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Abstract: Introduction: The strategy and restoration of rural areas and landscape in 

biomechanics, with a particular emphasis on cellular and molecular biomechanics, is crucial 

for sustainable rural landscape design. At the cellular and molecular level, plants’ 

biomechanical properties, such as the rigidity and elasticity of cell walls, determine their 

growth patterns and responses to environmental factors. These properties are essential in 

understanding how plants can be effectively incorporated into the rural landscape to enhance 

its stability and functionality. Aim: The objective of this research is to develop a novel 

computer simulation model for rural landscape planning using remote sensing imaging 

technology. Research methodology: We introduce a novel Adaptive YOLOv7 method driven 

by Starling Murmuration search. UAVs are used to collect extensive visual data for training 

the model. By considering cellular and molecular biomechanics, we can analyze how the 

mechanical forces within plants affect their ability to resist wind, retain water, and interact 

with the surrounding soil and other organisms. This knowledge can be integrated into the 

model to better predict the long-term viability and adaptability of different plant species in 

the rural landscape. The combination of the 3D GIS virtual image strategy model and our 

proposed model, along with SM optimization, not only improves object identification but 

also takes into account the biomechanical aspects for more accurate simulations. 

Crowdsourcing helps in precisely mapping rural landscapes and structures, while the 

incorporation of biomechanical principles ensures better adaptability to changing 

environmental and ecological conditions. Findings and Conclusion: Implemented in Python 

software, our SM-AYOLOv7 model shows excellent performance, with metrics like f1 score 

(93.64%), recall (92.34%), accuracy (91.72%), and IoU (90.23%). Our method outperforms 

conventional ones, demonstrating enhanced accuracy and flexibility, especially in handling 

changing configurations, due to the integration of cellular and molecular biomechanical 

insights. 

Keywords: rural landscape design; remote sensing; image processing; starling murmuration 

search-driven adaptive YOLOv7 (SM-AYOLOv7); computer simulation; plant 

biomechanical properties 

1. Introduction 

Rural photography is the hub where environmental sustainability, cultural 

conservation and community welfare come together. It is a complete philosophy of 

conservation that unites natural elements with human activities through which 

biodiversity [1] sustainability and identity of people’s culture are conserved. The 

folk dwellings historically dependent on the ecosystem as a source of livelihood and 
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a habitat will maintain ecological balance through a professional and thorough 

design of the open spaces which will result in meeting the development needs of the 

community in the future [2]. Landscaping rural landscape designs, through the 

utilization of native plants in gardens, shaping the natural landscape forms and 

management of the water resources, strive to generate productive and appealing 

gardens. Likewise, native plants or plant life not only keep the integrity of the system 

but also provide food and shelter for the wildlife in the region [3]. 

Erosion-reduction techniques that include terrace and contouring of the land are 

the role of landform manipulations [4]. Climate diversification is another factor that 

impacts land manipulation [5]. The implementation of management strategies of 

water such as rainwater harvesting and wetland restoration is important in reinstating 

ecosystems and conserving limited water resources, too [6]. Furthermore, beyond 

safeguarding the natural habitats, the rural landscaping looks into the human welfare 

as well as the culture of people. This is two-pronged with mindful planning and 

stewardship being vital in the procedure to make sure that all development-related 

activities are properly done in giving the ecosystems due to respect [7]. 

The rural landscape design grabs sustainability and preserves biodiversity but 

also creates a livelihood for the local people [8]. In the present time, these 

developments in the technology of remote sensing images have transitioned the 

landscape design using knowledge, analysis and visualization tools [9]. Remotely 

sensing technology using satellite imaging, aerial shots, and drone data will bring in 

the quality needed by designers to make informed decisions about land use, habitats 

and urban development using biomechanics [10]. 

To develop and validate an innovative computer simulation model for design of 

rural landscapes with remote sensing image devices, combining the SM-AYOLOv7 

algorithm for precise classification. 

Key Contributions: 

⚫ The SM-AYOLOv7 algorithm of rural buildings and rural environments 

identification through remote sensing images is introduced, thus, the 

classification accuracy is improved. 

⚫ When rural landscape designs are simulated using 3D GIS virtual image design 

models, thus helping to visualize and plan for the rural landscape design. 

