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Abstract: In contemporary educational and computational settings, the incorporation of 

cutting-edge technologies like sound source localization and personalized music teaching 

helps in offering an effective resource allocation strategies. Previous systems for sound 

localization and music teaching frequently lacked real-time flexibility and effective resource 

use, reducing their efficiency in dynamic learning settings and tasks involving computation. 

To overcome these shortcomings, the SoundLocMusicTeachRA (SLMTRA) algorithm is 

presented, a single, integrated platform made to maximize sound localization accuracy, 

improve music teaching efficiency, and enhance computational resource oversight. However, 

the existing study did not highlight the importance of computation resource allocation but this 

proposed algorithm will address it. SLMTRA uses a new Bagging ensemble approach 

incorporating Random Forest (RF), Decision Trees (DT), Naive Bayes (NB), Support Vector 

Machine (SVM), and K-Nearest Neighbor (KNN), with hyperparameter tuning to enhance 

the effectiveness of the approach. These classifiers are trained utilizing sound localization 

datasets from recordings made with microphones, music teaching feedback datasets from 

data on student performance, and resource allocation datasets from metrics for computer 

utilization. Experimental findings indicate SLMTRA’s high accuracy in sound source 

localization, improved music teaching feedback capacities, as well as effective resource 

allocation tactics, guaranteeing the best performance of the system. The implementation of 

SLMTRA represents a noteworthy development in combining sound localization, music 

teaching, and resource allocation within a unified computational framework, offering a more 

flexible and effective system compared to previous methodologies. 

Keywords: sound localization; music teaching; resource allocation; bagging ensemble 

method 

1. Introduction 

In the current educational environment, the combination of advanced 

technologies has a vital role in advancing learning experiences and enhancing system 

efficiency. Innovations in sound source localization [1] and individualized music 

teaching [2] have the potential to greatly enhance conventional educational contexts, 

turning them into dynamic and interactive learning experiences. Effective resource 

allocation tactics are essential for increasing the usage of computational assets and 

assuring consistent function and highest efficiency in different educational and 

computational domains [3]. This paper introduces the SoundLocMusicTeachRA 

(SLMTRA) algorithm—an advanced, cohesive platform created to tackle the 

inherent difficulties in sound localization, music teaching, and resource allocation. 

Existing sound localization systems primarily depend on fixed algorithms that 

frequently encounter difficulties in promptly adjusting to the ever-changing 

conditions seen in educational environments [4]. These methods commonly utilize 
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single-method tactics, which may restrict their capacity to precisely capture the 

intricacies of spatial audio data. Similarly, current platforms for teaching music 

frequently lack strong feedback systems customized to the needs of each student, 

thus impeding the achievement of good learning results [5]. Furthermore, the 

allocation of computational resources in these systems often lacks optimization, 

leading to poor efficiency and unnecessary resource use [6]. 

The main limitations of previous techniques encompass multiple crucial areas. 

The absence of real-time adaptation in sound localization systems might result in 

potential inaccuracies or delays in delivering exact spatial audio data. This constraint 

is especially harmful in educational settings where prompt and precise feedback is 

crucial. Furthermore, the lack of sufficient individualized feedback systems in music 

teaching platforms hampers the efficacy of customized learning tactics based on 

student growth and interests. Furthermore, improper allocation of resources leads to 

avoidable computational burdens, which hinder the total effectiveness and reliability 

of the system. To tackle these intrinsic constraints, the SLMTRA algorithm arises as 

a revolutionary remedy. SLMTRA is very adaptable and can be used in a wide range 

of educational settings, from conventional music schools to online learning platforms 

with real-time interactive classrooms. Moreover, its usefulness in computational 

resource management systems guarantees increased effectiveness and enhancement 

of performance in many different contexts. The widespread use of SLMTRA 

highlights its ability to alter educational processes and greatly improve 

computational resource allocation tactics. 

SLMTRA is meticulously designed to maximize sound localization accuracy, 

improve the efficiency of music teaching approaches, and streamline computational 

resource management within a unified framework. Fundamentally, SLMTRA utilizes 

a Bagging ensemble technique to combine many classifiers such as Random Forest 

(RF), Decision Trees (DT), Naive Bayes (NB), Support Vector Machine (SVM), and 

K-Nearest Neighbor (KNN) seamlessly. By extensively adjusting the 

hyperparameters, these classifiers are optimized to enhance their predicted accuracy 

and operational effectiveness. The SLMTRA algorithm progresses through a 

systematic sequence of methodical steps specifically designed to accomplish its main 

objectives. The strategy places great emphasis on thorough data preprocessing, 

specifically encoding categorical variables using label encoding. This ensures the 

smooth incorporation of these variables into machine learning methods. Numerical 

feature normalization is used to ensure that all model training instances contribute 

equally, which is crucial for enhancing the convergence and predictive accuracy of 

the deployed classifiers. This paper makes a substantial contribution to the field by 

introducing SLMTRA, a groundbreaking platform that combines sound localization, 

music teaching, and resource allocation seamlessly. SLMTRA combines ensemble 

learning and hyperparameter tuning to improve the precision and dependability of 

sound source localization and boost the effectiveness of tailored music education 

approaches. Furthermore, SLMTRA implements effective methods for allocating 

resources, thus setting a standard for adaptable and high-performing systems in the 

fields of education and computation. The primary goal of this paper is to 

meticulously create and apply the SLMTRA algorithm, to show its effectiveness in 

overcoming the constraints of existing approaches. SLMTRA intends to establish a 



Molecular & Cellular Biomechanics 2024, 21(2), 355.  

