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Abstract: Modern agriculture relies on crop tissue culture technology for fast propagation, 

genetic improvement, and protection of plant species. Conventional media like Murashige 

and Skoog (MS) usually lack optimal conditions for embryogenesis, necessitating the 

development of improved media tailored to specific crop requirements. In this article, we 

introduce an Efficient Grid Identified-Deep Feedforward Neurons (EGI-DFFN) to identify 

the ideal nutrient and vitamin levels of the crop plants for improving crop tissue culture 

aimed to improve crop plant growth in a lab setting by predicting callogenesis rate (CGR), 

embryogenesis rate (EGR), and somatic embryo number (SEN), shoot regeneration rate 

(SRR), rooting rate (RR).Different concentrations of ionic macronutrients, bio-molecular, and 

vitamins of the crop plant are the input to the predictive model, which is collected through the 

laboratory Callus Induction Experiment (CIE). Z-score normalization is used to preprocessing 

the CIE data to ensure consistent scales across different input features and improve model 

training performance. DFFN used discriminates to predict complex relationships and 

interactions between CGR, EGR, SEN, SRR, and RR with EGI tuning. The EGI-DFFN 

model has significantly improved crop tissue culture growth by accurately predicting the 

CGR, EGR, SEN, SRR, and RR respectively. The EGI-DFFN model enhances understanding 

of how ionic macronutrients and vitamins impact plant growth. It identifies optimal 

concentrations of the biomolecular to enhance somatic embryo formation and plantlet 

development, providing insights for optimizing crop tissue culture conditions for optimal 

growth outcomes. 

Keywords: crop plant; tissue culture; ionic macronutrients; efficient grid identified-Deep 

feedforward neurons (EGI-DFFN); biomolecular 

1. Introduction 

Crop tissue culture technology, an in vitro plant propagation approach, has 

revolutionized agricultural practices by imparting a controlled environment for the 

rapid multiplication of plants [1]. This era entails the development of cells of plants, 

tissues, or organs on the medium of nutrients underneath a sterilized environment, 

allowing the improvement of entire flowers from small explants. Originally tissue 

subculture strategies have advanced substantially, and they are now broadly used in 

crop development applications, plant breeding, and the conservation of plant genetic 

sources [2]. As global agricultural structures face demanding situations like climate 

alternate, soil degradation, and growing populace pressures, optimizing tissue 

subculture generation presents an opportunity to improve crop manufacturing at the 

same time as keeping or enhancing the quality of vital agricultural traits [3,4]. 

Optimization of crop tissue culture approaches involves refining the factors that 

impact increase and improvement in vitro, consisting of the choice of explants, 

media composition, mild conditions, temperature, and the application of plant 
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growth regulators (PGRs). These factors directly affect the efficiency of 

micropropagation and the pleasant of the plants produced [5]. For example, the 

concentration and aggregate of PGRs together with auxins and cytokinin can 

drastically influence cellular department, differentiation, and organogenesis. 

Similarly, adjustments within the nutrient media, which includes macro- and 

micronutrients, nutrients, and carbon sources, are critical for attaining a high 

regeneration rate. Continuous efforts have been made to excellent-tune those 

variables to reap top-quality results for specific crop species, to ensure uniformity, 

disease resistance, and progressed yield [6]. 

Beyond the practical application of enhancing crop yields and lowering 

propagation time, the effect of tissue culture on the biomolecular characteristics of 

plants has garnered substantial medical hobby [7]. Tissue way of life situations can 

impact the expression of unique genes related to plant growth, pressure tolerance, 

and secondary metabolite production. This is particularly important for plants that 

are precious now not only for their agricultural yield but also for bioactive 

compounds, which include medicinal vegetation and vegetation utilized in 

pharmaceuticals or nutraceuticals. Optimized tissue tradition situations can result in 

increased manufacturing of bioactive molecules like alkaloids, flavonoids, and 

phenolic compounds, which have critical fitness benefits [8]. Furthermore, genetic 

balance in tissue-cultured flowers is a vital subject, as soma clonal variations, which 

occur because of the in vitro surroundings, can result in unwanted genetic mutations. 

Although those versions can occasionally be high quality by using introducing novel 

traits, ensuring genetic fidelity in micro propagated vegetation is important for 

maintaining consistency in crop performance [9]. Molecular strategies along with 

Deoxyribonucleic Acid (DNA) fingerprinting, Simple Sequence Repeat (SSR) 

markers and Random Amplified Polymorphic DNA (RAPD) are increasingly being 

utilized to assess the genetic balance of tissue-cultured vegetation and to display 

modifications at the biomolecular degree [10]. 

The maximum commonly used traditional medium in plant tissue way of life is 

the Murashige and Skoog (MS) medium, which incorporates a balanced mixture of 

essential nutrients, vitamins, and hormones. However, the effectiveness of this 

medium can vary depending on the specific crop species and the developmental 

degree of the plant [11]. While MS medium has been instrumental in tissue way of 

life fulfillment, it frequently falls quickly in optimizing situations for crucial 

techniques like embryogenesis and callogenesis. Therefore, there may be an 

increasing need for media formulations tailor-made to the particular biochemical and 

physiological needs of numerous crops. Optimization of nutrient concentrations, 

ionic macronutrients, and vitamins is important to improve embryogenesis charges, 

rooting performance, and shoot regeneration, all of which might be vital for 

successful tissue tradition [12]. 

