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Abstract: Kinect motion capture technology records body motions, allowing for accurate 

monitoring and analysis in a variety of fields. This study investigates the intelligent 

recognition of classroom teaching behaviours by physical fitness instructors through the 

combination of Kinect sensors and machine learning algorithms. We proposed a novel 

Crayfish Optimization-driven Adaptive-Weighted AdaBoost (CO-AWAdaBoost) approach 

for classifying physical fitness instructional behaviours based on body posture data recorded 

by Kinect sensors. Z-score normalization is utilized to pre-process the obtained raw data. In 

our proposed recognition model, the CO algorithm leverages the natural behaviours of 

crayfish to optimize the process of feature selection. AdaBoost iteratively trains weak 

classifiers, assigning higher weights to misclassified samples. Our model can assist with the 

quantitative assessment of physical fitness classroom instruction, instructive suggestions, and 

large-scale behavioural investigation. The proposed detection model has been implemented 

in a Python program. In the results assessment phase; we evaluate our proposed model’s 

effectiveness in classifying physical fitness instructional behaviours using numerous 

evaluation metrics such as recall, F1-score, precision, and accuracy. During the finding 

evaluation phase, we thoroughly scrutinize the recognition effectiveness of the suggested 

model across various parameters, including precision (97.22%), accuracy (98.25%), 

specificity (97.85%), recall (97.86%), and F1-score (97.88%). We also carried out a 

comparison analysis with other traditional approaches. Our experimental findings 

demonstrate the reliability of the recommended framework. 

Keywords: Kinect motion capture; Crayfish Optimization-driven Adaptive-Weighted 

AdaBoost (CO-AWAdaBoost); classification model 

1. Introduction 

Fitness trackers and smartwatches are examples of wearable technologies that 

offer teachers creative ways to teach and technological advancements have been 

used to enhance teaching and learning processes by tracking users’ health, fitness, 

and environment [1]. Students’ motivation and engagement in physical education 

(PE) settings have been linked to the teaching styles and PE teachers. As numerous 

academics have demonstrated, the way physical education teachers educate can 

significantly influence the supportive and motivating environment that appears to 

predict students’ satisfaction of basic psychological needs, level of motivation, 

intentions and engagement in physical exercise [2]. For secondary PE teachers, the 

most concerning things are currently the understanding of cognitive pathways 

connected to students’ academic achievement and discipline behaviors [3]. In the 

field of physical education and physical education teacher education (PETE), there 

has been extensive discussion of both content knowledge (CK) and pedagogical 
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content knowledge (PCK). They identify two drawbacks with the way that physical 

education and PETE discuss CK and PCK-discourse [4]. A growing body of research 

indicates that physical activity (PA) has a key role in the prevention of numerous 

diseases. Furthermore, PA has a number of positive health effects on young people. 

Adolescents who engage in moderate-to-vigorous physical activity (MVPA) have 

numerous health benefits when compared to light PA [5]. Physical fitness is a very 

practical subject, and for students to fully understand the material taught in physical 

fitness classes, they must do repeated exercises. However, due to time constraints in 

the classroom, physical education teachers might find it difficult to provide each 

student in the class with comprehensive instruction, and students could find it 

difficult to completely understand the bodily motions they have learned [6]. Accurate 

recording and evaluation of the caliber of trainers’ motions has grown in significance 

as sports training has become more specialized and popular. Motion capture is the 

process of gathering and storing athlete movement data for analysis and assessment 

using sensors or video equipment [7]. Children’s physical and mental health 

advantages from PA are widely established. PA is also said to be essential for 

promoting active living from early childhood into adulthood. There are some 

accepted recommendations about young children’s involvement in PA [8]. 

Adolescents who engage in regular physical activity have better health outcomes, 

such as a lower chance of obesity, enhanced cardio-metabolic health and physical 

fitness, stronger muscles and bones, and a lower risk of depression [9]. Teachers’ 

methods for inspiring students in PE might vary, in line with the self-determination 

theory (SDT). When depending on need-supporting behaviors, educators make an 

effort to give students opportunities for initiative and choice, as well as useful 

information and feedback, in a helpful and affective setting [10]. Kinect motion 

capture technology, enhanced by the CO-AWAdaBoost technique, aims to improve 

adolescents’ health and well-being by making physical fitness training more 

engaging and effective. 

1.1. Study highlights 

⚫ Gather data on whole-body fitness movements. 