3 

new benchmark for adaptive and effective technological remedies in educational 

environments and beyond by creatively tackling the issues provided by conventional 

sound localization, music teaching, and resource allocation methods. 

The paper’s structure is meticulously arranged to offer a thorough examination 

of the development, implementation, and evaluation of SLMTRA. Section 2 

provides an overview of relevant research, which helps to provide the background 

for SLMTRA’s unique approach. Section 3 provides a comprehensive explanation of 

the methodological foundations that support the SLMTRA algorithm. This includes a 

detailed description of the processes involved in data preprocessing, model 

construction, and hyperparameter optimization. Section 4 demonstrates the empirical 

results of SLMTRA, highlighting its strong performance in accurately localizing 

sound, effectively teaching music, and efficiently managing computing resources. 

Section 5 serves as the final part of the study, where it provides a summary of 

important findings, emphasizes the contributions made, and suggests potential areas 

for future research and practical implementation. 

2. Related works 

Recently, notable progress has been achieved in sound localization, music 

teaching, and resource allocation, due to breakthroughs in signal processing, 

machine learning, and educational technology. This section examines significant 

contributions from current literature in these fields, emphasizing their approaches 

and the current deficiencies that inspire the proposed SoundLocMusicTeachRA 

(SLMTRA) algorithm. 

Sound source localization, separation, and reconstruction are essential activities 

in diverse settings such as conference rooms and residential spaces. Recent 

improvements have greatly improved these processes, especially in situations where 

time-domain signal separation and reconstruction are needed. Chen et al. [7] 

suggests a hybrid methodology that integrates strategies for processing signals from 

microphone arrays. This method efficiently tackles the difficulties in accurately 

determining both the position and content of sound sources, especially in intricate 

sound environments. Their methodology utilizes advanced techniques such as 

beamforming and broadband weighted multiple signal classification (BW-MUSIC) 

to achieve enhanced accuracy and operating efficiency in comparison to 

conventional methods. 

Liaquat et al. [8] investigate the process of sound localization by employing ad-

hoc microphone arrays, with a particular focus on the ability to achieve high levels 

of accuracy and effectiveness utilizing a reduced number of microphones. Their 

innovative approach combines direction of arrival (DOA) estimate with three-

dimensional localization, illustrating that by reducing the number of microphones, 

computational complexity may be streamlined without compromising accuracy. This 

study highlights the practical advantages of using ad-hoc arrays to improve sound 

source identification methods. 

Chung et al. [9] specifically examines the localization of sounds within indoor 

environments by employing several arrays of microphones. They emphasize the use 

of time delay estimation algorithms to address the difficulties caused by signal 
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delays. Their experimental configuration utilizes two linear microphone arrays to 

attain accurate localization outcomes in controlled conditions. Through the 

utilization of generalized cross-correlation approaches, they successfully showcase 

their capability to recognize sound sources with minimum error margins, thus 

confirming the practicality and dependability of their proposed system. 

Go and Choi [10] propose a novel method for acoustic source localization by 

utilizing phased microphone arrays placed on drones. Their approach tackles specific 

difficulties presented by drone functions, such as mitigating background noise 

interference and optimizing the ratio of signal to noise. Through the integration of 

aircraft navigation data and acoustic signal processing, they can accurately estimate 

the locations of sound sources above the ground. The success of their approach has 

been confirmed through experimental validation, demonstrating its potential for 

applications that involve airborne acoustic monitoring. 

Rucsanda et al. [11] examine the opinions of students regarding online music 

instruction amid the COVID-19 pandemic, with a focus on how the perceived 

usefulness of e-learning approaches influences their level of satisfaction. Their 

research emphasizes the adjustment of music education to distant formats and 

emphasizes the significance of compatibility and perceived utility in improving 

student involvement and contentment with online learning platforms. 

De Bruin [12] examines the teaching methods employed by instrumental music 

educators during the COVID-19 pandemic. The study specifically investigates ways 

that promote strong relationships and connections in online teaching settings. The 

study uses qualitative analysis to examine how music educators address the 

difficulties of distant instruction while simultaneously fostering interpersonal 

connections and encouraging student autonomy in musical learning. This study 

provides significant findings regarding effective online teaching methods in the area 

of teaching music. 

Dai [13] investigates the use of artificial intelligence (AI) technology in the 

instructing of music. The study emphasizes the significant changes that intelligent 

instructional design can bring to music education. The author suggests implementing 

AI technology such as big data analytics and personalized learning algorithms to 

improve teaching efficacy and increase student engagement in music courses. This 

study proposes the implementation of AI-driven techniques to enhance music 

teaching methods and facilitate personalized learning experiences for students. 