1.1. Objective of the study 

The purpose is to optimize crop tissue culture technology by developing an 

Efficient Grid Identified-Deep Feedforward Neurons (EGI-DFFN) model. This 

model aims to identify the ideal concentrations of ionic macronutrients, vitamins, 



Molecular & Cellular Biomechanics 2024, 21(2), 385. 
 

3 

and biomolecular components necessary for enhancing callogenesis, embryogenesis, 

and somatic embryo formation. By accurately predicting key growth parameters, the 

model seeks to improve plantlet development in lab conditions, ultimately aiding in 

rapid propagation and genetic improvement of crop species. 

1.2. Contribution of the study 

1) To develop an EGI-DFFN model for precise prediction of key tissue culture 

parameters. 

2) To enhance the understanding of the relationship between nutrients and plant 

growth outcomes. 

3) To optimize conditions for improved somatic embryo formation and plantlet 

development. 

The structure of the paper is as follows: Section 2 explains the relevant works; 

Section 3provides a detailed explanation of the process of tissue culture; Section 4 

details the methodology; Section 5 provides the result; Section 6 gives a discussion 

of the study; Section 7 concludes the study. 

2. Related works 

Niazian and Niedbała [13] used Nonlinear nonparametric machine learning 

(ML) algorithms, including neural networks (NN), random forests (RF), partial least 

square regression (PLSR) then support vector machines (SVM) to manage 

complicated data, categorize genotypes, predict quantitative characteristics, and 

improve breeding practices. Plant breeding and biotechnology research include 

nondeterministic properties, which made classical statistical approaches impractical 

for data interpretation. Accurate plant measurement combined with ML analysis 

could lead to precision agriculture. Zhang et al. [14] used four culture circumstances 

agar meditation, light duration, culture temperature, and moisture to predict the 

melon differentiation rate using artificial neural networks (ANN). Using a four-layer 

NN design with traingdx as the training function, the ideal back propagation neural 

network (BPNN) was created. ANN and genetic algorithm (GA) combined could 

improve the circumstances of plant tissue culture with high prediction accuracy, 

which made it a potential technique for further biological investigations. 

Sathyavani et al. [15] examined nutritional inadequacies in leaves of plants 

including coriander, tomato, pepper, and chili utilizing an Internet of Things (IoT)-

based image capture and nutrition analyzer strategy. Images of leaves were 

processed using an enhanced convolutional neural network (ECNN) to extract 

patterns. The CNN was incorporated into virtual machines, and the system stored 

and processed data on the cloud. Wijerathna et al. [16] investigated wheat genetics 

for a wide range of properties of wheat’s enormous chromosomal number and 

polyploid DNA. However, research on the genetic characterization of diploid species 

was hampered by its huge genome size. Genes might be added or changed without 

changing the genetic background by genetic transformation and gene editing 

techniques, which provide an alternative to traditional breeding methods. It was 

feasible to transfer beneficial genes to wheat, enhancing trait values including 

conflict with abiotic and biotic influences, plant architecture, and grain quality. It 



Molecular & Cellular Biomechanics 2024, 21(2), 385. 
 

4 

was made possible by advancements in the development of gene delivery techniques 

and plant tissue regeneration. 

Mohammed et al. [17] designed and assessed an IoT-mechanical ex vitro 

acclimatization system (E-VAS) that would improve morpho-physiological attributes 

while lowering mortality rates and contamination risk. The E-VAS recorded a higher 

plant survival rate and phenotype quality than the manual system, suggesting that it 

could be a viable solution for the growing demand for tissue culture-produced 

planting materials. The capacity of industrial hemp calli grown in vitro explants as a 

sustainable strength crop become investigated by means of Norouzi et al. [18]. To 

broaden a crude, Hydrothermal Liquefaction (HTL) experiments had been designed 

after the explants’ elemental and chemical compositions had been analyzed. The 

hydrocarbons that resemble petroleum, their practical groups, and their chemical 

additives were located. 

Pandey et al. [19] aimed to predict nutrient concentrations and deficiency in 

hydroponic lettuce using in situ hyperspectral imaging. The research used Salanova 

Green lettuce grown with varying macronutrient fertility rates and also used PLSR 

models to predict nutrient concentrations for nitrogen, phosphorous, potassium, 

calcium, magnesium, and sulfur. Dan and Tomat [20] investigated the formation of 

antioxidant properties and bioactive compounds in both callus and explants and the 

development of callus in tomatoes. To create callus on MS media, tomato sprouts’ 

cotyledon and hypocotyl were employed. The findings demonstrated that both 

explants developed friable callus and produced significant amounts of antioxidant 

chemicals from ascorbic acid and pigments. Hydrocarbons predominated among the 

metabolites. 

Rahman et al. [21] highlighted the dangers and difficulties involved in 

employing Agrobacterium-mediated transformation to create transgenic crops and 

offered a thorough study of these crops. It also addressed how cutting-edge 

biotechnology methods like Clustered Regularly Interspaced Short Palindromic 

Repeats and CRISPR-associated protein 9 (CRISPR/Cas9) systems were used to 

successfully change genetic material. 

Wijerathna-Yapa and Hiti-Bandaralage [22] emphasized the significance of 

plant tissue culture for identifying main abiotic stressors, drought, salt, and the 

emergence of disease resistance. More focus was placed on transgenic technology 

applications for stress tolerance and metal accumulator screening. 