⚫ Z-score Normalization was used for pre-processing the data.  

⚫ Crayfish Optimization-driven Adaptive-Weighted AdaBoost (CO-

AWAdaBoost) approach for classifying physical fitness instructional 

behaviours. 

⚫ This study examines how physical fitness instructors might use a combination 

of Kinect sensors to recognize teaching practices in the classroom intelligently. 

⚫ Compare the performance of CO-AWAdaBoost with the existing models based 

on the evaluation parameters. 

1.2. User experience and acceptance of Kinect technology 

The use of Kinect motion capture technology by physical fitness instructors to 

identify classroom teaching behaviors is an area where user experience and 

acceptability are critical to the effective use of the suggested CO-AWAdaBoost 

strategy. The system’s teachers’ feedback is crucial to understanding how simple and 
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easy the technology is to use. User acceptability can be considerably increased by 

positive experiences including simplicity of use, accuracy of feedback, and the 

system’s capacity to deliver useful insights. The methodology offers instructors 

quantitative assessments and instructional ideas that could improve their 

performance as teachers. But it’s also critical to address consumers’ worries about 

data security, privacy, and the learning curve involved in incorporating new 

technology into teaching methods. Gathering and analyzing user feedback will be 

vital to refine the system and ensure that it meets the needs and expectations of 

physical fitness instructors effectively. 

The rest of the paper is organized as follows: Part 2 discusses about literature 

review. In part 3, the suggested Crayfish Optimization-driven Adaptive-Weighted 

AdaBoost (CO-AWAdaBoost) is thoroughly discussed. Part 4 discusses the 

experimental design, findings, and performance assessment of the CO-AWAdaBoost 

method. The conclusions are summarized in part 5 along with future scope. 

2. Literature survey 

Schools were putting more of an emphasis on encouraging PA before, during, 

and after classes to reduce the risks that come with being inactive. Understanding the 

relationship between PA attitudes and existing attitudes about PE, as well as PA 

intentions and actions, was crucial because attitudes influence decisions to engage in 

physical activity [11]. Physically active kids and teenagers typically had lower 

obesity rates, better cardio-metabolic health, and higher levels of fitness. In the 

world, less than thirty percent of kids and teenagers engage in the recommended 60 

minutes a day of moderate to vigorous physical exercise [12]. In April and May of 

2020, the study sought to investigate relationships between adult and adolescent 

users of digital platforms and compliance with physical activity recommendations 

[13]. PE teachers’ perceived stresses at work have an impact on their motivation and 

behavior. The study was used to add to the body of knowledge already available on 

the subject. Using a structural equation modeling (SEM), was first determined how 

much the perception of pressures affects instructors’ motivation and, consequently, 

their perceptions about how feasible it was to apply motivational techniques [14]. 

The Moti Train project sought to create an interactive fitness coach and a digital 

training process companion that, by utilizing cutting-edge techniques and tools, 

could greatly boost the user’s motivation and success in fitness training [15]. Three-

dimensional (3D) marker-based motion capture has been used historically in 

movement research and was considered the gold standard for biomechanical 

assessment. There were drawbacks, including immobility, lengthy setup times for 

data gathering, and training for marker placement, mistakes brought by marker 

movement, and potential skin irritation from marker adhesives [16]. The basic 

psychological needs theory (BPNT) has lately included the demand for novelty as a 

potential requirement. Research in PE has demonstrated that satisfying students’ 

demand for novelty is frequently linked to improved student well-being. There was a 

negative correlation between frustrating students’ novelty and attaining several 

favorable results in PE [17]. Alyce Healthcare, a digital healthcare startup, has 

created Weelo, an online fitness program accessible through the web. Weelo used 
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machine learning to recognize the user’s motion, suggest a workout regimen, and 

offer both visual and audio feedback [18]. Pupils who fit into the high quantity and 

quality profile showed reduced levels of boredom, better levels of enjoyment and 

intention for physical activity, and higher levels of autonomy support. Self-

determined profiles were linked to male participants, younger pupils, and 

extracurricular activity participants. The cross-sectional and descriptive study’s 

character made it impossible to establish cause-and-effect linkages. Some kids’ 

responses might have been impacted by the teacher’s presence [19]. Optimal prep 

indicates that children and teenagers might be particularly responsive to motor 

learning training methods that support injury-resistant movement mechanics. To 

reduce the risk of injury, recover from injury, perform better during exercise, and 

