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Abstract: Dancesport, particularly the Paso Doble, requires high agility, coordination, and 

flexibility, especially in the hips. This study investigates the impact of an eight-week targeted 

Hip Flexibility Training (HFT) program on the performance of professional Paso Doble 

dancers. The need for this research stems from the lack of objective, data-driven evaluations in 

the field, where traditional methods rely heavily on subjective assessments. Previous studies 

have examined general flexibility in dance, but few have focused on the direct Biomechanical 

Effects (BF) and Physiological Effects (PE) of specific HFT on dancers. Further, such studies 

could not accurately measure hip joint movements and their coordination in order to achieve 

dance performance efficiency. The proposed study used motion-capturing devices to collect 

key movement data that impacts performance efficiency. The collected data is analyzed using 

the hybrid receptive field block (RFB) and residual network (ResNET) ML models to study 

the pre- and post-HFT results. Twelve highly trained dancers were assigned to have 

biomechanical and physiological metrics measured after and before the training. The data 

analysis has shown that there has been a significant increase in hip flexion from 65.4 ± 4.5° to 

75.2 ± 3.7° (P < 0.05), hip extension from 25.3 ± 2.4° to 30.1 ± 2.1° (P < 0.05), and joint 

velocity from 1.18 ± 0.15 m/s to 1.32 ± 0.12 m/s (P < 0.05). Physiological metrics also showed 

improvements, such as a reduction in Oxygen Consumption (OC) from 2.02 ± 0.21 L/min to 

1.85 ± 0.18 L/min (P < 0.05) and Energy Cost (EC) from 50.1 ± 7.2 kJ/min to 45.6 ± 6.4 kJ/min 

(P < 0.05). 

Keywords: biomechanical effect; dancesport optimization; hip flexibility training; movement 

patterns; physiological metrics; machine learning; receptive field block 

1. Introduction 

Hip flexibility is an attribute that is needed in any form of physical activity and 

is essential for persons involved in dance sports [1]. The dancesport is a competitive 

form of ballroom dancing that requires technical precision and physical agility [2,3]. 

This demands the dancers to have more flexible hips to make more complex 

movements [4,5]. The dancesport includes styles categorized as ballroom and Latin, 

each demanding a different combination of dance fluidity, strength, and expressive 

motion [6]. No matter the dance’s form, hip flexibility is crucial to discriminating 

between sharp, angular movements and dramatic postures [7]. Hip flexibility helps 

perform more precise and fluid transitions in dance postures, which increases the 

performer’s winnability. 

Many dancers join exclusive Hip Flexibility Training (HFT) programs to enhance 

their skill set [8]. However, minimal studies have been completed on how Flexibility 

Training (HFT) programs impact dancers’ performance [9–11]. Little studies that have 
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been done earlier have focused only on the general features of hip movements and 

their impact on performance efficiency [12,13]. So, the need to recognize the influence 

of HFT programs and their impact on performance optimization becomes essential and 

motivates the carrying out of this study [14]. This study focused on analyzing the 

impact of the HFT program in enhancing the performance of dancers performing the 

Paso Doble dance sport. Paso Doble is a Latin dance that mimics the styles of Spanish 

bullfighting, having sharp, angular, and dramatic hip movements. Such a dance style 

requires a high level of HFT to execute precise and fluid transitions between the 

postures to achieve higher performance quality [15,16]. 

There is less or no data on the physiological and kinematic changes or 

improvements achieved using the HFT training in professional dancers [17,18]. This 

gap further motivates me to study how such training impacts dance routines’ overall 

performance, coordination, and energy efficiency. Existing studies have considered 

general physical conditioning and technique refinement but not exclusively focused 

on HFT’s impact on movement efficiency and control [19,20]. Moreover, the 

performance evaluation was done using adjudicators, which is considered subjective 

as it introduces variability and bias into performance evaluations, which can 

undermine the reliability of the assessments [21]. Also, limited works incorporate 

advanced models like Machine Learning (ML) to perform objective movement 

analysis from trained and untrained dancers and make accurate classifications [22]. 

A new Metaheuristic Optimization (MO)-based selection of superior gait features 

may be employed to detect significant variations in sports and pathological gait 

patterns. The method extracts 800 group gait datasets, eliminates redundant variables, 

and selects the optimal gait feature using a MO algorithm model. Four classification 

algorithm models detected the gait feature. The accuracy results were compared to two 

standard Feature Selection (FS) methods and earlier research to verify the technique. 