Research gap 

In modern agriculture, crop tissue culture technology is critical for hasty 

propagation, genetic improvement, and maintenance of plant species. However, 

optimizing the nutrient and environmental conditions to enhance plant growth 

remains a significant challenge. Conventional media, such as MS, often fail to 

provide optimal conditions for callogenesis, embryogenesis, and shoot regeneration, 

limiting the efficiency of plant tissue culture. While recent studies have integrated 

ML algorithms, such as SVM, RF, and ANN, to improve data prediction and 

breeding practices, there remains a need for a robust predictive model that can 

accurately identify the ideal concentrations of macronutrients, vitamins, and 



Molecular & Cellular Biomechanics 2024, 21(2), 385. 
 

5 

biomolecular components to optimize plant tissue culture. To overcome this issue, 

the EGI-DFFN model was proposed, which is intended to predict and optimize 

complex interactions between nutrient levels and growth parameters, thereby 

improving the precision and efficiency of plant tissue culture technologies. 

3. Tissue culture process 

The basis of crop tissue culture steps, from the selection of plant tissue to the 

final transfer to soil for continued growth is illustrated in Figure 1. 

 

Figure 1. Process of tissue culture. 

1) Selection of Plant Tissue (Explant): A healthy part of the plant, often a leaf, 

stem, or root, is chosen as the explant for tissue culture. It is trimmed to the 

desired size. 

2) Sterilization: The selected explant is sterilized by washing it with sterilizing 

agents (such as ethanol or sodium hypochlorite) to eliminate contaminants like 

bacteria and fungi. 

3) Preparation of Nutrient Media: A nutrient-rich medium (usually MS medium) 

containing essential vitamins, minerals, hormones, and sugars is prepared in 

Petri dishes or flasks. This medium supports the enlargement of the plant tissues. 

4) Planting explant in the Medium: The sterilized explant is transferred to the 

prepared medium under sterile conditions, often in a laminar flow hood to 

prevent contamination. 

5) Incubation and Growth: The Petri dishes or flasks containing the explant are 

placed in a controlled environment (usually under specific light and temperature 

conditions). Over time, the explant begins to form callus (undifferentiated cells). 

6) Induction of Shoot and Root Formation: Once a callus is formed, the nutrient 

medium is altered with plant growth hormones (auxins and cytokinin) to induce 

the formation of shoots and roots, developing into a plantlet. 

7) Acclimatization: The developed plantlets are carefully detached from the tissue 

culture containers and transferred to soil or another growing medium. They are 
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acclimatized to outdoor conditions in a greenhouse or controlled environment 

before being planted in the field. 

4. Methodology 

The methodology for this study encompasses the detailed experimental design, 

data collection procedures, parameter explanations, and preprocessing techniques 

used to evaluate and optimize tissue culture conditions. These components are 

thoroughly outlined in this section, providing a comprehensive overview of how the 

Efficient Grid Identified-Deep Feedforward Neurons (EGI-DFFN) approach was 

applied to enhance crop tissue culture outcomes. Figure 2 illustrates the flow of the 

overall methodology. 

 

Figure 2. Overall methodology. 

4.1. Experimental design 

In this study, solanum lycopersicum (tomato) was selected as the model plant 

species for tissue culture optimization due to its well-documented regenerative 

capacity and relevance to agricultural research. Healthy, mature tomato plants were 

used as the source for explants, which were prepared from leaf segments. To ensure 

sterility, the explants were sterilized using a  70%  ethanol wash for  30 𝑠 , and a 

10– 𝑚𝑖𝑛𝑢𝑡𝑒  soak in 10%  sodium hypochlorite. With sterile distilled water the 

explants were then rinsed thoroughly to remove any residual sterilizing agents. The 

explants were placed on a Modified MS (MMS) medium (Table 1), optimized for 

tomato callus induction, containing specific concentrations of macronutrients, 

vitamins, and plant growth regulators (BAP, NAA, and 2,4 − D). The cultures were 

incubated at 25°𝐶  under controlled conditions with a 16-hour photoperiod and 

observed regularly for callus formation and growth over 12 weeks (3 months) to 

evaluate the impact of different concentrations on tissue culture outcomes. 
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Table 1. Composition of standard and MMS medium. 

Component Standard MS Medium MMS Medium for Tomato 

Macronutrients (mg/L) Nitrogen (NH₄NO₃) 1650 1200 

Potassium (KNO₃) 1900 1700 

Phosphorus (KH₂PO₄) 170 150 

Calcium (CaCl₂ · 2H₂O) 440 500 

Magnesium (MgSO₄ · 7H₂O) 370 400 

Sulfur (MgSO₄ · 7H₂O) 370 370 

Micronutrients (mg/L) Boron (H₃BO₃) 6.2 5.0 

Manganese (MnSO₄ · H₂O) 16.9 20.0 

Zinc (ZnSO₄ · 7H₂O) 8.6 10.0 

Iron (FeSO₄ · 7H₂O) 27.8 30.0 

EDTA − Fe 37.3 40.0 

Copper (CuSO₄ · 5H₂O) 0.025 0.025 

Cobalt (CoCl₂ · 6H₂O) 0.025 0.025 

Vitamins (mg/L) Thiamine − HCl (Vitamin B1) 0.1 0.5 

Pyridoxine − HCl (Vitamin B6) 0.5 0.5 

Nicotinic acid 0.5 0.5 

Myo − inositol 100 100 

Plant Growth Regulators (mg/L) 6 − Benzylaminopurine (BAP) 0 2.0 

Naphthalene Acetic Acid (NAA) 0 1.0 

2,4 − Dichlorophenoxyacetic acid (2,4 − D) 0 1.0 

Sucrose (%) 3.0 3.0 

Agar (g/L) 7.0 7.0 

pH 5.8 5.8 

4.2. Data collection 

Data were collected using the Callus Induction Experiment (CIE) to evaluate 

the impact of different concentrations of ionic macronutrients, biomolecular 

substances, and vitamins on tissue culture outcomes. Key growth metrics, including 

CGR, EGR, SEN, SRR, and RR, were measured at regular intervals throughout the 

experiment. These metrics were recorded for each explant across various media 

formulations, which were designed to identify optimal nutrient and vitamin levels for 

enhancing tissue culture efficiency in tomatoes. 