enjoy playing more [20]. In basketball, players engage in a great deal of physical 

contact, bumps, and struggles. The findings demonstrated that during high-intensity 

exercise, basketball players’ maximum heart rate and 1-minute heart rate recovery 

were lower than during flat area training and that even slight hypoxia in the plateau 

significantly lowered their performance [21]. Markerless motion capture systems 

hold the potential for assessing movement in more practical, clinical and scientific 

settings. Although there is still work to be done for broader use, the analysis’s data 

provides a helpful roadmap for this path and markerless motion capture technology 

is currently in an improved position [22]. To enhance the cognitive abilities and 

social skills of autistic youngsters, the article incorporated dual-task exercises with 

multiplayer gaming using augmented reality (AR) and a personal health record 

(PHR) system [23]. Graded age-related developmental motor activities were used in 

motor-sense to help solve the lack of accessible technology to facilitate motor 

development assessment. In addition, it might help with the tele-detection of deficits 

in motor development [24]. 

Problem statement 

Due to a lack of drive and appropriate direction, adolescents frequently struggle 

to maintain physical fitness, which can result in unhealthy lives. The goal is to create 

an interactive, personalized, and motion capture-based training program using 

Kinect. Fitness will become more accessible and pleasurable with the help of this 

technology, which will provide real-time feedback, measure progress, and modify 

regimens to suit individual needs. The program attempts to improve motivation and 

commitment to regular exercise by utilizing gamification and immersive 

surroundings. The ultimate goals of this program are to create wholesome habits that 

will last a lifetime and enhance the physical health of teenagers. 

3. Methodology 

This section covers a systematic study using Kinect motion capture to support 

adolescents in their physical fitness training. Figure 1 depicts the methodological 

framework. 
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Figure 1. Methodological framework. 

3.1. Dataset 

 
Figure 2. Body joint points. 

The images in the video database had to be transformed into images for 

training. Every fitness exercise in the video database took an average of one to three 

seconds to perform. The entire exercise track can be properly recorded by using this 

approach of converting video to image. The database included images of every 

fitness exercise taken from several camera angles in addition to the full motion 

trajectories. Twenty people provided 15,260 fitness images in total. Personal activity 

data gathered with Kinect sensors, on the other hand, creates serious privacy 

concerns that must be properly handled. It is critical to secure participants’ explicit 

authorization for the gathering and use of their data, including the conversion of 

video into photos. Anonymization procedures should be used to ensure that no 

persons can be recognized from the photos, and data should be maintained securely 

with restricted access. Clear data usage procedures should be implemented to ensure 

that the data is only used for the intended study goals, with participants retaining the 

ability to withdraw consent and request data deletion. Transparency in data handling 
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processes is critical for fostering confidence and addressing privacy issues. Figure 2 

displays the chosen human body joint sites. 

3.2. Data pre-processing using Z-score normalization 

Z-score normalization is a statistical technique that sets the mean and standard 

deviation of a dataset to zero and one, correspondingly. It is often used in machine 

learning to prepare whole-body fitness movement data. The mean of each data point 

is deducted, and the resultant number is then divided by the standard deviation of the 

dataset. Z-score normalization may allow customers to assess how a specific rating 

would fit into a regular, usual set of facts. Z-Score is a method for controlling 

anomalies within a collective. This normalization method is widely used to compare 

and assess data that may have different sizes or distributions in several fields, 

including statistics, data analysis, and machine learning. Since all of the variables are 

on a similar scale and can be directly compared, they are better suited for certain 

statistical or modeling tasks. 

𝑧̅ =
𝑧 − 𝜏

𝜍
 (1) 

The numerical element is represented by  𝑍 . 𝑧̅  is the recently presumed data 

point, 𝜏 represents the data point mean and ς the data point variance is indicated by ς. 

3.3. Physical fitness instructional behaviours classification using Crayfish 

Optimization-driven Adaptive-Weighted AdaBoost (CO-AWAdaBoost) 

The Crayfish Optimization-driven Adaptive-Weighted AdaBoost (CO-

AWAdaBoost) method classifies physical fitness instructional behaviors based on 

body posture data recorded by Kinect sensors by combining an optimized algorithm 

modeled after crayfish behavior with an improved version of the AdaBoost 

algorithm.  