Tuli et al. [14] present HUNTER, an AI-driven framework for managing 

resources in cloud computing to promote sustainability. HUNTER is a solution that 

addresses the increasing energy needs of modern data centers. It combines multi-

objective scheduling models with graph convolution networks to improve energy 

efficiency, temperature control, and service quality in cloud environments. The 

experimental results show substantial enhancements in energy efficiency, adherence 

to service level agreements, and operational expenses as compared to conventional 

resource management methods. 

Giardino et al. [15] introduce a power management system called 2QoSM, 

which utilizes reinforcement learning to improve dynamic power management in 

embedded systems while minimizing additional costs. By implementing Q-learning 

algorithms in a software framework, their method successfully reduces energy use 
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significantly while enhancing performance measures such as path error in 

autonomous robotic systems. This study demonstrates the efficacy of reinforcement 

learning methods in reducing power consumption while maintaining operational 

effectiveness. 

Azarhava and Niya [16] investigate the effective allocation of resources in 

wireless energy harvesting sensor networks (WEHSNs), with a specific emphasis on 

improving time scheduling and minimizing transmission power usage. Their research 

suggests a technique based on TDMA (Time Division Multiple Access) that 

effectively manages the balance between energy harvesting abilities and 

transmission needs. They utilize mathematical improvement approaches to improve 

the effectiveness of the network. This study offers valuable insights into sustainable 

resource management strategies that may be employed to prolong the lifespan of 

sensor networks and enhance their overall effectiveness. 

Yu et al. [17] suggests a cooperative system that combines UAVs, or unmanned 

aerial vehicles, and MEC, or mobile edge computing to improve the distribution of 

tasks and allocation of resources for Internet of Things (IoT) devices. Their strategy 

involves combining UAVs with edge clouds to overcome connection issues in areas 

with limited network coverage. This integration improves the delivery of services for 

applications that require a significant number of resources. By creating an 

optimization problem that takes into account service latency, energy usage, and task 

allocation choices, they show better efficiency than typical MEC frameworks. 

The main limitations of the above existing systems include the absence of real-

time adaptation in sound localization, leading to imprecise or delayed spatial audio 

data. Furthermore, the lack of tailored feedback systems in music teaching platforms 

hampers efficient learning and student engagement. This problem is worsened by 

poor resource allocation, which results in needless computational burdens and 

decreased system efficiency. These constraints emphasize the necessity for a 

comprehensive and flexible approach to tackle difficulties in these areas. To address 

these current drawbacks, the SoundLocMusicTeachRA (SLMTRA) algorithm is 

suggested. 

3. Methodology 

The methodology utilized in the paper concentrates on implementing the 

SoundLocMusicTeachRA (SLMTRA) algorithm to tackle significant obstacles in 

sound localization, music teaching feedback, and resource allocation. These domains 

play a vital part in improving user experience and system efficiency in a several uses, 

such as real-time sound source recognition, tailored music education, and effective 

computational resource management. 

3.1. Data collection 

The data collecting process for this study involved collecting a wide range of 

datasets that were necessary for training and testing the SoundLocMusicTeachRA 

(SLMTRA) algorithm in its main applications: sound localization, music teaching 

feedback, and resource allocation. All data sets were meticulously selected to capture 
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important characteristics and provide a thorough representation of operating 

situations. 

3.1.1. Sound localization dataset 

The Sound Localization dataset consists of recordings captured in controlled 

situations using several microphones. In these environments, sound sources are 

deliberately placed at specified coordinates (x, y). Each recording consists of 

readings from four microphones (Microphone 1 to Microphone 4), which measure 

the intensity of sound (in dB) at each source location. We decided to use a 1000 Hz 

narrowband signal as our audio source. The absorption coefficient for the room is 

configured to be 0.4. The sidelobe value of proposed algorithm is −13 dB. 

This dataset enables the training and testing of the SLMTRA algorithm’s 

predictive models for reliably estimating the spatial coordinates of sound sources in 

real-time settings. Table 1 shows the Sample Sound Localization Dataset. 

Table 1. Sample sound localization dataset. 

Microphone 1 (dB) Microphone 2 (dB) Microphone 3 (dB) Microphone 4 (dB) Sound Source Location (x, y) 

71 66 61 56 (4, 1) 

56 61 66 71 (1, 2) 

69 65 59 53 (2, 4) 

51 56 61 66 (3, 1) 

66 63 58 54 (1, 4) 

59 61 64 68 (4, 1) 

73 69 61 55 (2, 2) 

54 58 63 67 (4, 4) 

61 66 71 76 (3, 3) 

71 67 63 59 (1, 1) 

3.1.2. Music teaching feedback dataset 

The Music Teaching feedback dataset comprises recordings of 360 student 

performances on several musical instruments, accompanied by features that indicate 

the quality of performance and instructional feedback. The attributes consist of 

Student ID, Instrument played, Age, Practice Hours per week, Lesson Type 

(Individual or Group), and performance quality (rated on a scale of 1–10) with 

performance metrics like Note Accuracy, Rhythm Accuracy, Dynamics (rated on a 

scale of 1–10), and a Feedback. This dataset facilitates the training and testing of 

SLMTRA algorithms for delivering individualized feedback and evaluating 

effectiveness in music education environments. Table 2 shows the Sample Music 

Teaching Feedback Dataset. 

