ground reaction forces, showing the participants’ 

balance and weight distribution during the performance. 

To ensure a comprehensive dataset, the audio and motion data were 

synchronized, allowing for integrated analysis of how specific movements influenced 

the acoustic output. Each musical excerpt was performed multiple times to capture 

various expressive variations. The collected data were then processed into a format 

suitable for ML analysis, with sequences representing temporal performance windows. 

This comprehensive data collection approach aimed to provide a rich foundation for 

examining the interplay between the biomechanical features of violin playing and the 

resulting musical expression, facilitating an in-depth exploration of how physical 

movement and sound are interconnected in conveying musical styles and emotions. 

2.5. Mel-Spectrogram-based LSTM 

The Mel-spectrogram-based LSTM was employed to analyze the temporal 

relationships between violinists’ BM and the audio features of their performances. The 

model utilized Mel-spectrograms, which provide a time-frequency representation of 

the audio signal, combined with biomechanical data to capture patterns corresponding 

to different musical styles and emotions. The LSTM was chosen due to its ability to 

learn and model long-term dependencies in sequential data, making it ideal for 

understanding violin performance’s dynamic and expressive nature. 

1) Input to the LSTM: The input to the LSTM consisted of sequences of feature 

vectors representing biomechanical and audio data. Each input sequence 𝑋 was 

structured as follows: 

𝑋 = {(𝑥1,𝑚1), (𝑥2, 𝑚2),… , (𝑥𝑇 , 𝑚𝑇)} (1) 

where 𝑥𝑡  is the biomechanical feature vector at time 𝑡  including joint angles, 

velocities, forces, and 𝑚𝑡  is the Mel-spectrogram frame at the same time 𝑡 . Mel-

spectrograms were derived from the audio signal using the Short-Time Fourier 

Transform (STFT): 

STFT{𝑥(𝑡)}(𝑡, 𝑓) = ∑  

𝑁−1

𝑥[𝑛] × 𝑤[𝑛 − 𝑡]𝑒−𝑗2𝜋𝑓𝑛/𝑁 (2) 

The Mel-spectrogram 𝑀(𝑡, 𝑓𝑚𝑒𝑙) was then calculated by mapping the frequency 

components onto the Mel scale: 

𝑀(𝑡, 𝑓𝑚𝑒𝑙) = ∑  

𝑘

|𝑆𝑇𝐹𝑇{𝑥(𝑡)}(𝑡, 𝑓𝑘)|
2 × 𝐻(𝑓𝑘, 𝑓𝑚𝑒𝑙) (3) 

where 𝐻(𝑓𝑘, 𝑓𝑚𝑒𝑙) is the Mel filter bank. This transformation provided a feature-rich 

representation of the audio that captured the expressive elements of the musical 

performance. 

2) LSTM: The model’s core comprised multiple layers of LSTM units. Each LSTM 

unit maintained an internal state 𝑐𝑡 and an output ℎ𝑡 at each time step. It used 

three gates-input, forget, and output gates-to regulate the flow of information: 

⚫ Input Gate 𝑖𝑡: 

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 
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⚫ Forget Gate 𝑓𝑡:  

𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (5) 

⚫ Output Gate 𝑜𝑡: 

𝑜𝑡 = 𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

⚫ Cell state update:  

�̃�𝑡 = tanh(𝑊𝑐 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (7) 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡 (8) 

⚫ Hidden state ℎ𝑡 : 

ℎ𝑡 = 𝑜𝑡 × tanh(𝑐𝑡) (9) 

Here, 𝜎 is the sigmoid activation function, and tanh is the hyperbolic tangent 

function. 𝑊𝑖,𝑊𝑓 𝑊𝑜, and 𝑊𝑐 are the weight matrices, while 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜, and 𝑏𝑐 are the 

biased terms. These LSTM layers processed the input sequences, learning the temporal 

dependencies between the biomechanical movements and the Mel-spectrogram 

features. 

3) Fully Connected Layer and SoftMax Classification: After processing the 

sequences through the LSTM layers, the output was passed to a fully connected 

(dense) layer. This dense layer aggregated the learned features from the LSTM 

layers, refining the representation of the data: 

𝑧 = 𝑊dense × ℎ + 𝑏dense (10) 

where 𝑊dense and 𝑏dense are the weights and biases of the dense layer, and ′ℎ′ is the 

final hidden state from the LSTM layers. The dense layer’s output ′𝑧′ was then fed 

into a softmax activation function to produce a probability distribution over the 

classes: 

�̂�𝑖 =
𝑒𝑧𝑖

∑  𝑗   𝑒
𝑧𝑗

 (11) 

where �̂�𝑖 is the predicted probability for class ′𝑖′. The SoftMax function ensured that 

the output values were summed to 1, making them interpretable as probabilities for 

the different musical styles and emotional states. 