3.4. Adaptive-Weighted Adaboost 

 
Figure 3. Work flow of adaptive-Weighted Adaboost. 
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AdaBoost trains weak classifiers iteratively, giving samples that are incorrectly 

categorized a higher weight. AdaBoost is a powerful ensemble learning algorithm 

that adjusts training example weights to maximize the utility of a restricted set of 

training instances. The number of samples taking part in the training is N. Figure 3 

shows the work flow of adaptive-Weighted Adaboost. 

Step 1: Set the initial weight of each vector D (training data sample) in the data.  

Step 2: Training was conducted using a weak learning algorithm. Following 

training, the error rate was computed using Equation (2). The number of samples 

inaccurately classified is denoted by 𝑀𝑒𝑟𝑟. 

𝜀 =
𝑀𝑒𝑟𝑟

𝑀
 (2) 

Step 3: Determine the weak learning algorithm’s weight. The error rate is used 

to calculate the weight of the weak learner method, which is represented by vector α, 

is shown in Equation (3). 

 =
1

2
𝐼𝑛(

1 − 𝜀

𝜀
) (3) 

The weight and output of every weak classifier are acquired following t-round 

learning. The algorithm’s final result is displayed in Equation (4). 

𝐺(𝑊) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑗𝑔𝑗(𝑊))

𝑠

𝑗=1

 (4) 

The CO-AWAdaBoost method seeks to achieve high accuracy and robustness 

in identifying and classifying different teaching postures and movements by 

optimizing the classifier weights and dynamically modifying them during the 

boosting process. 

3.5. Crayfish optimization (CO) 

A type of crab that inhabits freshwater, crayfish is also known as red crayfish or 

freshwater crayfish scientifically. Its food source, quick rate of growth, quick 

migration, great adaptation, and ability to form absolute advantages in the ecological 

environment all contribute to its unique characteristics. The behavior of crayfish is 

frequently affected by temperature fluctuations. The CO algorithm optimizes the 

feature selection procedure by taking advantage of crayfish’s natural behaviors. 

Crayfish are classified as ectotherms and exhibit behavioral variations in 

response to temperature fluctuations between 20 and 35 degrees Celsius. Here’s how 

the temperature is computed, as shown in Equation (5): 

𝑡𝑒𝑚𝑝 = 𝑟𝑎𝑛𝑑 × 15 + 20 (5) 

Population’s initial state: Each crayfish in the d-dimensional COA optimization 

problem is a 1 × 𝑑 matrix that represents the problem’s solution. Each crayfish’s 

position (𝑋) is in a collection of variables between the search space’s upper (𝑢𝑏) and 

lower (𝑙𝑏) boundariesare shown in Equation (6). 

𝑊𝑗,𝑖 = 𝑘𝑎𝑖 + (𝑢𝑏𝑖 − 𝑙𝑏𝑖) × 𝑟𝑎𝑛𝑑 (6) 
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where the random number, rand, ranges from 0 to 1, the upper bound of the 𝑖𝑡ℎ 

dimension is displayed by 𝑢𝑏𝑖, 𝑙𝑏𝑖  signifies the i-th dimension’s lower bound and 

𝑊𝑗,𝑖 shows the location of the j-th crayfish in the i-th dimension. 

Stage of exploration: A temperature of 30 ℃ serves as a threshold for 

determining whether the current living situation qualifies as excessive temperature. 

To protect itself from the damaging effects of high temperatures, crayfish will seek 

out a cool, moist cave and enter the summer when the temperature rises above 30 ℃. 

This is the calculation for the caverns shown in Equation (7). 

𝑊𝑠ℎ𝑎𝑑𝑒 = (𝑊𝐻 + 𝑊𝐾)/2 (7) 

where 𝑊𝐾 denotes the ideal position of the current population and 𝑊𝐻 is the optimal 

position found thus far for this evaluation number. Random events govern the way 

that the Crayfish compete for the cave. The following is the formula used to 

calculate the Crayfish position update is shown in Equation (8). 

𝑊𝑛𝑒𝑤 = 𝑊𝑗,𝑖 + 𝐷2 × 𝑟𝑎𝑛𝑑 × (𝑊𝑠ℎ𝑎𝑑𝑒 − 𝑊𝑗,𝑖) (8) 

𝐷2 is a declining curve, and 𝑊𝑛𝑒𝑤  is the position that comes after a location 

update. The equation for 𝐷2 is shown in Equation (9). 