⚫ The proof of the superior performance of the new techniques over the 

traditional methods is the increase in accuracy and adaptability in dynamic 

situations. 

Section II: Surveys relevant studies on landscape design and remote sensing. 

Section III: Describes the Research area (Lingxi Valley). Section IV: Introduces SM-

AYOLOv7 algorithm and research approach. Section V: Presents experimental 

findings and comparisons. Section VI: Summarizes outcomes and suggests future 

research. 

2. Literature review 

By contrasting the outdoor and indoor designs, the author of [11] explored the 

use and optimization of virtual reality (VR) technology in landscape design. It 

attempted the integration of VR and VR-GIS, as well as traditional for energy 
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savings. An effective technique for VR landscape design, the Lumia VR platform 

was utilized for auxiliary usage and detail optimization. Its consistent visual 

modeling inaccuracy and 8.9-second rendering time were noteworthy features. 

Study on 3D visualized urban landscape design and planning was covered in the 

paper [12] with particular attention paid to the historical context of the field, present 

difficulties and the fundamentals of the spatial roaming sorting method. Along with 

conducted simulation tests, it covered the integration and optimization of landscape 

design concepts. The outcomes demonstrated by offered realistic data processing 

effects, virtual reality technology-enhanced design quality and efficiency. 

Using a 3D city GIS study [13] investigated to create a virtual city. The basics 

of city 3D simulation were covered, along with the process of created a 3D city 

environment and its evolution through biomechanics. The research examined the 

relevance and future of dynamic simulation technologies in urban 3D environments. 

To assure progress and dependability, the study put out a thorough assessment metric 

system based on visual components and sensibility. 

A novel method for simulated garden landscape distributed logic using VR and 

3D images was provided in the research [14]. It suggested a technique for employed 

camera posture matrices and Speeded-Up Robust Features (SURF) feature point 

recognition to analyze landscape garden distribution logically. Results from 

performance tests and case analyses were utilized to show the excellence of the 

technology, which was subsequently used for research and rebuilding. 

Research utilizing excellent quality remote sensing photos to create a model for 

the distribution of species was published in paper [15]. The model operates better 

than traditional models and collects data on the landscape and ecosystem at precise 

scales of space. Using t-distributed Stochastic Neighbour Embedding (t-SNE) 

reduction of dimensions, which visualizes input data and environmental variance, the 

ecological importance of the framework was illustrated. 

By applying the highest probability classification technique, urban buildings 

were found in the research [16] employed local climate zones. ENVI-met validated 

the effects of heat stress on urban structures by simulated microclimate in six 

idealized models. The data revealed a significant effect of different urban building 

styles on heat exhaustion, a regional variance in microclimate, and an accuracy of 

0.802. 

An agent model was created, temporal granularity in simulation machine 

learning was discussed, and the agent model’s timeliness was investigated [17]. It 

investigated strategies for real-time assurance, real-time simulation and message 

interactivity. Additionally, the article offered comparisons between AutoCAD and 

conventional design methods, and biomechanics that are highlighted the 

sophisticated, scientific and rational nature of machine learning. 

The influence of satellite imagery for the greening of cities on residential 

landscape design was studied by the author of [18]. The SURF color remote sensing 

image analysis technique and a greening remote sensing image processed algorithm 

were employed. According to the study, urban gardens may maximize building 

utilization while offered amusement and lowering people’s stress levels. Results 

indicated a 94% accuracy rate in recognized green building characteristics. 

Using wireless sensor networks and neural networks, the research [19] 
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investigated intelligent landscape design and land planning using biomechanics. 

Urban landscape planning was greatly affected by parametric designing, which 

affected construction and design as well. The utilization of urban land was enhanced, 

waste was decreased, and resource efficiency was increased with the use of digital 

design for landscaping. 

Land production, lifestyle and natural spaces were the main topics of [20]’s 

study, which examined spatial equitable growth in the Poyang Lake area. Four 

scenarios of changes in 2030 were simulated using the random forest Markov future 

land use simulation (RF-Markov-FLUS) coupled model: integrated development 

(ID). The findings implied that better urban planned efficiency, established 

communities and agricultural production should be the main goals of geographic 

pattern optimization. 