4) Model Training: The model was trained using the categorical cross-entropy loss 

function, which measured the discrepancy between the predicted class 

probabilities and the true labels: 

𝐿 = −∑  

𝑁

𝑖=1

𝑦𝑖log(�̂�𝑖) (12) 

where 𝑦𝑖  is the true label and �̂�𝑖  is the predicted probability for each class. The 

model’s parameters, including the weights of the LSTM and dense layers, were 

updated using Backpropagation Through Time (BPTT) to minimize this loss. The 

training process involved updating the model weights to improve its ability to classify 

the input sequences accurately. 
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The final output layer provided a probability distribution over the classes, 

allowing the model to classify each input sequence into one of the predefined 

categories representing musical styles and emotions (Algorithm 1). By leveraging the 

sequential nature of biomechanical and Mel-spectrogram data, the LSTM model could 

recognize complex patterns that feature different expressive nuances in violin 

performances. 

Algorithm 1 Mel-spectrogram-based LSTM model 

1: Input: 

2:           Biomechanical Data: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} where 𝑥𝑡 is the biomechanical feature vector at time 𝑡. 
3:           Mel-Spectrogram Data: 𝑀 = {𝑚1,𝑚2, … ,𝑚𝑇} where 𝑚𝑡 is the Mel-spectrogram frame at time 𝑡. 
4:           Number of Epochs: 𝐸 

5:           Learning Rate: 𝛼 

6: Output: 

7:           Predicted class probabilities for musical styles and emotions. 

8: Steps: 

9: Data Preprocessing: 

10:   1.1. Clean and normalize biomechanical data 𝑋 to obtain features like joint angles, segmental velocities, and forces. 

11:   1.2. Convert audio recordings into Mel-spectrograms 𝑀 using STFT and Mel filter banks. 

13:   1.3. Synchronize biomechanical data 𝑋 and Mel-spectrogram data 𝑀 into sequences: 𝐷 = {(𝑥1, 𝑚1), (𝑥2, 𝑚2), … , (𝑥𝑇 , 𝑚𝑇)} 
14    1.4. Normalize and segment the data into fixed-size windows. 

15: Initialize LSTM Model Parameters: 

16:     2.1. Randomly initialize weights 𝑊𝑖 ,𝑊𝑓 ,𝑊𝑜 ,𝑊𝑐  and biases 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜, 𝑏𝑐 for LSTM layers. 

17:     2.2. Initialize weights 𝑊dense  and biases 𝑏dense  for the fully connected layer. 

18: Training Phase: 

19:     For epoch in 1 to: 

20:     3.1. For Each training sequence 𝐷𝑛 = {(𝑥1, 𝑚1), … , (𝑥𝑇 , 𝑚𝑇)} : 
21:     3.2. Initialize LSTM cell state 𝑐0 and hidden state ℎ0. 

22:           For 𝑡 = 1 to: 

23:                 Compute LSTM Gates: 

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡 , 𝑚𝑡] + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡 , 𝑚𝑡] + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡 , 𝑚𝑡] + 𝑏𝑜)

 

24:                 Update cell state 𝒄𝒕 : 
�̃�𝑡 = tanh(𝑊𝑐 × [ℎ𝑡−1, 𝑥𝑡 , 𝑚𝑡] + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡
 

25:                 Update hidden state 𝒉𝒕 : 

ℎ𝑡 = 𝑜𝑡 × tanh(𝑐𝑡) 
26: End For 

27:     3.3. Obtain final hidden state ℎ𝑇 and pass it to the fully connected layer: 𝑧 = 𝑊dense × ℎ𝑇 + 𝑏dense  

28:     3.4. Apply SoftMax to obtain class probabilities: �̂�𝑖 =
𝑒𝑧𝑖

∑  𝑗  𝑒
𝑧𝑗

 

29:     3.5. Compute loss 𝐿 using categorical cross-entropy: 𝐿 = −∑  𝑁
𝑖=1 𝑦𝑖log(�̂�𝑖) 

30:     3.6. Backpropagate the error through the LSTM and fully connected layers using BPTT to compute gradients. 