4.3. Parameter explanation 

Callogenesis Rate (CGR): The CGR measures the effectiveness of a tissue 

culture medium in inducing callus formation from explants. It is calculated as the 

proportion of explants that effectively increase callus tissue. Specifically, CGR is 

decided by way of dividing the number of explants that produce callus with the aid 

of the overall range of explants used in the experiment after which multiplying by 

one hundred. This price gives an illustration of ways well the medium supports the 
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preliminary level of callus induction, which is crucial for subsequent plant 

regeneration strategies Equation (1). 

CGR = (
Number of explants forming callus

Total number of explants
) × 100 (1) 

Embryogenesis Rate (EGR): The EGR assesses the potential of the callus tissue 

to distinguish into somatic embryos. The charge is calculated with the aid of dividing 

the number of callus tissues that turn into embryos using the overall variety of callus 

tissues after which multiplying with the aid of a hundred. EGR is a vital metric for 

comparing the medium’s effectiveness in promoting embryogenesis which is a key 

step in generating plantlets from callus tissues Equation (2). 

EGR = (
Number of callus tissue forming embryos

Total number of callus tissue
) × 100 (2) 

Somatic Embryo Number (SEN): SEN refers to the whole remember of somatic 

embryos produced in step with explant or in keeping with the unit place of callus. It 

offers a quantitative degree of the performance of the embryogenesis culture. SEN is 

calculated through at once counting the wide variety of somatic embryos that shape 

on each explant or in each callus vicinity. A better SEN indicates a greater successful 

embryogenesis and a greater potential for generating multiple plantlets from a single 

explant. 

Shoot Regeneration Rate (SRR): SRR measures the proportion of explants or 

callus tissues that correctly produce shoots. This rate is calculated using dividing the 

number of explants or callus tissues that form shoots via the overall quantity of 

explants or callus tissues after which multiplying by using a hundred. SRR is crucial 

for figuring out how efficiently the medium supports shoot improvement, which is 

vital for in addition plant boom and improvement Equation (3). 

SRR = (
Number of explant/callus forming shoots

Total number of explant/callus
) × 100 (3) 

Rooting Rate (RR): RR evaluates the share of shoots that broaden roots. It is 

calculated by dividing the range of shoots that shape roots with the aid of the entire 

range of shoots and then multiplying using a hundred. RR is an important parameter 

for assessing the effectiveness of the medium in promoting root formation, which is 

important for stabilizing plantlets and preparing them for the switch to soil or other 

increased environments Equation (4). 

SRR = (
Number of shoots forming roots

Total number of shoots
) × 100 (4) 

4.4. Pre-procession using Z-score normalization 

This statistical normalization technique addresses variability in data collected 

from the CIE by transforming the feature values into new normalized values through 

the application of Equation (5), which is derived from the standard deviation and 

mean for the considered feature. 

𝜈′ =
𝜈 − 𝜇

𝜎
 (5) 
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For each defined characteristic, 𝜎 represents its standard deviation and μ is its 

mean value. This normalization was used for this study’s important measurements, 

which included SEN, CGR, EGR, SRR, and RR.  When the Z-score normalization 

approach is used, principles that are precisely identical to the mean are converted to 

zero, values above the mean become visible as positive information, and values 

below the mean appear as negative numbers. 

4.5. Prediction using EGI-DFFN 

The proposed approach combines Efficient Grid Identified (EGI) optimization 

with Deep Feedforward Neurons (DFFN) to enhance crop tissue way of life era. 

EGI’s grid search first-class-tunes the DFFN version parameters, permitting specific 

optimization of nutrient and vitamin stages. This integrated approach accurately 

predicts key growth metrics, providing valuable insights for optimizing tissue 

tradition conditions and enhancing crop improvement. 

4.5.1. Deep feedforward neurons (DFFN) 

DFFN are well-suited for optimizing crop tissue culture technology due to their 

capability to form complex, non-linear relationships among input features and 

desired outcomes. In this context, DFFN can effectively analyze and predict the 

impact of various nutrient and vitamin levels on key growth metrics such as CGR, 

EGR, SEN, SRR, and RR. The model’s depth allows it to capture intricate 

interactions and dependencies among these variables, leading to more accurate and 

insightful predictions. 

A mathematical model called the DFFN was created by simulating how the 

human brain interprets data. Three main layers make up most DFFN models an input 

layer (IL), a few hidden layers (HL)then an exit layer (EL). The numeral of 

subterranean levels determines the architecture’s depth. When there are several HL 

and neurons in each HL, DFFN may represent a dataset at multiple levels. Figure 3 

displays the schematic of a generic DFFN model. 

 

Figure 3. DFFN architecture. 

DFFN algorithm. 