The final FS were used to rebuild the data pattern and determine the gait feature’s 

biomechanical value. The newly developed gait pattern recognition method performed 

FS-based sorting, sequential forward selection, and past research with an accuracy of 

99.81% ± 0.53%. The FS enhanced the interval between rebuilt waveform-high and 

low curves during the posture phase. MO-based selection improves gait pattern 

recognition, while population-based MO is useful for sports and healthcare gait 

recognition. 

This study attempts to address the limitations discussed above by proposing an 

ML-based model to analyze the impact of the HFT program on the performance of 

Paso Doble dancers. The study was conducted using 12 participants, all of whom were 

experts in the selected dance domain. The work collected key data like Oxygen 

Consumption (OC) (L/min), Heart Rate (HR) (beats/min), Energy Cost (EC) (kJ/min), 

Rating of Perceived Exertion (RPE), Reposition Time (RT) (s), Hip Flexion Angle 

(HFA) (°), Hip Extension Angle (°), Hip Abduction Angle (°), Hip Adduction Angle 

(°), Joint Velocity (m/s), Stride Length (cm), Movement Coordination (%). The 

dancers undergo an eight-week HFT program customized for the Paso Doble dance 

movements. After the training, the key data was sourced again, and the pre and post-

data values were fed to the proposed Receptive Field Block (RFB) and Residual 

Network (ResNET) models to analyze movement patterns, joint coordination, and 
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performance efficiency. The findings were analyzed to investigate how well the HFT 

program had enhanced the dancer’s performance. 

The primary objectives of this study are as follows: 

Evaluate the Impact of Targeted HFT: To assess how an 8-week HFT program 

influences key physiological and kinematic performance metrics, such as hip range of 

motion, joint coordination, and energy efficiency, in professional Paso Doble dancers. 

Analyze Movement Patterns Using ML: To apply advanced ML models, 

specifically the RFB-ResNET model, to objectively analyze movement patterns and 

joint coordination before and after the HFT program. 

Quantify Performance Improvements in Dancesport: To measure the 

improvement in performance efficiency, movement symmetry, and balance control 

resulting from the HFT program, providing a detailed comparison of pre- and post-

training outcomes. 

Address the Limitations of Subjective Dance Evaluation: To reduce the 

subjectivity associated with traditional dance performance assessments by employing 

data-driven methods for evaluating the Biomechanical Effects (BE) and Physiological 

Effects (PE) in dancers following HFT. 

Contribute to the Optimization of Dancesport Training: To offer insights that can 

inform the development of more effective, scientifically backed training programs to 

enhance performance, coordination, and injury prevention in professional dancers. 

The paper is organized as follows: Section 2 presents the theory related to the 

work, Section 3 presents the methodology, Section 4 presents the analysis of the results, 

and Section 5 presents the conclusion. 

2. Theory 

Movements of the hip 

As shown in Figure 1, sourced from Cleveland Clinic 2022, The hip joint 

connects two significant bones: the pelvis, which consists of the ilium, pubis, and 

ischium, and the femur, the upper leg bone. The ball-and-socket mechanism is formed 

by the head of the femur fitting into the pelvis socket, known as the acetabulum. This 

allows the hip to perform a wide range of movements in dancesport. Key muscles 

surrounding the hip, such as the gluteus maximus, adductor muscles, psoas major, and 

quadratus lumborum, combine to support complex movements in Paso Doble. The hip 

joint performs 6 primary movements such as i) Flexion, ii) Extension, iii) Abduction, 

iv) Adduction, v) Internal Rotation, and vi) External Rotation. Table 1 describes each 

of the movements and their importance in dance. 

All these hip movements, particularly flexion, extension, and rotation, help 

maintain sharp, strong lines while allowing for smooth transitions between rigid, 

angular postures. Therefore, the need for flexible hip joints is key to performing 

precision and control during the performance of Paso Doble. 
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Table 1. Hip movement and its importance in dance sport. 

Movement Description Importance in Dancesport 

Flexion Lifting the leg forward and upward. Critical for executing dynamic dance steps, adding agility and expression. 

Extension Moving the leg backward and upward. 
It is essential in dances like the Paso Doble for creating strong, dramatic 
lines and extensions. 

Abduction 
Moving the leg away from the body’s 
midline. 

It plays a significant role in maintaining balance and creating space 
between partners in open-position movements. 

Adduction Bringing the leg toward the midline. For close-position movements, dancers’ legs must cross or align closely. 

Internal Rotation Rotating the leg inward. 
Maintaining fluidity and precision is Necessary for smooth transitions 
during turns and pivots. 

External Rotation Rotating the leg outward. 
Enables sweeping, elegant movements that add flair and control to the 
performance. 

 

Figure 1. Illustration of Hip Joint. 