With an emphasized on smart intercommunication systems for landscaping, 

water conservation and environmental protection the author of [21] talked about the 

creation of a smart city management framework. The IoT, building data modeling, 

integrated digital systems, and geographic data modeling were utilized by the 

framework. The research established its usefulness in governance by using the data 

platform to acquire, transmit, analyze and process data. 

By utilizing cutting-edge geospatial and machine learning tools, the study [22] 

evaluated the vulnerabilities, of a wetland environment in Pakistan. In terms of 

classifying land cover, the random forest approach produced the best results (89.5%), 

indicating an 11% decrease in open water bodies. The study offered useful 

conservation planning insights as well as a baseline for long-term management and 

protection of wetlands. 

To identify and distinguish glass greenhouses and mulching films from 

excellent quality remotely sensed data, a deep learning model was presented in the 

work [23]. The model was made up of a dilatation and non-local convolutional 

neural network (DNCNN) that aggregates spatial data while extracted global and 

contextual factors. The results of the study indicated high accuracy of 89.6% and 

92.6%, with convolution dilated enhanced an accuracy rate of 2.7% and non-local 

extracted features improved accuracy around 2%. 

Using remote sensing technologies, the study of [24] suggested a way of the 

spatiotemporal evolution of urban complicated landscape structures. The strategy 

lowered dry land area, decreased residential, industrial and mining land transfer 

volume and improved stability. Urban fragmentation was becoming more profound 

as seen by the growing density of landscape borders. Total design alignment 

demonstrated the method’s strong application efficacy. 

To examine past and future land use/cover changes (FLUCCs), [25] conducted 

a study using remote sensing data. The findings indicated a considerable loss of 

agricultural land and vegetation together with the rapid development of urban 

building areas. The only sort of land usage that significantly decreased in future 

models was agriculture. The largest growth in building land was in metropolitan 

areas between 2020 and 2030, mostly due to population migration and increasing 

urbanization. 
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3. Research area 

Situated roughly between 118°17′30′′ E–118°23′10′′ E and 27°30′20′′ N–

27°25′15′′ N, Lingxi Valley is found in the north eastern region of Fujian Province, 

China. Lingxi Valley covers 35.4 square km and is home to eight official 

communities as well as 30 unincorporated settlements. Situated in the southern 

portion of the valley, the major administrative settlement is a combination of 

flatlands and undulating hills with a network of waterways. The core administrative 

hamlet is about 5 km east of Qingzhou’s principal town and around 40 km from the 

heart of Ningde City. The principal administrative village is flanked on the south and 

west by other noteworthy administrative communities. 30 natural settlements are 

spread across the valley and face problems such as steep inclines, poor infrastructure, 

twisting and narrow roads, and restricted access to modern services. Lingxi Valley’s 

population was 3100 people and 1450 houses at the end of 2021. The economy is 

composed mostly of ecotourism and mixed farming, with 2800 hectares of protected 

forest areas and 150 hectares of arable land. The province of Fujian’s map is shown 

in Figure 1. 

 

Figure 1. Map of Fujian province, China. 

4. Methodology 

WEBGIS technology, biomechanics and oblique photography were used to 

create a 3D GIS real-space digital town model for the pilot community, enabling 

cloud sharing and offline discussions. Building this 3D model with WEBGL (Web 

Graphics library) entailed data collection components. The component involved 

UAV 3D mapping (refer to Figure 2), employing the DJI Mavic 2 Pro UAV model 
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alongside ground DGPS (Differential Global Positioning System) for aerial image 

capture. The data acquisition process took place under ideal conditions, characterized 

by sunny, cloudless weather conditions and high air visibility. Oblique photographs, 

meticulously selected and organized, were imported into Agi soft Meta shape 

software to generate mesh point cloud models in LAS (Lidar LASer) format. 

Subsequently, WEBGL technology has been used to create an online platform for 

real-time spatial visualization. 

 

Figure 2. UAV 3D map. 