The data collected from the CIE focuses on various concentrations of ionic 

macronutrients, biomolecules, and vitamins relevant to crop tissue culture. Input data 
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W includes the specific nutrient levels and their effects on tissue culture outcomes. 

Output data Y represents the observed growth metrics (CGR, EGR, SEN, SRR, and 

RR). 

The training database is formed using data, which includes both the input 𝑊 =

{𝑊𝑗|𝑗 = 1,2, … , 𝑀𝐼𝑁} and output 𝑌 = {𝑌𝑠|𝑠 = 1,2, … , 𝑆}datasets, which are used to 

create the training database. 𝑀𝐼𝑁  represents the different nutrients and vitamin 

concentrations, and 𝑆 represents the various experimental conditions and outcomes. 

𝑊𝑗  has 𝑆 time samples for every kind of input variable.𝑊𝑗 = {𝑊𝑗,𝑠|𝑠 = 1,2, … , 𝑆}. 

𝑀𝐺,𝑙  neurons make up the 𝑙𝑡ℎ HL out of 𝑚 HL.Consequently the 

𝑖1
𝑡ℎ(𝑖1|𝑖2 = 1,2, … ,  𝑀𝐺,1)neuron for the𝑠𝑡ℎ(𝑠 = 1,2, … 𝑆)training sample. The first 

HL is computed by Equation (6). 

𝑍1, 𝑖1=𝑒(∑ (𝑋𝐼𝑁,𝑗,1,𝑖1
𝑊𝑗)

𝑗=𝑀𝐼𝑁
𝑗=1 ) (6) 

Using Equation (7) 𝑖𝑙
𝑡ℎ the neuron in the 𝑙𝑡ℎ(𝑚 ≥ 𝑙 ≥ 2) HL can be obtained. 

The neuron z in the output layer is determined by Equation (8). 

𝑍𝑙 , 𝑖𝑙=𝑒(∑ (𝑋𝑙−1,𝑖𝑙−1,𝑙,𝑖𝑙
𝑊𝑙−1,𝑗𝑙−1)

𝑗𝑙−1=𝑀𝐺,𝑙−1

𝑗𝑙−1=1 ) (7) 

𝑌 = 𝑒 ( ∑ (𝑋𝑚,𝑖𝑚,𝑃𝑍𝑚,𝑖𝑚
)

𝑖𝑚=𝑀𝐺,𝑚

𝑖𝑚=1

) (8) 

where the number of neurons in the IL (𝑗), the quantity of HL (𝑙), the quantity of 

neurons in the 𝑙𝑡ℎ HL 𝑖𝑙 , and the activation function ( 𝑒 ) are all represented. 

Additionally, 𝑋 represents the connection weighting factors between the two neurons. 

Here𝑋𝑚,𝑖𝑚,𝑎𝑛𝑑 𝑃 indicate the connection weights among the last HL and the output 

layer, which predicts the growth metrics (CGR, EGR, SEN, SRR, and RR). 

Activation Function (AF). 

The sigmoid function Equation (9), hyperbolic tangent ( 𝑡𝑎𝑛ℎ ) function 

Equation (10), rectified linear unit (R𝑒𝐿𝑈) function Equation (12), and exponential 

linear unit (𝑒𝑙𝑢) function Equation (11) are the four AF that are tested to improve 

prediction performance. These are the possible expressions for the four AF. 

𝑒(𝑤) =
1

1 + 𝑓−𝑤
 (9) 

𝑒(𝑤) = tan ℎ(𝑤) (10) 

𝑒(𝑤) = {
𝑓𝑤 − 1 𝑓𝑜𝑟 𝑤 < 0

𝑤 𝑓𝑜𝑟 𝑤 ≥ 0
 (11) 

𝑒(𝑤) = {
0 𝑓𝑜𝑟 𝑤 < 0
𝑤 𝑓𝑜𝑟 𝑤 ≤ 0

 (12) 

These functions help capture non-linear relationships between nutrient levels 

and growth outcomes. The choice of AF can be adjusted based on which provides 

the best predictive accuracy for the crop tissue culture metrics. 
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4.5.2. Efficient grid identified (EGI) optimization 

An optimization method called ECI is used to iteratively go through every 

conceivable combination of a set of variables. It’s one of the most fundamentally 

straightforward and basic optimization algorithms, yet despite this, it’s still quite 

strong and ensures that the paramount possible explanation for trouble will be found. 

To identify the optimal combination, all potential combinations of parameter values 

are created into a grid and tested one at a time. The term “grid search” refers to the 

grid of parameters that are established before the optimization/search process. 

The EGI optimization is highly suitable for the objective of enhancing crop 

tissue culture technology. EGI excels in fine-tuning model parameters, which is 

crucial for accurately predicting key growth metrics like CGR, EGR, SEN, SRR, and 

RR. It effectively manages the complex interactions between various nutrients and 

vitamins, ensuring precise optimization of these inputs. EGI’s computational 

efficiency and scalability handle extensive experimental data from CIE, leading to 

improved model accuracy and a deeper understanding of nutrient impacts on plant 

growth. 

EGI-DFFN: The integration of the EGI optimization with the DFFN method 

offers a robust solution for optimizing the crop tissue culture technology. The 

DFFN’s functionality to version complex, non-linear relationships between nutrient 

levels and more desirable metrics is advanced through the use of EGI, which 

meticulously searches through parameter combinations to find high-quality settings. 