𝐷2 = 2 − (
𝐹𝐸𝑡

𝑀𝑎𝑥𝐹𝐸𝑠
) (9) 

The number of evaluations in this case is represented by FEs, while the 

maximum number of evaluations is represented by 𝑀𝑎𝑥𝐹𝐸𝑠. 

Stage of competition: The two Crayfish will battle the cave, with Crayfish Xi 

shifting positions in response to Crayfish 𝑊𝑦’s position. The Equation (10) is used to 

get the adjustment position. 

𝑊𝑛𝑒𝑤 = 𝑊𝑗,𝑖 − 𝑊𝑦,𝑖 + 𝑊𝑠ℎ𝑎𝑑𝑒 (10) 

𝑦 stands for the crayfish random individual, and the formula for calculating 

random individuals is shown in Equation (11). 

𝑦 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑 × (𝑀 − 1)) + 1 (11) 

Stage of foraging: The crayfish will drill out of the cave when the temperature 

is less than or equal to 30 ℃ and will use the optimal position found during this 

evaluation to determine where the food is located to finish foraging. Equation (12) is 

used to determine the food’s position. 

𝑊𝑓𝑜𝑜𝑑 = 𝑊𝐻 (12) 

Crayfish exhibit considerable foraging behavior in the 20–30 ℃ temperature 

range. At 25 ℃, they find the most food and consume it to the maximum extent 

possible, as shown in Equation (13). 

𝑜 = 𝐷1 ×
1

√2 × π × 𝜎
× exp (−

(𝑡𝑒𝑚𝑝 − 𝜇)2

2𝜎2
 (13) 
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The crayfish cannot take food directly if it is too big. Before they can consume 

the meal, they must rip it up with their claws. The food’s size is determined using the 

formula, which is shown in Equation (14). 

𝑅 = 𝐷3 × 𝑟𝑎𝑛𝑑(
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑
) (14) 

Equation (15) illustrates that when Q > (C3 + 1) ÷ 2, the meal is too big for the 

crayfish to devour at one time, instead, it must tear it with its claws and eat with its 

second and third legs in turn.  

𝑊𝑓𝑜𝑜𝑑 = exp (−
1

𝑅
) × 𝑊𝑓𝑜𝑜𝑑  (15) 

The mathematical models of the sine and cosine functions are utilized to imitate 

the act of feeding like a bipedal creature alternately. The following Equation (16) is 

the formula for crayfish alternate feeding. 

𝑊𝑛𝑒𝑤 = 𝑊𝑗,𝑖 + 𝑊𝑓𝑜𝑜𝑑 × 𝑜 × (cos(2 × π × 𝑟𝑎𝑛𝑑) − sin(2 × π × 𝑟𝑎𝑛𝑑) (16) 

When Q ≤ (C3 + 1) ÷ 2, the food size is appropriate for the crayfish to consume 

immediately at this moment, and it will proceed straight to the food location and 

begin eating. The Equation (17) is used for direct crush feeding. 

𝑊𝑛𝑒𝑤 = (𝑊𝑗,𝑖 − 𝑊𝑓𝑜𝑜𝑑) × 𝑜 + 𝑜 × 𝑟𝑎𝑛𝑑 × 𝑊𝑗,𝑖 (17) 

The CO-AWAdaBoost method successfully classifies instructional actions in 

physical fitness based on Kinect sensor data by utilizing the advantages of both 

crayfish optimization and adaptive weighting in AdaBoost. Pseudo-code for CO-

AWAdaBoost is as follows (Algorithm 1). 

Algorithm 1 CO-AWAdaBoost algorithm pseudo-code 

1: Function CO_AWAdaBoost (X, y, T): 

2:     Initialize weights W to 1/N for each sample in X 

3:     Initialize empty list of weak classifiers H 

4:     Initialize empty list of alpha values 

5:     for t = 1 to T: 

6:         Train weak classifier ℎ𝑡 using weighted samples (X, y, W) 

7:         Compute error rate 𝑒𝑡 = sum 𝑤𝑖  for misclassified samples i 

8:            if 𝑒𝑡 > 0.5: 

9:             break 

10:                 Compute alpha_t = 0.5 × log((1 − 𝑒𝑡) ÷ 𝑒𝑡) 

11:         Update weights W based on 𝑎𝑙𝑝ℎ𝑎𝑡  and ℎ𝑡 predictions: 

12:         for i = 1 to N: 