3. Methodology 

3.1. HFT program 

The HFT program spanned 8 weeks; the training session lasted 45 min. 

The training session was divided into two formats such as: 

Dynamic Flexibility Exercises: Each training session began with dynamic 

exercises (Figure 2) to warm up the muscles and prepare the hip joints for the intense 

movements. The exercises include: 

1) Leg swings are performed forward and backward, engaging both the hip flexors 

and extensors to increase mobility and control. 

2) The hip circle exercise used large, circular movements to warm up the hip joint 

and its range of motion in all planes. 

3) Walking lunges were performed to stretch the hip flexors and, at the same time, 

maintain better alignment and control. 

4) Hip openers that involved step-and-turn movements were performed to prepare 

the dancers for the rotational hip motions. 
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Figure 2. Flexibility exercises. 

Static Stretching: After completing the dynamic exercises, participants engaged 

in a series of static stretches (Figure 3) to promote muscle lengthening. 

1) The seated forward fold was done to stretch the hamstrings and lower back, which 

improves hip mobility by relieving tension in the surrounding muscles. 

2) The butterfly stretch is performed to help the groin and inner thigh muscles and 

for lateral hip movements. 

3) The pigeon pose was practiced to stretch the hip flexors and rotators that help in 

twisting and rotational movements. 

4) The hip flexor stretch was performed in a lunge position to increase flexibility in 

the hip flexors. 

Each session concluded with a cool-down period that included additional static 

stretches and relaxation exercises to prevent injury and promote recovery. Table 2 

describes the list of exercises used in the training and their focus area. 

 

Figure 3. Stretching exercises. 

Table 2. HFT training program. 

Training Component Exercise Focus Area Duration/Reps 

Dynamic Flexibility 

Leg Swings Hip flexors, extensors 10 reps in each direction 

Hip Circles Hip joint mobility (all planes) 10 reps in each direction 

Walking Lunges Hip flexors, overall alignment 10 steps on each leg 

Hip Openers Hip rotators 10 reps on each side 

Static Stretching 

Seated Forward Fold Hamstrings, lower back 30–60 s 

Butterfly Stretch Groin, inner thigh muscles 30–60 s 

Pigeon Pose Hip flexors, rotators 30–60 s 

Hip Flexor Stretch (Lunge) Hip flexors 30–60 s 

Cool Down Additional Static Stretching Full-body flexibility, relaxation 5–10 min 
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3.2. Participants 

Twelve highly trained Male and Female Paso Doble dancers participated in this 

study (Mean ± SD: 25 ± 4 years; Height: 172 ± 6 cm; Weight: 65 ± 7 kg). All 

participants were professional dancers with at least 5 years of competitive experience 

in Paso Doble and were actively competing at national and international levels. The 

participants were selected for their high skill level and physical conditioning, as Paso 

Doble demands significant control, coordination, and flexibility, particularly in the 

hips. During the initial assessment, the average HR for Male participants was recorded 

at 170 beats per minute (bpm). In contrast, Female participants averaged 179 bpm 

during high-intensity portions of their dance routines, classifying the exercise as 

extremely heavy based on Astrand and Rodahl’s (1977) classification. 

Oxygen Consumption (OC) during performance was also measured, with Male 

dancers averaging 2.1 ± 0.2 L/min and Female dancers averaging 1.9 ± 0.3 L/min. The 

EC for Male dancers was estimated to be around 54.1 ± 8.1 kJ/min, while female 

dancers expended approximately 36.1 ± 4.1 kJ/min. The participants were informed 

about the study’s objectives, procedures, and potential risks. They provided written 

informed consent following the ethical guidelines of the Declaration of Helsinki. 

Table 3 presents the demographic statistics of the study participants. 

Table 3. Participant demographics and statistics. 

Demographic/Statistic Male Participants (n = 6) Female Participants (n = 6) Overall (n = 12) 

Age (Years) 25.8 ± 3.2 24.3 ± 3.7 25.0 ± 3.5 

Height (cm) 178.2 ± 5.1 166.4 ± 3.9 172.3 ± 6.2 

Weight (kg) 70.3 ± 6.4 60.5 ± 5.2 65.4 ± 6.8 

HR (beats/min) 170.4 ± 4.9 179.1 ± 5.8 N/A 

OC (L/min) 2.12 ± 0.18 1.93 ± 0.25 N/A 

EC (kJ/min) 54.1 ± 8.1 36.1 ± 4.1 N/A 

Years of Competitive Experience 5 ± 1 6 ± 2 5.5 ± 1.4 

Addressing subject find gender ratio. 