Identifying and classifying various buildings 

SM: The SM method simulates the behavior of starlings through their 

magnificent murmuration by employing three novel search methods: separating, 

diving, and spinning. The group of starlings is represented by the notation 𝑇 =

{𝑡1, 𝑡2, . . . , 𝑡𝑀} , where 𝑀  is the group size. A value of a vector, 𝑊𝑗 (𝑠) =

(𝑤𝑗,1, 𝑤𝑗,2, … , 𝑤𝑗,𝐶), is used to indicate each starling 𝑡𝑗’s location at iteration 𝑠. Its 

fitness score is indicated by 𝐸𝑗(𝑠). Equation (1) is used to start each 𝑊𝑗(𝑠) in the 

initial phase. The area of search is 𝐶-dimensional, with 𝑊𝐾 and 𝑊𝑉 representing the 

lower and upper limits, respectively, and 𝑟𝑎𝑛𝑑 (0,1) representing a random number 

between 0 and 1. 

𝑊𝑗(𝑠) = 𝑊𝐾 + 𝑟𝑎𝑛𝑑(1,0) × (𝑊𝐾 − 𝑊𝑉), 𝑗 = 1,2, … , 𝑀 (1) 

Employing the segregating, diving and swirling search tactics, the total number 

of starlings is shifted for the remaining iterations molecule. The next sections go into 

depth about each of these search techniques. 

Separating Search Strategies: Diversity in society is encouraged by the separate 

search approach. Applying Equation (2), a part of starling’s size 𝑂𝑠𝑒𝑝 are chosen at 

random from group 𝑇. Equation (3) is used to modify some of the chosen starlings’ 

parameters. In this equation, 𝑊𝐻(𝑠) represents the entire best location, and 𝑊𝑞(𝑠) is 
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a selected starling from group 𝑇. At the end of each iteration, a random selection is 

made from these sets, and the best location thus far is saved. These locations are 

merged with the segregated locations of size 𝑂𝑠𝑒𝑝. Applying Equation (4), one may 

derive the separation operator 𝑅1(𝑧) , where 𝛼 represents the quantum harmonic 

oscillator, 𝑛, and 𝑙 denote the mass and strength of the particle, and 𝑔 represents a 

Planck constant. Additionally, the Hermite polynomial function 𝐺𝑚  is associated 

with an int index 𝑚, whereas 𝑧 is an arbitrary number. 

𝑂𝑠𝑒𝑝 =
log (𝑠 + 𝐶)

lg (𝑀𝑎𝑥𝐼𝑡) × 2
 (2) 

𝑊𝑗(𝑠 + 1) = 𝑊𝐻(𝑠) + 𝑅1(𝑧) × (𝑊𝑞′(𝑠) − 𝑊𝑞(𝑠)) (3) 

𝑅1(𝑧) = (
𝛼

2𝑚 × 𝑚! × 𝜋
1

2

)

1

2

𝐺𝑚(𝛼 × 𝑧) × 𝑓−0.5×𝛼2×𝑧2
, 𝛼 = (

𝑛 × 𝑙

𝑔
)

1

4

 (4) 

Either fluid multi-flock building, the remaining starlings having a size of 

�́�(𝑀 − 𝑂𝑠𝑒𝑝)  are collected and used to search the issue space with swirling or 

diving search techniques. 𝐿 non-empty flocks (𝑒1, … , 𝑒𝑙) are used in every cycle to 

form a changing multi-flock. The top 𝑙 starlings are eliminated from group �́� and 

kept in matrix 𝑄. The other population (�́� − 𝑄) is dispersed between the 𝑙 flocks. In 

the end, every flock is assigned a location in 𝑄  that is: 𝑒1 ←  {𝑄1 𝑉 𝑒𝑙  }, . . . 𝑒𝑙 ←

 {𝑄𝑙  𝑉 𝑒𝑙}.The condition of each flock determines which search methods, such as 

diving and spinning, are allocated to it, as Equation (6) illustrates. Equation (5) is 

used to determine each flock’s effectiveness (𝑅𝑟(𝑠)) , where 𝑛  is the aggregate 

number of starlings in every flock, 𝑙  is the count of flocks, and 𝑡𝑒𝑗𝑖(𝑠)  is the 

starling’s efficiency score in the flock 𝑒𝑖. Equation (6) uses the variable 𝜇𝑅 (𝑠) to 

represent the average efficiency of all flock members. 