Table 2. Sample music teaching feedback dataset. 

ID Instrument Age Practice Hrs Lesson Type Perf. Note Acc Rhythm Acc Dynamics Feedback 

1 Violin 13 6 Group  9 96 91 8 Improve Intonation 

2 Piano 15 4 Individual 7 81 72 6 Good Timing 

3 Flute 17 5 Group  8 97 93 9 Improve Rhythm 
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Table 2. (Continued). 

ID Instrument Age Practice Hrs Lesson Type Perf. Note Acc Rhythm Acc Dynamics Feedback 

4 Guitar 14 3 Individual 9 91 86 8 Good Breath Control 

5 Drums 16 7 Individual 6 71 66 7 Excellent Dynamics 

3.1.3. Resource allocation dataset 

The Resource Allocation dataset records system utilization measurements 

during predefined time intervals, which are essential for training models to forecast 

the most efficient resource allocations. The dataset consists of 1500 records. The 

attributes consist of Time Slot (measured in hours), CPU Usage (expressed as a 

percentage), Memory Usage (measured in gigabytes), Disk Usage (expressed as a 

percentage), Network Usage (measured in megabits per second), and the related 

Resource Allocation states (High, Medium, Low). This dataset enables the creation 

of SLMTRA models that dynamically distribute computing resources, taking into 

account real-time system demands. This ensures optimal performance and usage of 

resources. Table 3 shows the Sample Resource Allocation Dataset. 

Table 3. Sample resource allocation dataset. 

Time Slot (hr) CPU Usage (%) Memory Usage (GB) Disk Usage (%) Network Usage (Mbps) 
Resource Allocation 

(High/Medium/Low) 

0–1 30 1.6 35 20 Low 

1–2 35 1.9 40 22 Low 

2–3 40 2.1 45 25 Low 

3–4 45 2.3 50 28 Medium 

4–5 50 2.7 55 30 Medium 

5–6 55 2.9 60 32 Medium 

6–7 60 3.1 65 35 High 

7–8 65 3.3 70 38 High 

8–9 70 3.6 75 40 High 

9–10 75 3.9 80 45 High 

3.2. SoundLocMusicTeachRA (SLMTRA) algorithm 

The SLMTRA algorithm is specifically developed to tackle three main 

objectives: sound localization, music teaching feedback, and resource allocation. By 

utilizing a Bagging ensemble technique with several classifiers, the system improves 

the accuracy and resilience of predictions. Algorithm 1 shows the comprehensive 

process of the SLMTRA algorithm is explained in detail. 

Algorithm 1 SoundLocMusicTeachRA (SLMTRA) Algorithm 

1: Input: 

⚫ Sound Localization Dataset (DS_sound): A dataset including sound 

recordings and the associated spatial coordinates. 

⚫ Music Teaching Feedback Dataset (DS_feedback): Student 

performance dataset with labels denoting feedback and performance 

quality. 

⚫ Resource Allocation Dataset (DS_resource): Dataset monitoring 

patterns in the use of computer resources. 
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Algorithm 1 (Continued) 

2: Output: 

⚫ Sound Localization Prediction: Predicted geographical coordinates of 

a recently audible sound. 

⚫ Music Performance Feedback: Instantaneous feedback on a student’s 

musical performance in practice sessions. 

⚫ Resource Allocation Decision: Optimal resource allocation decisions 

using predicted utilization patterns. 

3: Step 1: 

Data Preparation: 

⚫ On DS_sound, execute min-max normalization. 

⚫ Divided normalized DS_sound into datasets for training (75%) and 

testing (25%). 

4: Step 2: 

Sound Localization Model Training: 

⚫ Using the training dataset, apply the Bagging ensemble approach 

using RF, DT, NB, SVM, and KNN. 

⚫ Execute hyperparameter tuning for each classification technique. 

⚫ Utilize training data to train models for sound location prediction. 

5: Step 3: 

Sound Localization Prediction: 

⚫ When a new sound is detected, use the trained ensemble model to 

forecast the spatial coordinates. 

6: Step 4: 

Data Preparation: 

⚫ Use label encoding to convert the DS_feedback’s categorical features 

to numerical format. 

⚫ Apply min-max normalization to DS_feedback to make it normal. 

⚫ Divide the training (75%) and testing (25%) datasets of 

DS_feedback. 

7: Step 5: 

Music Performance Model Training: 

⚫ Using the training dataset, apply the Bagging ensemble approach 

using RF, DT, NB, SVM, and KNN. 