31:     3.7. Update weights and biases using gradient descent: 𝜃 = 𝜃 − 𝛼 × ∇𝐿 

32:     3.8. End For 

33: Prediction Phase: 

34:     4.1. For a new input sequence 𝐷test, compute the class probabilities using the trained LSTM model following steps 3.1 to 

3.4. 

35:     4.2. Assign the class with the highest probability as the predicted label for musical style or emotion. 

36: End Algorithm 

3. Results 

3.1. Descriptive statistics 
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The descriptive statistics for the kinematic data, as shown in Table 2 and Figure 

2, indicate a mean shoulder joint angle of 47° with a Standard Deviation (SD) of 12°, 

ranging from 26° to 67°. The elbow joint angle averaged 72° with an 11° SD, spanning 

51° to 89°, while the wrist joint angle had a mean of 23° with an 8° deviation, ranging 

from 11° to 39°. Bowing velocity showed a mean of 0.74 m/s, with a SD of 0.21 m/s, 

and varied between 0.32 m/s and 1.18 m/s. The bowing trajectory deviation averaged 

7° with a 4° SD, with a range from 2° to 11°. For the kinetic data, the ground reaction 

force had a mean of 347.6 N and an SD of 64.9 N, ranging from 251.3 N to 468.7 N. 

The arm force averaged 13.1 N with a 3.3 N SD, from 7.2 N to 18.9 N. Hand force 

showed a mean of 7.1 N with a 2.3 N-SD, ranging from 3.4 N to 10.7 N. Regarding 

acoustic data, the sound intensity had a mean of 74.8 dB and an SD of 5.4 dB, with 

values ranging from 66.1 dB to 87.6 dB. Vibrato frequency averaged 5.7 Hz with a 

0.7 Hz deviation from 4.3 Hz to 6.9 Hz. Vibrato amplitude had a mean of 2.9 mm with 

a 1.2 mm deviation, ranging from 1.1 mm to 4.4 mm. Articulation clarity, measured 

on a scale of 1 to 5, averaged 4.1 with an SD of 0.6, ranging from 3.1 to 4.9. 

Table 2. Results for the descriptive statistics. 

Parameter Mean Standard deviation Minimum Maximum 

Kinematic data     

Shoulder joint angle (°) 47 12 26 67 

Elbow joint angle (°) 72 11 51 89 

Wrist joint angle (°) 23 8 11 39 

Bowing velocity (m/s) 0.74 0.21 0.32 1.18 

Bowing trajectory deviation (°) 7 4 2 11 

Kinetic data     

Ground reaction force (n) 347.6 64.9 251.3 468.7 

Arm force (n) 13.1 3.3 7.2 18.9 

Hand force (N) 7.1 2.3 3.4 10.7 

Acoustic data     

Sound intensity (dB) 74.8 5.4 66.1 87.6 

Vibrato frequency (Hz) 5.7 0.7 4.3 6.9 

Vibrato amplitude (mm) 2.9 1.2 1.1 4.4 

Articulation clarity (Scale 1–5) 4.1 0.6 3.1 4.9 
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Figure 2. Results of description statistics. 

3.2. Biomechanical analysis 

The kinematic findings across different musical styles and emotional contexts are 

displayed in Table 3 and Figure 3, which show that the shoulder joint angle had a 

mean of 44° (SD: 10°) in “Calm” performances, ranging from 28° to 61°, while in 

“Energetic” performances, it averaged 53° (SD: 14°) with a range of 35° to 72°. In 

“Joyful” contexts, the mean was 48° (SD: 12°) with a range from 32° to 65°, and in 

“Melancholic” contexts, the mean was 42° (SD: 9°) with a range of 27° to 55°. The 

elbow joint angle showed a mean of 70° (SD: 8°) for “Calm,” with a range from 55° 

to 83°, while “Energetic” performances had a higher mean of 76° (SD: 10°) ranging 

from 58° to 89°. In “Joyful” contexts, the mean was 74° (SD: 9°) with a range from 

57° to 88°, and “Melancholic” had the lowest mean at 68° (SD: 7°), ranging from 51° 

to 82°. Wrist joint angle in “Calm” performances had a mean of 22° (SD: 7°), ranging 

from 10° to 37°, while in “Energetic” contexts, it averaged 27° (SD: 9°) with a range 

of 13° to 41°. For “Joyful,” the mean was 25° (SD: 8°) with a range of 12° to 39°, and 

in “Melancholic,” the mean was 20° (SD: 6°) with a range of 9° to 32°. Bowing 

velocity had a mean of 0.61 m/s (SD: 0.18 m/s) for “Calm” performances, ranging 
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from 0.35 to 0.93 m/s. In “Energetic” contexts, it increased to a mean of 0.89 m/s (SD: 