This combination allows for unique tuning of input variables, inclusive of ionic 

macronutrients and vitamins, which right away impact CGR, EGR, SEN, SRR, and 

RR. By leveraging EGI’s efficient grid search capabilities, the DFFN model could 

provide tremendous experimental records from CIE and efficaciously expect growth 

effects, as a result imparting deeper insights into how particular nutrient 

combinations affect plant improvement. This integrated approach ensures that the 

version no longer simplest predicts with excessive accuracy but moreover offers 

actionable steerage for optimizing crop tissue culture of life conditions, on the quit 

improving increase and improvement in a lab placing. The proposed approach’s 

pseudocode is provided in Algorithm 1. 

Algorithm 1 EGI-DFFN 

1: 𝑖𝑚𝑝𝑜𝑟𝑡 𝑛𝑢𝑚𝑝𝑦 𝑎𝑠 𝑛𝑝 
2: 𝑖𝑚𝑝𝑜𝑟𝑡 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤 𝑎𝑠 𝑡𝑓 
3: 𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑜𝑑𝑒𝑙_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑜𝑟𝑡 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐺𝑟𝑖𝑑 
4: 𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟 
5: 𝑑𝑒𝑓 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥): 

6:     𝑟𝑒𝑡𝑢𝑟𝑛 𝑒(𝑤) =
1

1+𝑓−𝑤(Equation 9) 

7: 𝑑𝑒𝑓 𝑟𝑒𝑙𝑢(𝑥): 

8:     𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑝. 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(0, 𝑥)𝑒(𝑤) = {
0 𝑓𝑜𝑟 𝑤 < 0
𝑤 𝑓𝑜𝑟 𝑤 ≤ 0

(Equation 11) 

9: 𝑑𝑒𝑓 𝑐𝑟𝑒𝑎𝑡𝑒_𝑑𝑓𝑓𝑛_𝑚𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑛𝑢𝑚_ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠, 
10:  𝑛𝑢𝑚_𝑛𝑒𝑢𝑟𝑜𝑛𝑠): 
11:     𝑚𝑜𝑑𝑒𝑙 =  𝑡𝑓. 𝐾𝑒𝑟𝑎𝑠. 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙() 
12:     𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐼𝑛𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟(𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒 = 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒)) 
13:     𝑓𝑜𝑟 _ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑢𝑚_ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠): 
14:         𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐷𝑒𝑛𝑠𝑒(𝑛𝑢𝑚_𝑛𝑒𝑢𝑟𝑜𝑛𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)) 
15:     𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐷𝑒𝑛𝑠𝑒(5))  # Output for CGR, EGR, SEN, SRR, RR 
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Algorithm 1 (Continued) 

16:     𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 𝑙𝑜𝑠𝑠 = ′𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟′) 
17:     𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑜𝑑𝑒𝑙 
18: 𝑑𝑒𝑓 𝑒𝑔𝑖_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡, 𝑝𝑎𝑟𝑎𝑚_𝑔𝑟𝑖𝑑): 
19:     𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 = 𝑓𝑙𝑜𝑎𝑡(′𝑖𝑛𝑓′) 
20:     𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑎𝑚𝑠 = 𝑁𝑜𝑛𝑒 
21:     𝑓𝑜𝑟 𝑝𝑎𝑟𝑎𝑚𝑠 𝑖𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐺𝑟𝑖𝑑(𝑝𝑎𝑟𝑎𝑚_𝑔𝑟𝑖𝑑): 
22:         𝑚𝑜𝑑𝑒𝑙 = 𝑐𝑟𝑒𝑎𝑡𝑒_𝑑𝑓𝑓𝑛_𝑚𝑜𝑑𝑒𝑙( 
23:             𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒 = (𝑋_𝑡𝑟𝑎𝑖𝑛. 𝑠ℎ𝑎𝑝𝑒[1], ), 
24:             𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑎𝑟𝑎𝑚𝑠[′𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛′], 
25:             𝑛𝑢𝑚_ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = 𝑝𝑎𝑟𝑎𝑚𝑠[′𝑛𝑢𝑚_ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠′], 
26:             𝑛𝑢𝑚_𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = 𝑝𝑎𝑟𝑎𝑚𝑠[′𝑛𝑢𝑚_𝑛𝑒𝑢𝑟𝑜𝑛𝑠′]) 
27:         𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑒𝑝𝑜𝑐ℎ𝑠 = 10, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 32, 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 0) 
28:         𝑦_𝑝𝑟𝑒𝑑 = 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡) 
29:         𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑) 
30:         𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 < 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒: 
31:             𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑐𝑜𝑟𝑒 
32:             𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑎𝑚𝑠 = 𝑝𝑎𝑟𝑎𝑚𝑠 
33:     𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑎𝑚𝑠 

5. Result 

This section details the experimental setup and findings related to optimizing 

tomato tissue culture using the EGI-DFFN model. It includes system configuration 

specifics, growth metrics comparison between MS medium and MMS medium over 

12 weeks, and graphical comparisons of key parameters such as CGR, EGR, SEN, 

SRR, and RR. 

5.1. System configuration 

Table 2. Hyperparameter setting. 