⚫ Conduct hyperparameter optimization for each classifier. 

⚫ Train model to identify trends in performances that indicate either 

proficiency or areas for growth. 

8: Step 6: 

Music Performance Feedback: 

⚫ Offer instantaneous feedback during student practice sessions using 

learned patterns from the trained models. 

9: Step 7: 

Data Preparation: 

⚫ Apply label encoding to convert the categorical features in 

DS_resource into numerical format. 

⚫ Apply min-max normalization to standardize the DS_resource. 

⚫ Partition the DS_resource into a training dataset, including 75% of 

the data, and a testing dataset, comprising 25% of the data. 

10: Step 8: 

Resource Allocation Model Training: 

⚫ Apply the Bagging ensemble approach to the training dataset by 

using RF, DT, NB, SVM, and KNN. 

⚫ Conduct hyperparameter optimization for each classifier. 

⚫ Use previous usage patterns from DS_resource to train a model to 

forecast optimal resource allocation decisions. 

11: Step 9: 

Resource Allocation Decision: 

⚫ Predict and execute resource allocation choices to maximize 

computer effectiveness. 

The algorithm uses three primary datasets as input: the Sound Localization 

Dataset (DS_sound), the Music Teaching Feedback Dataset (DS_feedback), and the 

Resource Allocation Dataset (DS_resource). The outputs consist of the predicted 
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spatial coordinates of a recently perceived sound, immediate feedback for a student’s 

musical performance, and optimal decisions regarding resource allocation 

determined by predicted utilization patterns. Flowchart 1 represents visual 

representation of the algorithm. 

3.2.1. Sound localization 

The initial task of the SLMTRA algorithm is to determine the location of sound. 

The procedure commences with data preparation. The DS_sound dataset comprises 

sound recordings captured by several microphones, along with their respective 

spatial coordinates. The data is subjected to min-max normalization to standardize all 

features to a comparable scale, hence enhancing the efficiency of approaches for 

machine learning. Following the process of normalization, the dataset is split into 

two subsets: a training set (75% of the dataset), and a testing set (remaining 25% of 

the dataset). 

Subsequently, the algorithm proceeds to train the sound localization model 

utilizing a Bagging ensemble technique. This ensemble has multiple base classifiers, 

including Random Forest (RF), Decision Trees (DT), Naive Bayes (NB), Support 

Vector Machine (SVM), and K-Nearest Neighbor (KNN). Bagging is a method that 

comprises training individual classifiers on unique subsets of the training data and 

after that combining their forecasts. Hyperparameter tuning is conducted for each 

classifier utilizing the grid search technique to recognize the ideal set of parameters 

that enhance the effectiveness of the model. After the model has been trained, it can 

predict the spatial coordinates of a new sound by utilizing the recorded data. 

3.2.2. Music teaching feedback 

The second task is centered around delivering instantaneous feedback for music 

teaching. The DS_feedback dataset comprises recordings of student performances 

that have been annotated with labels denoting the quality of the performance and 

providing particular feedback. At first, the categorical features in this dataset are 

transformed into numerical representations utilizing label encoding, which provides 

distinct numerical values to each category. After the conversion, min-max 

normalization is applied to guarantee uniformity among features. The dataset is first 

normalized and then divided into two subsets: a training subset, and a testing subset. 

The process of training the music performance model entails utilizing the 

Bagging ensemble technique with a consistent set of classifiers, namely RF, DT, NB, 

SVM, and KNN. Hyperparameter optimization is once again utilized to improve the 

parameters of each classifier. These models are trained to identify patterns in the 

performance recordings that suggest either strong performance or areas that require 

development. While a student is practicing, the trained models offer immediate 

feedback using learned patterns. This feedback assists students in identifying and 

addressing certain areas of their performance that necessitate improvement, thus 

augmenting the efficacy of their practice sessions. 

3.2.3. Resource allocation 

The ultimate task of the SLMTRA algorithm involves the allocation of 

resources to achieve optimal computer efficiency. The DS_resource, also known as 

the Resource Allocation Dataset, monitors and records the patterns of computer 
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resource utilization over a period. Like the previous tasks, categorical features are 

initially transformed into numerical representations using label encoding. This is 

then followed by applying min-max normalization to the dataset. The data is 

normalized and then split into two subsets: a training set, and a testing set. 

The training procedure for the resource allocation model utilizes the Bagging 

ensemble method, using RF, DT, NB, SVM, and KNN classifiers. Hyperparameter 

optimization is used to identify the optimal parameters for each classifier. These 

models are developed to forecast the most advantageous periods for allocating 

resources by analyzing past consumption patterns. The trained model assists the 

computer in effectively managing its resources by making predictions and executing 

choices on resource allocation. This optimization guarantees seamless performance 

and effective power management, resulting in reduced computing burden and 

enhanced system performance. 

3.2.4. Bagging ensemble method with RF, DT, NB, SVM, and KNN classifiers 

The Bagging Ensemble approach, often referred to as Bootstrap Aggregating, is 

employed in the SLMTRA algorithm to improve the effectiveness and resilience of 

numerous classifiers. Bagging, a technique that combines the predictions of multiple 

base classifiers, effectively decreases variation and mitigates the risk of overfitting. 