0.24 m/s), ranging from 0.48 to 1.23 m/s. “Joyful” performances showed a mean of 

0.78 m/s (SD: 0.21 m/s), ranging from 0.44 to 1.11 m/s, and “Melancholic” had the 

lowest mean at 0.58 m/s (SD: 0.16 m/s), with a range of 0.30 to 0.82 m/s. Bowing 

trajectory deviation in “Calm” performances had a mean of 6° (SD: 2°), with a range 

from 2° to 10°. In “Energetic” contexts, the mean increased to 9° (SD: 3°), ranging 

from 4° to 14°. “Joyful” performances had a mean of 8° (SD: 3°) with a range of 3° to 

12°, while “Melancholic” performances had the lowest mean at 5° (SD: 2°), ranging 

from 1° to 9°. 

Table 3. Kinematic findings across different musical styles and emotional contexts. 

Kinematic Parameter Calm Energetic Joyful Melancholic 

Shoulder joint angle (°) 

Mean: 44 53 48 42 

SD: 10 14 12 9 

Range: 28–61 35–72 32–65 27–55 

Elbow joint angle (°) 

Mean: 70 76 74 68 

SD: 8 10 9 7 

Range: 55–83 58–89 57–88 51–82 

Wrist joint angle (°) 

Mean: 22 27 25 20 

SD: 7 9 8 6 

Range: 10–37 13–41 12–39 9–32 

Bowing velocity (m/s) 

Mean: 0.61 0.89 0.78 0.58 

SD: 0.18 0.24 0.21 0.16 

Range: 0.35–0.93 0.48–1.23 0.44–1.11 0.30–0.82 

Bowing trajectory deviation (°) 

Mean: 6 9 8 5 

SD: 2 3 3 2 

Range: 2–10 4–14 3–12 1–9 
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Figure 3. Kinematic findings for. (a) shoulder joint angle (°); (b) elbow joint angle (°); (c) wrist joint angle (°); (d) 

bowing velocity (m/s); (e) bowing trajectory deviation (°). 

3.3. Kinetic findings 

The kinetic findings across different musical styles and emotional contexts are 

shown in Table 4 and Figure 4, and they indicate that the ground reaction force in 

“Calm” performances had a mean of 312 N (SD: 47 N), ranging from 257 N to 416 N. 

In “Energetic” performances, the mean increased to 368 N (SD: 59 N), ranging from 

275 N to 474 N. “Joyful” contexts showed a mean of 342 N (SD: 53 N), with a range 

of 263 N to 435 N, while “Melancholic” had the lowest mean at 298 N (SD: 44 N), 

ranging from 240 N to 386 N. Arm force had a mean of 11.2 N (SD: 3.1 N) for “Calm” 

performances, ranging from 6.5 N to 16.8 N. In “Energetic” contexts, the mean 

increased to 14.7 N (SD: 3.8 N), ranging from 8.4 N to 19.5 N. “Joyful” performances 

had a mean of 13.3 N (SD: 3.4 N), ranging from 7.1 N to 17.6 N, while “Melancholic” 

had the lowest mean arm force at 10.6 N (SD: 2.9 N), with a range of 6.2 N to 15.0 N. 

Hand force in “Calm” performances had a mean of 5.8 N (SD: 1.7 N), ranging from 

3.4 N to 9.2 N. In “Energetic” contexts, the mean was 7.6 N (SD: 2.1 N), ranging from 

4.0 N to 10.7 N. “Joyful” performances showed a mean of 6.9 N (SD: 1.9 N), with a 
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range from 3.8 N to 9.9 N. “Melancholic” had the lowest hand force mean at 5.2 N 

(SD: 1.6 N), ranging from 3.0 N to 8.3 N. Force plate balance in “Calm” performances 

had a mean distribution of 48/52% (SD: 3/3%), with a range from 44/56% to 51/49%. 

In “Energetic” contexts, the mean balance was 45/55% (SD: 4/4%), ranging from 

40/60% to 50/50%. The mean balance for “Joyful” performances was 47/53% (SD: 

3/3%), ranging from 43/57% to 51/49%. “Melancholic” performances exhibited a 

balanced mean of 50/50% (SD: 2/2%), ranging from 47/53% to 52/48%. 