𝑅𝑟(𝑠) =
∑

1

𝑚
∑ 𝑡𝑒𝑗𝑖(𝑠)𝑚

𝑖=1
𝑙
𝑗=1

1

𝑚
∑ 𝑡𝑒𝑗𝑖(𝑠)𝑚

𝑖=1

 (5) 

𝑊𝑗(𝑠 + 1) = {
Diving search strategy𝑅𝑟(𝑠) ≤ 𝜇𝑅(𝑠)

Whirling search strategy𝑅𝑟(𝑠) > 𝜇𝑅(𝑠)
 (6) 

Diving Search Strategy: To explore the area of search, the chosen flocks 

(𝑅𝑟(𝑠) ≤ µ𝑅(𝑠)) are urged to use the diving search technique. The starlings migrate 

via quantum random dives (QRD), both downward and upward. Equation (7) 

displays the two quantum possibilities that the starlings in a flock use to toggle 

between these quantum dives. The downward and upward probability is represented 

by the variables |𝜓𝑈𝑝(𝑊𝑗)| 𝑎𝑛𝑑 |𝜓𝐷𝑜𝑤𝑛(𝑊𝑗)|  respectively and calculatedthe 

Equations (8) and (9). The user sets the variables 𝜑 𝑎𝑛𝑑 𝜃, and the inverse-Gaussian 

dispersion |𝜓(𝛿2)〉  is generated using Equation (10), where 𝜆  and µ  are user-set 

values and 𝑦 is an arbitrary integer. 
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𝑅𝑄𝐶 = {
Upward quantum dive|𝜓𝑈𝑝(𝑊𝑗) > 𝜓𝐷𝑜𝑤𝑛(𝑊𝑗)|

Downward quantum dive|𝜓𝑈𝑝(𝑊𝑗) ≤ 𝜓𝐷𝑜𝑤𝑛(𝑊𝑗)|
 (7) 

|𝜓𝑈𝑝(𝑊𝑗)⟩ = 𝑓𝑗𝜑𝑐𝑜𝑠𝜃 × |𝜓(𝛿2)⟩ − 𝑓−𝑗𝜑𝑠𝑖𝑛𝜃 × |𝜓(𝛿2)⟩ (8) 

|𝜓𝑈𝑝(𝑊𝑗)⟩ = 𝑓𝑗𝜑𝑠𝑖𝑛𝜃 × |𝜓(𝛿2)⟩ + 𝑓−𝑗𝜑𝑐𝑜𝑠𝜃 × |𝜓(𝛿2)⟩ (9) 

|𝜓(𝛿2)⟩ = √
𝜆

2 × 𝜋 × 𝑧3
× 𝑓 [

𝜆(𝑧 − 𝜇)2

2 × 𝜇2 × 𝑧
] (10) 

The quantum dives, both downward and upward are calculated with Equations 

(11) and (12), respectively, wherein |𝜓(𝑄𝐶)〉 is chosen from set 𝑄, |𝜓(𝑊𝑗)〉 is the 

location of starling 𝑡𝑗 in the current each iteration, the location of |𝜓(𝑊𝑞)〉 is chosen 

at arbitrarily among flocks allocated for diving strategy and the greatest starlings set 

and individuals 𝑇 are chosen at arbitrary. |(𝛿1)〉are an arbitrary location chosen from 

the best starlings set from the first iteration and the starling population 𝑇. 

|𝜓 (𝑠 + 1, 𝑊𝑗)⟩ = |𝜓 (𝑄𝐶)⟩ − |𝜓𝐷𝑜𝑤𝑛(𝑊𝑗)⟩ × |𝜓 (𝑊𝑗)⟩ − |𝜓 (𝑊𝑞)⟩𝑅𝑟(𝑠) =
∑

1

𝑚
∑ 𝑡𝑒𝑗𝑖(𝑠)𝑚

𝑖=1
𝑙
𝑗=1

1

𝑚
∑ 𝑡𝑒𝑗𝑖(𝑠)𝑚

𝑖=1

 (11) 

|𝜓(𝑠 + 1, 𝑊𝑗)⟩ = |𝜓(𝑄𝐶)⟩ + |𝜓𝑈𝑝(𝑊𝑗)⟩ × (|𝜓(𝑊𝑗)⟩ − |𝜓(𝑊𝑖)⟩ + 𝜓(𝛿1)⟩) (12) 

Swirling Search Strategy: When the level of quality in a flock is greater than the 

average quality of all flocks (𝑅𝑟(𝑠) > µ𝑅(𝑠)), starlings inside the flock will take 

advantage of the search difficulty by employing the swirling search method. 