Within this particular context, the Bagging technique utilizes five distinct base 

classifiers: Random Forest (RF), Decision Tree (DT), Naive Bayes (NB), Support 

Vector Machine (SVM), and K-Nearest Neighbors (KNN). Grid Search is employed 

to optimize the hyperparameters of each classifier to achieve the greatest 

performance. 

1) Bagging ensemble method 

Bagging operates by creating several subsets of the training data via random 

sampling with replacement. Each distinct subset is utilized to train an individual 

model, and the ultimate forecast is generated by combining the predictions of all 

models. For classification, the process of aggregating results is commonly achieved 

using majority voting. 

Mathematically, the Bagging prediction F(x) can be expressed as: 

𝐹(𝑥) =
1

𝑇
∑𝑓𝑡(𝑥)

𝑇

𝑡=1

 (1) 

where T is the number of base classifiers and 𝑓𝑡(𝑥) is the prediction of the t-th 

classifier. 

2) Base classifiers 

Every individual base classifier possesses distinct hyperparameters that must be 

fine-tuned to get optimal performance. Grid Search is used to methodically 

investigate the hyperparameter space and determine the best combination. 

The SLMTRA algorithm employs five unique basic classifiers: RF, DT, NB, 

SVM, and KNN. Each classifier in the ensemble possesses distinct advantages, and 

their performance can be greatly enhanced by optimizing hyperparameters. 

Hyperparameter optimization is the methodical search for the optimal combination 

of parameters that results in the maximum model effectiveness. Grid Search is 
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commonly used to accomplish this task by systematically evaluating all potential 

combinations of specified hyperparameters. 

3) Random Forest (RF) 

Random Forest is a method of ensemble learning that builds many decision 

trees in the training process and generates the most often occurring class 

(classification) or the average prediction (regression) of the individual trees. It is 

recognized for its strong and resilient nature, as well as its capacity to effectively 

process data with a large number of dimensions without succumbing to overfitting. 

The key hyperparameters for Random Forest are the number of trees in the forest 

(n_estimators), the maximum depth of the trees (max_depth), and the minimum 

number of samples needed to divide a node (min_samples_split). Furthermore, the 

number of features that should be taken into account when searching for the optimal 

split (max_features) can be modified. Grid Search is used to systematically evaluate 

various combinations of hyperparameters to discover the ideal configuration that 

maximizes the effectiveness of the classifier. 

The prediction for a classification problem is the mode of the predictions of the 

individual trees: 

𝑞̂ = 𝑚𝑜𝑑𝑒({ℎ𝑠(𝑝)}𝑠=1
𝑆 ) (2) 

where ℎ𝑡(𝑝) is the prediction of the s-th tree, and S is the total number of trees. 

4) Decision Tree (DT) 

Decision Tree is a straightforward and intuitive classifier that divides the data 

into subsets according to the feature values, resulting in a tree-like model of 

decisions. The process operates by identifying the feature that most effectively 

distinguishes the data using a selected measure, like Gini impurity. The key 

hyperparameters for Decision Tree are the maximum depth of the tree (max_depth), 

the minimum number of samples needed to split an internal node 

(min_samples_split), and the minimum number of samples needed at a leaf node 

(min_samples_leaf). The criterion for splitting is a significant parameter. Grid 

Search is used to test several values for hyperparameters to identify the ideal 

configuration that improves the accuracy and generalization ability of the tree. 

The Gini impurity for a node is given by: 

𝐺𝐼 = 1 −∑𝑝𝑐
2

𝑁

𝑐=1

 (3) 

where N is the number of classes and pc is the proportion of samples belonging to 

class c at the node. 

5) Naive Bayes (NB) 

Naive Bayes is a probabilistic classifier that depends on Bayes’ theorem and 

presumes that the features are independent of each other. It exhibits exceptional 

efficacy when applied to extensive datasets and demonstrates excellent performance 

with data that has a high number of dimensions. Naive Bayes has other variations, 

such as Gaussian, Multinomial, and Bernoulli, which are specifically designed for 

different sorts of data. The main hyperparameters for Naive Bayes are unique to their 

numerous variants, such as the smoothing parameter (alpha) for Multinomial and 
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Bernoulli Naive Bayes. This parameter is used to address situations where the data 

contains zero probability. Grid Search can be employed to optimize these parameters 

by assessing several values to identify the configuration that maximizes the 

classifier’s performance while preserving computing efficiency. 

For Gaussian Naive Bayes, the likelihood of the feature values given a class is 

modeled as a Gaussian distribution: 

𝑃(𝑏𝑖|𝑐) =
1

√2𝜋𝜎𝑐
2
exp⁡(−

(𝑏𝑖 − 𝜇𝑐)
2

2𝜎𝑐
2 ) (4) 

where 𝑏𝑖  Is the feature value, 𝜇𝑐  and 𝜎𝑐
2 are the mean and variance of the feature 

values for class 𝑐. 

6) Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a strong classifier renowned for its efficacy 

in high-dimensional spaces. The algorithm functions by identifying the hyperplane 

that optimally divides the data into distinct classes. The main hyperparameters for 

Support Vector Machines (SVM) are the regularization parameter 𝐶, which balances 

the need to minimize training error and model complexity, and the kernel type, 

which specifies the mathematical function utilized to convert the information into a 

space with more dimensions. The most often used kernel types are linear, polynomial, 

and radial basis functions (RBF). Grid Search is utilized to systematically test 

multiple values for 𝐶 and various kernel types to get the ideal configuration that 

optimizes the accuracy of the classifier. 

The decision function for SVM is given by: 

𝑓(𝑝) = sign(∑𝑎𝑖𝑞𝑖𝐾(𝑝𝑖 , 𝑝)

𝑛

𝑖=1

+ 𝑏) (5) 

where 𝑎𝑖 ⁡are the Lagrange multipliers, 𝑞𝑖 are the class labels, 𝐾(𝑝𝑖 , 𝑝) is the kernel 

function, and b is the bias term. 

7) K-Nearest neighbors (KNN) 

KNN is a straightforward and efficient classifier that assigns a sample to a class 

using the majority class of its 𝑘-nearest neighbors in the feature space. The key 

hyperparameter for KNN is 𝑘, which represents the number of neighbors to be 

considered throughout the classification process. The choosing an appropriate 

distance metric, like Euclidean distance, can also influence the effectiveness of the 

model. Grid Search is used to examine multiple values for 𝑘 and different distance 

metrics to get the ideal arrangement that yields the highest classification accuracy. 

The Euclidean distance between two points 𝑥 and 𝑦 in 𝑑-dimensional space is 

given by: 

𝑑(𝑝, 𝑞) = √∑(𝑝𝑖 − 𝑞𝑖)
2

𝑑

𝑖=1

 (6) 

where 𝑝𝑖  and 𝑞𝑖  are the coordinates of the points in the ith dimension. The KNN 

classifier assigns the class that is most common among the 𝑘-nearest neighbors. 

8) Hyperparameter optimization using Grid Search 
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Grid Search for hyperparameter optimization entails creating a grid that 

encompasses all potential values for each hyperparameter and systematically 

exploring all possible combinations. Each combination undergoes training and 

evaluation using cross-validation to evaluate its performance. The set of 

hyperparameters that yields the highest cross-validation score is chosen as the best 

combination. This procedure guarantees that each base classifier is optimized to 

achieve its highest performance, hence increasing the general resilience and 

precision of the Bagging ensemble technique. The reason for choosing bagging 

ensemble method is easy to implement. Unlike boosting, this is scalable for the 

sequential concept as this study focused on sound localization, music teaching 

feedback and resource allocation. Boosting ensembles makes the overall model 

vulnerable to outliers. 

The SLMTRA algorithm utilizes the combined capabilities of these improved 

classifiers by merging them into the Bagging ensemble, resulting in robust and 

precise predictions. This method not only improves the model’s performance but 

also guarantees its capacity to generalize effectively to novel data, making it ideal for 

a range of applications including sound localization, music teaching feedback, and 

resource allocation. Figure 1 shows the system architecture of the SLMTRA 

algorithm. 

 

Figure 1. System architecture of SLMTRA algorithm. 

4. Experimental results and discussions 

This section mainly concentrates on assessing the performance of the SLMTRA 

(SoundLocMusicTeachRA) algorithm, executed utilizing Java and the Weka tool. 

The study examine how well the suggested SLMTRA approach works with varied 
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settings, such as a variety of sound absorption coefficients, a number of microphones, 

and the existence of several sound sources. The following settings are required for 

these methods to work on the MATLAB R2022a platform: Processor: Intel (R) Core 

(TM) i7-13700KF, running at 3.40 GHz. Originating in Xi’an, China, Intel is the 

computer maker. 

Testing was carried out to evaluate SLMTRA’s effectiveness in tasks like sound 

localization, music teaching feedback, and resource allocation. Evaluation metrics 

such as accuracy, precision, recall, F1-score, and Matthew’s correlation coefficient 

(MCC) were utilized to offer a thorough examination of SLMTRA’s predictive 

robustness and efficiency. The outcomes highlight SLMTRA’s remarkable ability to 

improve the efficiency of models for particular applications, proving its efficacy in 

real-world situations that call for accurate examination and prediction. 

4.1. Sound localization 

Table 4 presents a comparison of the SLMTRA algorithm’s sound localization 

performance with that of RF, DT, NB, SVM, and KNN. 

Table 4. Sound localization performance comparison. 