13:             if ℎ𝑡(𝑥𝑖) = 𝑦𝑖: 

14: 𝑤𝑖  = 𝑤𝑖  × exp(−𝑎𝑙𝑝ℎ𝑎𝑡) 

15:             else: 

16: 𝑤𝑖= 𝑤𝑖  × exp(𝑎𝑙𝑝ℎ𝑎𝑡) 

17:         Normalize weights W so they sum to 1 

18:                 Add ℎ𝑡 and 𝑎𝑙𝑝ℎ𝑎𝑡  to H and alpha lists respectively 

19:         return H, alphas 
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3.6. Implementing real-time feedback with Kinect technology 

For Kinect motion capture technology to improve physical fitness education, 

real-time feedback is crucial because it enables instructors and students to modify 

their activities in response to instant performance data. The suggested CO-

AWAdaBoost model rapidly detects deviations in body posture data and suggests 

corrections by continually analyzing the data. Tools for real-time visualization show 

performance metrics, which improves technique comprehension. Z-score 

normalization also standardizes data points so that they can be evaluated consistently 

and quickly against pre-established benchmarks. This instant response greatly 

enhances user experience and adoption of the technology, fostering a more engaging 

learning environment in addition to improving the instructional process. 

4. Results and discussion 

Python 3.6.14 was utilized extensively during the research process. This article 

offers an Intel Core i7 laptop running Windows 10 with a 64 GB solid-state drive. 

The Kinect sensor version 1.0, a 3D body camera, served as the test device for this 

investigation, the evaluation of the phase difference between the active infrared 

light’s round-trip timings, and an RGB camera device to get human body depth 

image data. To demonstrate a suggested method’s performance, its dependability and 

effectiveness are compared to those of more recognized techniques like Artificial 

Neural Network (ANN), Random Forest (RF), and IoT-based Physical Activity 

Recognition (IPAR) [25].  

Figure 4a shows CO-AWAdaBoost’s training and validation accuracy, whereas 

Figure 4b shows CO-AWAdaBoost’s training and validation losses. The training 

dataset can be seen to gradually decrease as the model’s complexity rises, suggesting 

that the model does not exhibit the over fitting issue throughout the training process. 

  
(a) (b) 

Figure 4. (a) Training accuracy and validation accuracy; (b) Training loss and 

validation loss curve. 

The application of precisely calculating the total number of occurrences is 

known as accuracy. The accuracy of the CO-AWAdaBoost and the existing 

technique is shown in Figure 5 and Table 1. The accuracy rate of the CO-

AWAdaBoost is 98.25 %, while the accuracy rates of RF, ANN, and IPAR are 
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90.74 %, 91.74 %, and 95.82 % respectively. This depicts that the CO-AWAdaBoost 

method outperformed than the existing methods.  

Table 1. Numerical results of accuracy. 

Methods Accuracy 

RF [25] 90.74 

ANN [25] 91.74 

IPAR [25] 95.82 

Co-AwAdaBoost [Proposed] 98.25 

 
Figure 5. Comparative analysis of accuracy. 

Precision is a metric used to assess a classification or prediction model’s 

accuracy in the context of statistics and machine learning. The precision of the CO-

AWAdaBoost and existing systems is displayed in Figure 6 and Table 2. The 

precision of RF is 92.32% that of ANN is 95.42% that of IPAR is 96.95% and that of 

the CO-AWAdaBoost method is 97.22%. The precision of the CO-AWAdaBoost is 

higher than that of existing techniques.  

Table 2. Numerical results of precision. 

Methods Precision 

RF [25] 92.32 

ANN [25] 95.42 

IPAR [25] 96.95 

Co-AwAdaBoost [Proposed] 97.22 

 
Figure 6. Comparative analysis of precision. 
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The F1-score evaluates the overall effectiveness of a classification model or 

system by combining accuracy and recall. Figure 7 and Table 3 displays the F1-

score for both the existing and CO-AWAdaBoost methods. The CO-AWAdaBoost 

achieved 97.88% F1-score, when compared to RF (93.85%), ANN (94.83%), and 

IPAR (97.88%). This shows that the recommended technique F-score exceeds the 

existing methods. 

Table 3. Numerical results of F1-score. 

Methods F1-score 

RF [25] 93.85 

ANN [25] 94.83 

IPAR [25] 97.83 

Co-AwAdaBoost [Proposed] 97.88 

 
Figure 7. Comparative analysis of F1-score. 