Table 4. The kinetic findings across different musical styles and emotional contexts. 

Kinetic Parameter Calm Energetic Joyful Melancholic 

Ground reaction force (N) 

Mean: 312 368 342 298 

SD: 47 59 53 44 

Range: 257–416 275–474 263–435 240–386 

Arm force (N) 

Mean: 11.2 14.7 13.3 10.6 

SD: 3.1 3.8 3.4 2.9 

Range: 6.5–16.8 8.4–19.5 7.1–17.6 6.2–15.0 

Hand force (N) 

Mean: Mean: 5.8 Mean: 7.6 Mean: 6.9 Mean: 5.2 

SD: SD: 1.7 SD: 2.1 SD: 1.9 SD: 1.6 

Range: 3.4–9.2 4.0–10.7 3.8–9.9 3.0–8.3 

Force plate balance (%) 

Mean: 48/52 45/55 47/53 50/50 

SD: 3/3 4/4 3/3 2/2 

Range: 44/56–51/49 40/60–50/50 43/57–51/49 47/53–52/48 

 

Figure 4. Kinetic findings for. (a) ground reaction force (N); (b) arm force (N); (c) hand force (N); (d) force plate 

balance (%) for left balance; (e) force plate balance (%) for right balance. 
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3.4. Correlation with audio features 

The correlations between key biomechanical parameters and acoustic features are 

shown in Table 5 and Figure 5, which reveal that shoulder joint angle had a moderate 

positive correlation with sound intensity across all contexts, being strongest in 

“Energetic” (0.68) and weakest in “Melancholic” (0.38). The correlation between 

shoulder joint angle and vibrato amplitude was also highest in “Energetic” (0.60) and 

lowest in “Melancholic” (0.30). The elbow joint angle showed a moderate correlation 

with sound intensity, peaking in “Energetic” (0.63) and lowest in “Melancholic” 

(0.35). Its correlation with vibrato frequency was highest in “Energetic” (0.58) and 

lowest in “Melancholic” (0.32). Bowing velocity exhibited a strong correlation with 

sound intensity, particularly in “Energetic” (0.75) and a moderate one in 

“Melancholic” (0.50). Its correlation with articulation clarity was highest in 

“Energetic” (0.70) and lowest in “Melancholic” (0.46). Ground reaction force showed 

a moderate correlation with sound intensity, being highest in “Energetic” (0.57) and 

lowest in “Melancholic” (0.33). Arm force had a moderate to strong correlation with 

vibrato amplitude, most vital in “Energetic” (0.65) and weakest in “Melancholic” 

(0.37). Its correlation with sound intensity was highest in “Energetic” (0.69) and 

lowest in “Melancholic” (0.39). Hand force had a moderate correlation with 

articulation clarity, peaking in “Energetic” (0.63) and lowest in “Melancholic” (0.40). 

Table 5. The correlations between key biomechanical (kinematic and kinetic) parameters and acoustic features across 

different musical styles and emotional contexts. 

Biomechanical parameter Acoustic feature Calm Energetic Joyful Melancholic 

Shoulder joint angle (°) 
Sound intensity (dB) 0.45 0.68 0.52 0.38 

Vibrato amplitude (mm) 0.34 0.60 0.41 0.30 

Elbow joint angle (°) 
Sound intensity (dB) 0.40 0.63 0.48 0.35 

Vibrato frequency (Hz) 0.37 0.58 0.44 0.32 

Bowing velocity (m/s) 
Sound intensity (dB) 0.56 0.75 0.62 0.50 

Articulation clarity 0.48 0.70 0.55 0.46 

Ground reaction force (N) Sound intensity (dB) 0.38 0.57 0.49 0.33 

Arm force (N) 
Vibrato amplitude (mm) 0.42 0.65 0.50 0.37 

Sound intensity (dB) 0.44 0.69 0.54 0.39 

Hand force (N) Articulation clarity 0.46 0.63 0.51 0.40 
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Figure 5. Correlations between. (a) shoulder joint angle (°)—sound intensity (dB); (b) shoulder joint angle (°)—

vibrato amplitude (mm); (c) elbow joint angle (°)—sound intensity (dB); (d) elbow joint angle (°)—vibrato frequency 

(Hz); (e) bowing velocity (m/s)—and intensity (dB); (f) bowing velocity (m/s)—articulation clarity; (g) ground 

reaction force (N)—sound intensity (dB); (h) arm force (N)—vibrato amplitude (mm); (i) arm force (N)—sound 

intensity (dB); (j) hand force (N)—articulation clarity. 