Equation (13), which describes the whirling search tactics, states that 𝑊𝑗 (𝑠 + 1) is 

the starling 𝑡𝑗’s next position at repetition 𝑠, and the location 𝑊𝑄𝑋 (𝑠) was selected at 

random from set 𝑄 of flocks that qualify for the swirling search strategy, and 𝑊𝑀 (𝑠) 

is arbitrarily selected from all flocks that wish to use the swirling search strategy. 

Equation (14) is used to determine𝐷𝑗 (𝑠), the cohesion operator. 𝜉 (𝑠) is an arbitrary 

number between 0 and 1. 

𝑊𝑗(𝑠 + 1) = 𝑊𝑗(𝑠) × 𝐷𝑗(𝑠) × (𝑊𝑄𝑋(𝑠) − 𝑊𝑀(𝑠)) (13) 

𝐷𝑗(𝑠) = cos(𝜉(𝑠)) (14) 

YOLO-V7: The YOLO method, the most common example of a single-stage 

detection technique, depends on deep neural networks for identifying objects and 

molecule. To accomplish end-to-end target recognition, it employs the same CNN 

model. The entire picture is fed into a network structure and the limiting box’s 

position and associated category are regressed in its result layer. A fair compromise 

between accuracy and operation speed is offered by the YOLO-V7 system, which is 

a continual development over the YOLO series. The YOLO-V7 network is divided 

into four basic modules: input, backbone, head, and prediction. It uses methods like 

re-parameterized convolution, model expansion for concatenation-based models, 

expanded efficiency layer aggregating networks (E-ELAN), and others. Figure 2 
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displays the YOLO-V7 algorithm structure. 

Within the YOLO-V7 backbone system, computer block E-ELAN can facilitate 

the learning of more varied properties by various groups of computing blocks. In 

large-scale ELANs, the network achieves equilibrium, irrespective of gradient 

direction, path length, or total number of blocks. If the blocks are stacked 

indefinitely, such states of equilibrium may be eliminated and the use of the main 

settings minimized. The E-ELAN method employs expansion, random scrambling, 

and merging cardinality to improve network training ability while preserving the 

original gradients route, as well as to direct the various computationally block groups 

to acquire varied characteristics of molecule. The basic goal of scaling the model is 

to alter the model’s unique features and build model of various sizes to satisfy the 

demands of different inferences speeds. For a cascade-based approach, the remaining 

portion of the layer of transport is scaled with the equivalent width and the level in 

the computation block has to be changed. When a computed block’s depths factor is 

scaled, the change in the block’s outputs channel is determined, and the change of 

layer is updated accordingly. With advice from the instruction head’s prediction 

outcomes, RepConv absent constant interaction is used to remodel the 

reparametrized convolution’s structure and suggests generating coarse to suitable 

hierarchy labels that aid in the guidance head’s learning. 

Adaptive YOLO-V7: There are three sizes for the head in the original YOLO-

V7 algorithm: large, medium, and small. The investigation discovered that hidden 

targets raised the error rate during the extraction of features based on the real 

distributions and sample circumstances of 𝑇. Additionally, the object of extraction 

was insufficient due to disturbance and decreased precision in identifying targets at 

small distances. As a result, this study suggested extending the layer to the original, 

dropping generated feature map, inserting an object recognition layer, and further 

influencing the data flow. Figure 3 depicts how the updated map of features made 

easier to provide the target’s feature data and meet the goal of enhancing the 

accuracy of detection. 

 

Figure 3. Enhancements to the detecting head. 