Specificity describes the property of being exact or precise. The CO-

AWAdaBoost method achieved 97.85% specificity, surpassing RF (90.75%), ANN 

(93.12%), and IPAR (96.32%). This illustrates that the CO-AWAdaBoost exceeds 

the existing methods. The specificity of the CO-AWAdaBoost and existing systems 

is displayed in Figure 8 and Table 4. 

Table 4. Numerical outcomes of specificity. 

Methods Specificity 

RF [25] 90.75 

ANN [25] 93.12 

IPAR [25] 96.32 

Co-AwAdaBoost[Proposed] 97.85 
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Figure 8. Comparative analysis of specificity. 

The sum of true positives less false negatives is the mathematical formula used 

to calculate Recall. Figure 9 and Table 5 shows the recall of the CO-AWAdaBoost 

and the existing method. The CO-AWAdaBoost has a higher recall than the existing 

techniques. Whereas RF has a recall of 92.23%, ANN has a recall of 94.35%, IPAR 

has a recall of 95.63% and the CO-AWAdaBoost has a recall of 97.86%. 

Table 5. Numerical outcomes of recall. 

Methods Recall 

RF [25] 92.23 

ANN [25] 94.35 

IPAR [25] 95.63 

Co-AwAdaBoost [Proposed] 97.86 

 
Figure 9. Comparative analysis of recall. 

5. Discussion 

Large-scale, well-labeled datasets are necessary for ANNs, but obtaining them 

in the context of teenage physical fitness might be difficult [25]. Additionally, they 

are prone to overfitting, which results in poor generalization, particularly with 

smaller or imbalanced datasets. The high dimensionality and noise in motion capture 

data could be too much for the RF algorithm to handle, which could result in 

inaccurate movement categorization [25]. Furthermore, RF models might not offer 

real-time feedback, which is essential for productive physical training sessions, and 

they might be computationally demanding. Reliance on constant internet access 

might cause latency problems in IPAR, impacting real-time feedback that is essential 
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for training adolescents [25]. Furthermore, sending sensitive motion data raises 

privacy and security issues, and climatic conditions and sensor limitations might 

impair the accuracy of the system. To address these issues and increase activity 

detection accuracy, CO-AWAdaBoost, an adaptable boosting algorithm, can 

improve physical fitness training for teenagers using Kinect motion capture. Future 

research should focus on developing more robust data augmentation techniques to 

enhance dataset quality and quantity, improving the generalizability of models. 

Investigating alternative machine learning algorithms that can effectively manage 

high-dimensional data without overfitting is also recommended. Additionally, 

integrating edge computing solutions could reduce reliance on constant internet 

connectivity and improve response times for real-time feedback. Emphasizing 

privacy-preserving techniques in data handling will ensure user confidentiality, while 

refining sensor calibration processes can help mitigate the effects of environmental 

variables on system performance. 

6. Conclusion 

In a classroom, we utilized a Kinect sensor to obtain joint coordinates of the 

physical education teacher’s body positions. Changes in joint coordinates were used 

to classify a dataset of instructional activities. To investigate the techniques and 

means of intelligent recognition of PE classroom behavior, an intelligent recognition 

system was created, and the best classification assessment model was chosen through 

experimental comparison. The CO-AWAdaBoost technique’s accuracy, precision, 

recall, F1-score, and specificity are 98.25%, 97.22%, 97.86%, 97.88%, and 97.85%, 

respectively, according to the aforementioned statistics. Adolescents employing 

Kinect motion capture for physical fitness instruction encounter several obstacles 

when using CO-AWAdaBoost, including high computing demands, data 

requirements, and probable over-fitting. Furthermore, the expense of Kinect sensors 

and associated equipment could restrict the acceptance and use of this technology in 

educational settings. This costly barrier could prevent classrooms and fitness centers 

from investing in modern motion capture systems, limiting access to novel teaching 

tools. As a result, instructors may overlook chances to improve teaching quality and 

student engagement using technology. Addressing cost issues, whether through 

subsidies or other inexpensive alternatives, will be critical for increasing usage and 

boosting physical education programs. Future developments in wearable technology 

integration, data augmentation methods, and algorithm efficiency, however, may 

improve its usefulness. Using immersive technology like virtual reality in 

conjunction with customized training programs can increase effectiveness and 

engagement even more.  
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