3.5. Audio analysis 

The Mel-spectrogram features across different musical styles and emotional 

contexts are shown in Table 6 and Figure 6, and they indicate that peak frequency 

was highest in “Energetic” performances with a mean of 947 Hz (SD: 113 Hz), ranging 
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from 779 Hz to 1103 Hz, and lowest in “Melancholic” with a mean of 553 Hz (SD: 68 

Hz), ranging from 423 Hz to 668 Hz. In “Calm” and “Joyful” contexts, the means were 

603 Hz (SD: 77 Hz) and 807 Hz (SD: 92 Hz), respectively. The spectral centroid, 

representing the “brightness” of the sound, was highest in “Energetic” performances 

with a mean of 1093 Hz (SD: 117 Hz), ranging from 903 Hz to 1253 Hz, and lowest 

in “Melancholic” at 647 Hz (SD: 71 Hz), with a range from 523 Hz to 779 Hz. “Calm” 

and “Joyful” had means of 703 Hz (SD: 82 Hz) and 953 Hz (SD: 98 Hz), respectively. 

Spectral bandwidth, indicating the range of frequencies, was broadest in “Energetic” 

with a mean of 273 Hz (SD: 41 Hz), ranging from 203 Hz to 319 Hz, and narrowest 

in “Melancholic” with a mean of 163 Hz (SD: 24 Hz), ranging from 121 Hz to 199 

Hz. In “Calm” and “Joyful,” the means were 183 Hz (SD: 31 Hz) and 227 Hz (SD: 36 

Hz), respectively. Spectral contrast was highest in “Energetic” performances with a 

mean of 31 dB (SD: 6 dB), ranging from 25 dB to 37 dB, and lowest in “Melancholic” 

at 21 dB (SD: 2 dB), ranging from 17 dB to 27 dB. “Calm” and “Joyful” had means 

of 23 dB (SD: 3 dB) and 27 dB (SD: 4 dB), respectively. Spectral flatness, which 

indicates the noisiness of the sound, was highest in “Melancholic” with a mean of 0.34 

(SD: 0.02), ranging from 0.31 to 0.39, and lowest in “Energetic” with a mean of 0.22 

(SD: 0.03), ranging from 0.17 to 0.28. “Calm” and “Joyful” had means of 0.33 (SD: 

0.04) and 0.27 (SD: 0.05), respectively. The zero-crossing rate, indicating the rate of 

signal changes, was highest in “Energetic” with a mean of 0.13 (SD: 0.03), ranging 

from 0.09 to 0.15, and lowest in “Melancholic” with a mean of 0.06 (SD: 0.01), 

ranging from 0.05 to 0.08. “Calm” and “Joyful” contexts had means of 0.09 (SD: 0.02) 

and 0.11 (SD: 0.02), respectively. 

Table 6. Mel-spectrogram features across different musical styles and emotional contexts. 

Mel-Spectrogram Feature Calm Energetic Joyful Melancholic 

Peak Frequency (Hz) 

Mean: 603 947 807 553 

SD: 77 113 92 68 

Range: 482–719 779–1103 654–963 423–668 

Spectral Centroid (Hz) 

Mean: 703 1093 953 647 

SD: 82 117 98 71 

Range: 552–849 903–1253 751–1103 523–779 

Spectral Bandwidth (Hz) 

Mean: 183 273 227 163 

SD: 31 41 36 24 

Range: 131–229 203–319 181–279 121–199 

Spectral Contrast (dB) 

Mean: 23 31 27 21 

SD: 3 6 4 2 

Range: 18–29 25–37 23–33 17–27 

Spectral Flatness 

Mean: 0.33 0.22 0.27 0.34 

SD: 0.04 0.03 0.05 0.02 

Range: 0.26–0.39 0.17–0.28 0.21–0.33 0.31–0.39 

Zero-Crossing Rate 

Mean: 0.09 0.13 0.11 0.06 

SD: 0.02 0.03 0.02 0.01 

Range: 0.06–0.10 0.09–0.15 0.08–0.13 0.05–0.08 
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Figure 6. Mel-spectrogram attribute for. (a) Peak Frequency (Hz); (b) spectral centroid (Hz); (c) spectral bandwidth 

(Hz); (d) spectral contrast (dB); (e) spectral flatness; (f) zero-crossing rate. 