Classification Model Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%) 

RF 83 86 79 82 71 

DT 81 84 76 80 69 

NB 85 88 81 84 73 

SVM 80 82 78 80 66 

KNN 87 89 83 86 76 

SLMTRA 89 91 86 88 79 

The SLMTRA algorithm demonstrates its efficacy for sound localization tasks 

by regularly outperforming competing models in terms of accuracy, precision, recall, 

F1-score, and MCC. The SLMTRA algorithm outperforms other algorithms because 

it can seamlessly combine several machine-learning strategies designed with sound 

localization in mind. SLMTRA employs a hybrid methodology that integrates 

ensemble learning techniques to achieve an ideal balance between forecast accuracy 

and the difficulty of the model. This method is highly effective reverberant 

environments. 

4.2. Music teaching feedback 

Table 5 shows how well the SLMTRA algorithm performs for feedback in 

music teaching when compared to RF, DT, NB, SVM, and KNN. 

When compared to other models, SLMTRA performs better in terms of 

accuracy, precision, recall, F1-score, and MCC, proving its effectiveness in 

predicting feedback related to music performance in practice sessions. SLMTRA’s 

improved success in providing feedback for music teaching can be attributed to its 

advanced ensemble method, which incorporates multiple learning algorithms and 

allows for detailed analysis of feedback data in multiple dimensions. This method 
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guarantees strong model generalization and flexibility to subtle patterns in feedback 

on music performance. It also helps in real time interactive classes or environments. 

Table 5. Music teaching feedback performance comparison. 

Classification Model Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%) 

RF 76 79 73 75 61 

DT 73 77 71 73 59 

NB 79 83 77 79 66 

SVM 72 76 69 71 56 

KNN 81 85 79 81 69 

SLMTRA 83 87 81 83 71 

4.3. Resource allocation 

Table 6 compares SLMTRA’s resource allocation efficiency to that of RF, DT, 

NB, SVM, and KNN. 

Table 6. Comparison of resource allocation performance. 

Classification Model Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC (%) 

RF 84 87 81 83 73 

DT 82 85 79 81 71 

NB 86 89 83 85 76 

SVM 80 83 77 79 66 

KNN 88 91 85 87 79 

SLMTRA 90 93 87 89 81 

SLMTRA consistently outperforms other models in terms of accuracy, 

precision, recall, F1-score, and MCC, demonstrating its usefulness in resource 

allocation problems. The outstanding success of SLMTRA in resource allocation can 

be attributed to its adaptive learning capacity and effective optimization architecture. 

SLMTRA utilizes sophisticated machine learning methods specifically designed for 

resource allocation situations to improve resource utilization while ensuring high 

levels of prediction accuracy and dependability. It also helps in attaining high 

scalability in the resource allocation. It also attains a high computational efficiency 

by using memory usage and processing time. 

Figures 2–6 depict line charts that compare the accuracy, precision, recall, F1-

score, and MCC of RF, DT, NB, SVM KNN, and SLMTRA across the three datasets. 

These visualizations provide more evidence of SLMTRA’s consistently exceptional 

performance across a wide range of evaluation metrics and uses. 
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Figure 2. Accuracy comparison. 

 

Figure 3. Precision comparison. 

 

Figure 4. Recall comparison. 
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Figure 5. F1-Score comparison. 

 

Figure 6. MCC comparison. 

Figure 7 represents the computation efficiency of different approaches. From 

this Figure 7, it is observed that the proposed approach has attained high efficiency 

in terms of memory usage, processing time and resource management. Overall, the 

SLMTRA algorithm has exceptional performance in sound localization, music 

teaching feedback, and resource allocation problems. The practical uses of this 

technology are enhanced by its capability to include sophisticated machine learning 

methods and improve the performance of models tailored to certain domains. 

 

Figure 7. Computational efficiency. 
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5. Conclusion and future work 

Overall, this paper has shown an excellent performance of the SLMTRA 

(SoundLocMusicTeachRA) algorithm, executed utilizing Java and the Weka tool, 

across tasks like sound localization, music teaching feedback, and resource 

allocation. Through thorough experimentation and evaluation employing standard 

metrics comprising accuracy, precision, recall, F1-score, and MCC, SLMTRA has 

demonstrated continuous efficacy in improving predictive accuracy. Efficiency in 

cost, measurement, power dissipation, deployment, system scalability, and 

adaptability are the most prevalent aspects impacting approaches for localising sound 

sources. A more cost-effective and resource-saving solution can be achieved by 

reducing the number of microphones in the arrangement. The human auditory system 

consists of two ears, and this can be accomplished with just two microphones. Given 

the challenges associated with accurately obtaining input synchronisation, SLMTRA 

is considered a suitable approach for this type of system. In addition, it has been 

emphasised that ad-hoc microphones have advantages, such as the fact that they do 

not necessitate specific geometry and that a network may be quickly established for 

the purpose of implementing the sound localisation system in conferences. For future 

work, investigating SLMTRA’s incorporation with blockchain technology appears to 

be a viable path. Blockchain’s decentralized and safe framework could improve 

SLMTRA’s abilities in handling and confirming data integrity, especially in 

applications necessitating disseminated and immutable data records. This 

incorporation could result in improvements in safe and clear procedures for making 

decisions, additionally establishing SLMTRA’s significance in contemporary 

computational frameworks. 
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