SM-AYOLOv7: The improved SM-AYOLOv7, enhances the traditional 

YOLOv7 framework by integrating adaptive mechanisms tailored for detecting 

complex flocking behaviors in starlings. This algorithm employs a refined feature 
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extraction process that focuses on the unique motion patterns and formations 

characteristic of murmurations, allowing for improved accuracy in identifying 

individual birds within densely packed groups. By leveraging advanced techniques 

such as attention mechanisms and multi-scale feature aggregation, SM-AYOLOv7 

optimizes the model’s performance, enabling it to effectively handle variations in 

lighting, density, and occlusion. The goal of outdoor rural planning is to bring 

harmony between the natural constituents with human needs, through the integration 

of biodiversity, sustainable solutions, and cultural identity into the plans. This 

complex assignment in the identification of core indicators and establishment of 

biomechanics requires the most perfect and expedient instruments for data analysis 

of various rural regions.SM-AYOLOv7 algorithm which relies on the remote sensing 

image technology integrated with collected data from the UAVs will be used to 

develop a training model which could do landscape with precision. For satisfactory 

space-of-place rendering, a 3D GIS virtual imaging design will be employed which 

depicts the rural landscape with an acceptable level of accuracy. The new SM-

AYOLOv7 stands out with its inspiration from born-starring-like flocking behavior. 

Consequently, this approach continues making improvements in the network 

parameters to further improve YOLOv7’s ability to detect objects, which is the case 

with accuracy and efficiency. The illustrious intelligence system illustrates the 

hypothetically adaptive and collective behaviors of starling flocks helping the model 

to accomplish a precise classification of human environments and rural buildings. As 

a result, it significantly boosts detection speed and precision, making it well-suited 

for real-time applications in wildlife monitoring and research. The technique for SM-

AYOLOv7 is shown in Algorithm 1. 

Algorithm 1 SM-AYOLOv7 

1: Initialize parameters: 

2:     - Define starlings’ group 𝑇 (size 𝑀), set search space dimensionality 𝐶, and limits 𝑊𝐾  (lower) and 𝑊𝑉 (upper). 

3: 2. Initialize starling positions and fitness scores: 

4:      - For each starling 𝑡𝑗 in 𝑇: 

5:      - Generate position 𝑊𝑗(𝑠) and calculate fitness score 𝐸𝑗(𝑠). 

6:  3. Perform iterations until convergence: 

7:     a. Separate search strategies: 

8:       - Calculate segregated set size 𝑂𝑠𝑒𝑝 and select starlings from 𝑇 to form segregated sets 

9:       - Modify selected starlings and update starling positions. 

10:     b. Allocate remaining starlings for diving or swirling search strategies: 

11:      - Form non-empty flocks and evaluate effectiveness. 

12:      - Assign search strategies based on flock conditions.  

13:     c. Diving search strategy: 

14:      - Use quantum random dives (QRD) for selected flocks and update the starling positions based on probabilities.  

15:     d. Swirling search strategy: 

16:      - Implement swirling search method for eligible flocks and update the starling positions. 

17: 4. Repeat steps 3 until convergence criteria are met. 

18: 5. Output the optimized positions of starlings. 

5. Result and analysis 

On a Windows 11 OS, we used the Python programming language (version 

3.10) to implement our technique. An Intel Core i7 CPU drove the computational 

environment, which was accompanied by a high-performance IRIS graphics card to 

ensure that complicated machine-learning tasks were completed efficiently. The 
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efficacy of the proposed technique (SM-AYOLOv7) was assessed using a range of 

criteria, such as recall, f1-score, IoU, and precision. The results were compared to 

those of other methods, such as ((multiple attention gate modules and a context 

collaboration network) AGSCNet [26], (HighResolution Net) HRNet [27], and 

(Multi-Attention-Detail U-shaped Network) MAD-UNet) [28]. 

The adopted approach to organize planning for the dislocation and aggregation 

of mountain villages was represented by a model of their structural classification. In 

all unincorporated villages of the given region, village architectural buildings were 

classified into four series with distinguished features, mentioned and as shown in 

Table 1 and Figure 4. 

Table 1. Classification of building structures. 

Category Characteristics of exterior materials and exterior Building stories (height) and types of structure 

Category A masonry or reinforced concrete construction 
Consists of buildings with 3 stories or more, and those with brick or 

reinforced concrete construction below three levels 

Category B brick, mud, and wood were used in its construction. 
Typically found in buildings spanning 2 to 3 stories, featuring brick or a 

combination of materials for construction 

Category C Made of mud and wood devoid of embellishment 
Generally found in 1 or 2-story buildings with simplistic or aged 

structural designs 

Category D 
Comprising mud and wood exhibiting surface 

deterioration 

Typically, single-story structures with extensively damaged walls, 

beams, and roofs 

 

Figure 4. Categorization of constructionstructures. 