3.6. Sound and expressiveness 

The sound features and their association with expressive elements across 

different musical styles and emotional contexts are depicted in Table 7 and Figure 7, 

which reveal that sound intensity was highest in “Energetic” performances with a 

mean of 83.7 dB (SD: 6.3 dB), ranging from 72.5 dB to 92.4 dB, and lowest in 

“Melancholic” with a mean of 71.9 dB (SD: 4.9 dB), ranging from 63.2 dB to 80.8 

dB. In “Calm” and “Joyful” contexts, the means were 74.2 dB (SD: 5.2 dB) and 78.6 

dB (SD: 5.7 dB), respectively. Vibrato frequency, indicating the rate of pitch variation, 

was highest in “Energetic” performances with a mean of 6.8 Hz (SD: 0.9 Hz), ranging 

from 5.4 Hz to 7.9 Hz, and lowest in “Melancholic” with a mean of 4.8 Hz (SD: 0.6 

Hz), ranging from 3.9 Hz to 5.8 Hz. “Calm” and “Joyful” had means of 5.4 Hz (SD: 

0.7 Hz) and 6.1 Hz (SD: 0.8 Hz), respectively. Vibrato amplitude, reflecting the extent 

of pitch variation, was widest in “Energetic” performances with a mean of 3.4 mm 

(SD: 1.3 mm), ranging from 2.0 mm to 5.6 mm, and narrowest in “Melancholic” with 

a mean of 2.3 mm (SD: 0.8 mm), ranging from 1.0 mm to 3.6 mm. “Calm” and 

“Joyful” contexts had means of 2.7 mm (SD: 1.0 mm) and 3.1 mm (SD: 1.1 mm), 

respectively. Articulation clarity, measured on a scale of 1 to 5, was highest in 

“Energetic” performances with a mean of 4.6 (SD: 0.5), ranging from 4.0 to 5.0, and 
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lowest in “Melancholic” with a mean of 3.9 (SD: 0.5), ranging from 3.0 to 4.8. “Calm” 

and “Joyful” had means of 4.1 (SD: 0.6) and 4.4 (SD: 0.7), respectively. Dynamic 

range, indicating the difference between the loudest and softest sounds, was most 

significant in “Energetic” performances with a mean of 24.9 dB (SD: 4.5 dB), ranging 

from 19.0 dB to 29.8 dB, and most minor in “Melancholic” with a mean of 17.3 dB 

(SD: 3.2 dB), ranging from 13.1 dB to 22.6 dB. “Calm” and “Joyful” contexts had 

means of 18.4 dB (SD: 3.7 dB) and 21.7 dB (SD: 4.0 dB), respectively. 

Table 7. Sound features and their association with expressive elements across different musical styles and emotional 

contexts. 

Sound characteristic Calm Energetic Joyful Melancholic 

Sound intensity (dB) 

Mean: 74.2 83.7 78.6 71.9 

SD: 5.2 6.3 5.7 4.9 

Range: 65.1–84.3 72.5–92.4 69.4–87.5 63.2–80.8 

Vibrato frequency (Hz) 

Mean: 5.4 6.8 6.1 4.8 

SD: 0.7 0.9 0.8 0.6 

Range: 4.3–6.5 5.4–7.9 4.9–7.2 3.9–5.8 

Vibrato amplitude (mm) 

Mean: 2.7 3.4 3.1 2.3 

SD: 1.0 1.3 1.1 0.8 

Range: 1.2–4.5 2.0–5.6 1.5–4.8 1.0–3.6 

Articulation clarity 

Mean: 4.1 (scale 1–5) 4.6 (scale 1–5) 4.4 (scale 1–5) 3.9 (scale 1–5) 

SD: 0.6 0.5 0.7 0.5 

Range: 3.2–4.9 4.0–5.0 3.3–5.0 3.0–4.8 

Dynamic range (dB) 

Mean: 18.4 24.9 21.7 17.3 

SD: 3.7 4.5 4.0 3.2 

Range: 12.5–24.7 19.0–29.8 15.6–26.4 13.1–22.6 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7. Sound characteristics and their association with. (a) sound intensity (dB); (b) vibrato frequency (Hz); (c) 

vibrato amplitude (mm); (d) articulation clarity; (e) dynamic range (dB). 
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3.7. ML model performance 

As displayed in Table 8 and Figure 8, during the ML model’s training and 

validation process, the key performance metrics show a steady decrease in training 

and validation loss over the epochs, with training loss starting at 1.203 in epoch 1 and 

reducing to 0.277 by epoch 100. Validation loss followed a similar trend, decreasing 

from 1.315 to 0.459 over the same period. Training accuracy increased consistently 

from 58.4% at epoch 1 to 96.5% at epoch 100, while validation accuracy improved 

from 54.3% to 92.5%. Precision started at 55.6% in epoch 1 and rose to 94.3% by 

epoch 100. Recall followed a similar pattern, beginning at 53.7% and reaching 92.6%. 