Hyperparameter Description Search Range Optimal Value 

AF The AF used in HL 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, 𝑡𝑎𝑛ℎ, 𝑅𝑒𝐿𝑈, 𝑒𝑙𝑢 𝑅𝑒𝐿𝑈 

Number of HL The number of HL in the DFFN model 1–5 3 

Number of 

Neurons 
The number of neurons in each HL 32, 64, 128, 256 128 

Batch Size The number of training samples per batch 16, 32, 64 32 

Learning Rate 
Controls how much the model is adjusted during 

training 
0.001, 0.01, 0.1 0.001 

Optimizer Optimization algorithm used during training 𝑎𝑑𝑎𝑚, 𝑟𝑚𝑠𝑝𝑟𝑜𝑝, 𝑠𝑔𝑑 𝑎𝑑𝑎𝑚 

Parameter Grid 

Size 

Grid size for EGI optimization (number of parameter 

combinations evaluated) 

Various combinations of AF, neurons, 

and layers 
- 

In this experiment, Python version 3.8 is used to increase and optimize a DFFN 

version, integrating EGI optimization to determine the ideal nutrient and diet ranges 

for improving crop tissue subculture metrics such as CGR, EGR, SEN, SRR, and RR. 

The setup was performed on a gadget prepared with 16 𝐺𝐵 𝑜𝑓 𝑅𝐴𝑀 and a solid-state 

drive (SSD) to ensure green statistics processing and model education. For statistics 

manipulation and evaluation, libraries together with NumPy for numerical 

computations and TensorFlow/Keraswere employed for constructing and schooling 
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the DFFN model. Scikit-research was used for parameter grid search and overall 

performance assessment. Table 2 provides the hyperparameter tuning used in the 

EGI-DFFN model for optimizing crop tissue culture metrics such as CGR, EGR, 

SEN, SRR, and RR. 

5.2. Growth metrics over 12 weeks for tomato plants 

Table 3 compares growth metrics for tomato plants cultured in MS-medium 

and MMS medium, both enhanced with EGI-DFNN. Over 12 weeks, the MMS 

medium consistently outperforms the MS medium in CGR, EGR, SEN, SRR, and 

RR demonstrating its superior efficacy in promoting plant development. 

Table 3. Comparative growth metrics of tomato plants in MS Medium vs. MMS medium. 

No. of. Weeks Parameter MS medium + EGI-DFNN (%) MMS medium + EGI-DFNN (%) 

2 CGR 10(%) 20(%) 

EGR 5(%) 15(%) 

SEN 5 embryos per culture 10 embryos per culture 

SRR 3 shoots per culture 7 shoots per culture 

RR 8(%) 15(%) 

4 CGR 20(%) 35(%) 

EGR 10(%) 25(%) 

SEN 15 embryos per culture 25 embryos per culture 

SRR 7 shoots per culture 15 shoots per culture 

RR 15(%) 30(%) 

6 CGR 30(%) 50(%) 

EGR 20(%) 40(%) 

SEN 25 embryos per culture 35 embryos per culture 

SRR 15 shoots per culture 25 shoots per culture 

RR 25(%) 40(%) 

8 CGR 40(%) 60(%) 

EGR 30(%) 50(%) 

SEN 35 embryos per culture 50 embryos per culture 

SRR 25 shoots per culture 35 shoots per culture 

RR 35(%) 50(%) 

10 CGR 50(%) 70(%) 

EGR 40(%) 60(%) 

SEN 45 embryos per culture 65 embryos per culture 

SRR 30 shoots per culture 40 shoots per culture 

RR 40(%) 55(%) 

12 CGR 55(%) 75(%) 

EGR 50(%) 70(%) 

SEN 50 embryos per culture 80 embryos per culture 

SRR 35 shoots per culture 45 shoots per culture 

RR 45(%) 60(%) 
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5.3. Comparison phase 

5.3.1. CGR on MS and MMS medium 

Figure 4 gives a graphical representation of the CGR over 12 weeks for both 

the preferred MS medium and a changed medium tailored for tomato tissue’s way of 

life. CGR percentages suggest the proportion of callus growth discovered. In the 

changed medium, CGR is consistently better compared to the MS medium, reflecting 

the enhanced effectiveness of the changed medium in selling callus development. 

For instance, at week 12, the CGR is 55% for MS-medium and 75% for the MMS 

medium. This trend demonstrates that the optimized medium notably quickens and 

improves callus increase at some point in the subculture duration. This improvement 

is expected through the use of the proposed method, EGI-DFFN, which aims to 

discover the best nutrient and nutrition levels to decorate tissue subculture results. 

 

Figure 4. Comparison of CGR levels in both mediums.5.3.2. EGR on MS and MMS 

medium. 

5.3.2. EGR on MS and MMS medium 

Figure 5 illustrates the EGR over 12 weeks. EGR probabilities constitute the 

boom of embryos in cultures. The MMS medium suggests advanced performance as 

compared to the MS-medium, with a slow increase in EGR from 15% at week 2 to 

70% at week 12, while the MS-medium levels from 5% to 50% over the same 

duration. This indicates that the MMS medium notably complements embryo 

improvement, main to a better and improved growth of embryos throughout the 

traditional length. These findings are anticipated by the use of the proposed method 

for medium optimization. 
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Figure 5. Comparison of EGR levels in both mediums.5.3.3. SEN on MS and MMS 

medium. 

5.3.3. SEN on MS and MMS medium 

Figure 6 represents data on the variety of embryos in step with traditional SEN 

at diverse weeks. The MMS medium yields a better range of embryos in comparison 

to the MS medium. At week 12, the MMS medium results in 80 embryos per culture, 

while the MS medium consequences in 50 embryos. This demonstrates the efficacy 

of the changed medium in assisting and growing embryo production, making it an 

extra powerful alternative for producing a higher yield of embryos in tissue tradition. 