Figure 5 demonstrated that the diffusion and the number of buildings would 

affect the image perception results greatly. Researchers used the imaging data to 

identify the buildings that were scattered and those were densely clustered. The ones 

with fewer buildings do a better job in terms of recognition the ones with densely 

clustered buildings may simply obstruct the recognition process through 

biomechanics. Table 2 shows the process of Overall comparison of detection 

models. 
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Figure 5. Consequences of recognition. 

Table 2. Performance comparison of object detection models. 

Methods Precision (%) Recall (%) F1-score (%) IoU (%) 

AGSCNet 86.31 77.16 81.49 68.76 

HRNet 77.75 67.03 63.23 56.24 

MAD-UNet 88.39 86.19 87.28 77.43 

SM-AYOLOv7 [Proposed] 91.72 92.34 93.64 90.23 

5.1. Precision 

The purpose of the study was to examine the precision of the SM-AYOLOv7 

algorithm for rural landscape classification. Figure 6 proved stronger in recognizing 

and category buildings and environments at remote locations, which was due to the 

eagle-spotted search strategy. The suggested method, SM-AYOLOv7, obtained a 

precision of 91.72%, while the results of AGSCNet, HRNet, and MAD-UNet were 

only 86.31%, 77.75%, and 88.39%, respectively. 

 

Figure 6. Comparison of precision. 
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5.2. Recall 

Study assessed the SM-AYOLOv7 algorithm for rural landscape classification, 

which was compared with the traditional methods to find the recall. Figure 7 values 

representation significantly, notably for identifying structures and environments in 

the rural areas. The suggested method, SM-AYOLOv7, obtains a recall of 92.34%, 

while the results of AGSCNet, HRNet, and MAD-UNet were only 77.16%, 67.03%, 

and 86.19%, respectively. 

 

Figure 7. Comparison of recall. 

5.3. F1 score 

Research evaluated the SM-AYOLOv7 algorithm’s F1 score objective 

measurements. Figure 8 enhanced performances is attributed to the innovation of the 

constellation-swarming algorithm that enables the robot to have an increased number 

of search tactics with inferring the precision and recall and thereof higher F1 values. 

The suggested method, SM-AYOLOv7, obtains anf1 score of 93.64%, while the 

results of AGSCNet, HRNet, and MAD-UNetwere only 81.49%, 63.23%, and 

87.28%, respectively. 

 

Figure 8. Comparison of F1 score. 
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5.4. IoU 

Study assessed the IoU performance of the SM-AYOLOv7 algorithm vs the 

conventional methodologies for the classification of rural landscapes. Figure 9 

obtained SM-AYOLOv7 always achieved the highest IoU scores, which means more 

successful than other approaches in localizing the features of the rural landscape. 

The suggested method, SM-AYOLOv7, obtains an IoU of 90.23%, while the results 

of AGSCNet, HRNet, and MAD-UNetwere 68.76%, 56.24%, and 77.43%, 

respectively. 

 

Figure 9. Comparison of IoU. 

6. Conclusion 

This research exhibits a new method of designing rural landscapes with the use 

of remote sensing imagery and the SM-AYOLOv7 algorithm. Through the 

integration of 3D GIS virtual imaging design models and the application of SM 

optimization, our proposed model reveals a heightened precision and efficiency in 

the rural building and environment identification process informed by biomechanics 

at the molecular level. The outcomes of our analysis prove that our method is better 

than the conventional ones, thus increasing the chances of more exact and flexible 

rural landscape design practices. This research, becomes a stepping stone in the 

development of the field of landscape design through the use of the latest technology 

to produce, in most cases, sustainable environments will be great benefit to both 

ecosystems and communities. This research is based on the remote sensing imagery, 

which may be weakened by factors such as the image resolution and cloud cover, 

thus affecting the classification results accuracy. Future research could delve into the 

area of the combining of real-time data streams and advanced machine learning 

techniques, thus making the rural landscape design simulations more accurate and 

adaptable, with a focus on biomechanics to better understand how physical forces 

interact with the environment and influence design outcomes. 
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