The F1-score, reflecting the harmonic mean of precision and recall, improved from 

54.6% at the start of training to 93.4% at epoch 100. These metrics indicate a consistent 

improvement in the model’s ability to accurately identify musical styles and emotions, 

with both training and validation metrics stabilizing in the latter epochs, suggesting 

effective learning and generalization. 

Table 8. Performance metrics during the ML model’s training and validation process. 

Epoch Training loss Validation loss Training accuracy (%) Validation accuracy (%) Precision (%) Recall (%) F1-score (%) 

1 1.203 1.315 58.4 54.3 55.6 53.7 54.6 

5 0.854 0.926 72.1 68.9 70.2 67.8 69.0 

10 0.672 0.705 81.4 78.3 79.1 77.5 78.3 

15 0.551 0.622 86.5 82.7 84.6 81.2 82.9 

20 0.497 0.583 88.3 84.6 86.1 83.4 84.7 

25 0.459 0.548 89.7 86.1 87.8 85.2 86.5 

30 0.430 0.524 90.8 87.5 89.1 86.9 88.0 

35 0.410 0.510 91.6 88.2 89.7 87.4 88.5 

40 0.391 0.501 92.3 88.7 90.4 88.1 89.2 

45 0.376 0.492 92.8 89.1 90.9 88.6 89.7 

50 0.362 0.486 93.3 89.6 91.5 89.2 90.3 

55 0.349 0.481 93.7 90.1 91.8 89.9 90.8 

60 0.337 0.476 94.1 90.4 92.2 90.3 91.2 

65 0.327 0.473 94.5 90.8 92.6 90.7 91.6 

70 0.318 0.470 94.8 91.0 92.9 91.1 92.0 

75 0.310 0.467 95.1 91.3 93.1 91.4 92.3 

80 0.302 0.465 95.4 91.6 93.4 91.7 92.5 

85 0.295 0.463 95.7 91.8 93.7 91.9 92.8 

90 0.288 0.461 96.0 92.1 93.9 92.2 93.0 

95 0.282 0.460 96.2 92.3 94.1 92.4 93.2 

100 0.277 0.459 96.5 92.5 94.3 92.6 93.4 
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Figure 8. Performance of the ML model against. (a) training and validation loss; (b) training and validation accuracy; 

(c) precision, recall, and F1-score. 

4. Conclusion and future work 

The findings of this study demonstrate the effectiveness of integrating 

biomechanical analysis with MLg, specifically Mel-spectrogram-based LSTM 

modeling, to automate the identification of musical styles and emotions in violin 

performances. By analyzing synchronized biomechanical and acoustic data, the study 

reveals a strong relationship between a violinist’s physical movements and the 

expressive qualities of their performance. Key biomechanical parameters such as joint 

angles, bowing velocity, and force dynamics correlate significantly with audio features 

like sound intensity, vibrato frequency, and articulation clarity, highlighting the 

nuanced ways musicians convey different styles and emotions. The LSTM model 

showed high accuracy in classifying musical styles and emotions, achieving a 

validation accuracy of 92.5%, with precision, recall, and F1-score exceeding 92%. 

These results indicate that ML can effectively capture the complex temporal patterns 

linking PM and ME, contributing to a more objective and comprehensive 

understanding than traditional qualitative methods. This automated approach has 

significant implications for music analysis, education, and interactive performance 

systems, providing a framework for real-time feedback and training tools for 

musicians. Despite the promising outcomes, this study also highlights areas for further 

exploration. The model’s performance, while robust, could be enhanced by 

incorporating additional features such as emotional context in real-time performance 

settings. 

Future work could extend this framework to other musical instruments and 

genres, furthering our understanding of the interplay between biomechanics and ME. 

Overall, this study contributes to bridging the gap between the artistic and scientific 

perspectives on music performance, demonstrating the potential of combining 

biomechanics and machine learning to enrich our understanding of violin playing. 
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