These effects are anticipated using the proposed optimization technique for the 

medium. 

 

Figure 6. Comparison of SEN level in both mediums.5.3.4. SRR on MS and MMS 

medium. 

5.3.4. SRR on MS and MMS medium 

Figure 7 represents the variety of shoots in step with traditional SRR at 

different weeks. The MMS medium constantly produces greater shoots as compared 

to the MS medium. For example, at week 12, the changed medium consequences in 

45 shoots were in line with culture, whereas the MS-medium consequences were in 

35 shoots. This suggests that the MMS medium enhances shoot formation and 

development, demonstrating its advanced performance in selling shoot growth at 
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some point in the tissue way of life. These observations predict the usage of the 

proposed optimization EGI-DFFN approach. 

 

Figure 7. Comparison of SRR level in both mediums. 

5.3.5. RR on MS and MMS medium 

Figure 8 illustrates the RR possibilities for each MS-medium and changed 

medium over a 12-week length. The MMS medium exhibits a better rooting price 

compared to the MS medium. For instance, at week 12, the rooting rate is 60% with 

the changed medium, as compared to 45% with the MS medium. This development 

shows that the changed medium provides more effective situations for root 

improvement, facilitating a higher establishment of plant roots at some stage in the 

tissue culture method. These effects are anticipated in the usage of the proposed 

technique for optimizing tissue tradition conditions. 

 

Figure 8. Comparison of RR level in both mediums. 

6. Discussion 

This study highlights the significant advantages of utilizing the MMS medium, 

optimized using the EGI-DFFN approach, for tomato tissue culture. The MMS 

medium consistently demonstrated superior performance across all key growth 

metrics—CGR, EGR, SEN, SRR, and RR—when compared to the traditional MS 
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medium. The enhanced effectiveness of the MMS medium can be attributed to the 

precise tuning of ionic macronutrients, biomolecular substances, and vitamins, as 

identified by the EGI-DFFN model. By integrating complex nutrient interactions into 

the predictive model, the EGI-DFFN approach allows for a highly optimized culture 

environment tailored specifically to the physiological needs of the plant tissue. One 

of the primary reasons the MMS medium is more effective than the standard MS 

medium is its ability to provide the optimal balance of essential nutrients that 

directly affect cellular processes such as callogenesis and embryogenesis. While the 

traditional MS medium offers a general-purpose formula, it may not fully support the 

specific nutrient requirements necessary for the rapid and healthy development of 

certain crops, like tomatoes. In contrast, the MMS medium, fine-tuned by the EGI-

DFFN model, delivers a more targeted nutrient profile, which enhances metabolic 

activity and cellular differentiation. This leads to higher rates of SEN and more 

efficient SRR, and RR, ultimately accelerating the entire tissue culture process. 

Moreover, the MMS medium ensures that the concentrations of key vitamins 

and biomolecular compounds are aligned with the plant’s specific growth demands, 

which promotes not only faster but also healthier tissue development. For example, 

the availability of precisely calibrated macronutrients supports stronger callus 

induction CGR and more robust embryo growth EGR, minimizing the variability 

often observed in tissue cultures grown on MS medium. This ability to fine-tune 

nutrient levels directly contributes to a higher success rate in tissue subcultures, 

reducing waste and improving efficiency in both research and commercial 

applications. Additionally, the predictive modeling used in this study provides a 

valuable tool for systematically optimizing media compositions. By leveraging 

machine learning algorithms, like EGI-DFFN, researchers can identify the most 

effective nutrient formulations without the need for trial-and-error experimentation, 

saving both time and resources. This approach could have broad applications, 

potentially benefiting a wide range of crop species by offering tailored media 

solutions that significantly improve tissue culture outcomes. 

7. Conclusion 

The EGI-DFFN model marks a pivotal advancement in crop tissue culture 

technology, offering a highly effective framework for optimizing nutrient and 

vitamin concentrations to significantly improve key growth metrics CGR, EGR, SEN, 

SRR, and RR. By integrating and analyzing the complex relationships between 

biomolecular factors and plant growth, the model enables precise tuning of culture 

conditions tailored to specific crop needs. This innovation not only accelerates 

propagation and genetic enhancement in a controlled lab setting but also contributes 

to a deeper understanding of plant physiology under tissue culture conditions. The 

significance of this study lies in its ability to enhance crop propagation strategies 

with improved accuracy and efficiency, thereby supporting agricultural sustainability 

and productivity. By offering practical applications that can be readily integrated into 

laboratory protocols, the proposed model serves as a valuable tool aiming to 

optimize plant growth and improve crop quality. This study demonstrates how 
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computational models can drive innovation in biotechnology, providing scalable 

solutions for faster, more efficient crop development. 

Limitations and future works 

Despite the substantial progress made, the EGI-DFFN model encounters certain 

limitations, particularly in handling the computational complexity involved in 

optimizing multiple parameters. The high number of combinations led to increased 

computational needs and time requirements. To address this, future research should 

explore ways to refine the model, potentially by utilizing more advanced 

optimization algorithms of parallel computing techniques to reduce computation 

time. Additionally expanding the model’s applicability to a wider range of crop and 

environmental conditions would further validate its robustness. Integration of real-

time data and adaptive learning techniques would also improve the model’s 

flexibility, allowing it to dynamically respond to varying growth conditions. These 

advancements could pave the way for even broader applications in crop 

biotechnology, enhancing both theoretical insights and practical outcomes in crop 

propagation and genetic improvement. 
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