Gender ratio: Flexibility training results are contingent upon gender, muscle 

structure, and biomechanics. For balanced results and generalizability, a gender ratio 

that includes equal male and female people is selected. This identifies gender 

differences in hip flexibility training performance and offers gender-specific dancer 

guidelines. 

Gender differences in analysis: If a gender ratio is not feasible, researchers should 

investigate gender-specific factors such as physical activity responses between men 

and women. Biological and biomechanical factors may explain differences in all types 

of motion, movement elasticity, and function. Women may be more flexible, while 

men may be more powerful and stable. 

3.3. Experimental design 

Twelve participants, all highly trained Paso Doble dancers, took part in this study. 

While all participants had significant experience with Paso Doble, they were provided 

one familiarization session before the main testing. On the testing day, both video 
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motion capture and 3D body kinematics were recorded during the dance routines. The 

testing began with a 10 min warm-up session, which included light dynamic stretching 

exercises to increase HR to approximately 60%–70% of the participant’s maximal 

heart rate (HRmax). After the warm-up, participants performed their standard Paso 

Doble routine. Two main conditions were assessed during testing: Pre-training 

(baseline) and Post-training (after 8 weeks of HFT). Both conditions included similar 

movements to ensure consistency in performance assessment. 

Each test consisted of three 2 min dance sequences and a 3 min rest interval. 

During each test, the participants’ performance was captured through motion analysis 

systems to track body movement, joint angles, and range of motion, mainly focusing 

on the hips. Participants were monitored for HR and OC during the routines to measure 

the intensity of the exercises. HR was measured, with males averaging 170 ± 5 bpm 

and females averaging 179 ± 6 bpm during the high-intensity phases of the 

performance. For each condition, participants followed the same routine order: first, 

they completed the pre-training baseline, and then, after the 8-week training program, 

they repeated the same dance routines for the post-training condition. The changes in 

hip flexibility and control between pre- and post-training performances were analyzed 

using the RFB+ResNET model. Figure 4 presents the design architecture of this study. 

 

Figure 4. Experimental design of the study. 

3.4. Protocol and measurements 

Before each testing session, participants completed a warm-up followed by the 

Paso Doble routine. HR (beats per minute) was recorded throughout the trials, with an 

average calculated from the final 2 min of each 3 min dance sequence. OC (mL/kg/min) 

was averaged to assess the aerobic demands of the dance. Anthropometric 

measurements were taken for each participant, including height, leg length, hip width, 

and upper body measurements (chest circumference, upper arm length). For the 3D 

kinematic model, 27 reflective markers (spherical, 7 mm) were attached to key 

anatomical landmarks (Figure 5), including the pelvis, thorax, and right and left 

extremities. 
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Figure 5. Reflective marker positions in the body. 

The motion capture system recorded the 3D kinematics of the body in the final 

30 s of each routine, with recordings lasting 15 s at a sampling rate of 300 Hz. Video 

analysis using the RFB+ResNET model was employed to assess further the quality 

and efficiency of the dancers’ movements. 

3.5. Data collection 

To accurately capture the participants’ movements, four high-definition digital 

cameras (Sony Alpha 7 III, 24.2 MP) were positioned around the performance area. 

Two cameras were placed before the participants, and two were positioned laterally. 

Each camera was mounted on tripods at a height of 1.5 m, positioned at a distance of 

4 m from the participants. Reflective markers, each 7 mm in diameter, were attached 

to key anatomical landmarks, including the hips, knees, and ankles. Fixed reference 

points were established using markers placed at known distances—2 m apart 

horizontally and 1.5 m vertically—creating a reference grid. Video footage was 

captured at 60 frames per second. The recorded footage was processed using a desktop 

computer (Intel i9-11900K CPU, 32 GB RAM, NVIDIA GeForce RTX 3080 GPU). 

The data collected from the reflective markers was further analyzed and visualized 

using the Matplotlib library in Python. Using the Axes3D module, 3D plots of joint 

movements were generated (Figure 6), showing the trajectories and range of motion 

of the hips, knees, and ankles during the routines. All video recordings and kinematic 

data were stored on a 4TB external SSD (Samsung T7 Portable SSD) and backed to a 

cloud-based server. 
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Figure 6. 3D plot conversion of joint movements. 

3.6. Proposed RFB-ResNET learning model 

i) RFB block 

The Receptive Field Block (RFB) is a multi-branch convolutional structure used 

for feature extraction. It contains a multi-branch convolution layer, applying different 

kernel sizes to simulate receptive fields of varying sizes. This helps capture localized 

movements (e.g., hip adjustments) and broader movements (e.g., leg movements). 

Each branch begins with a 1 × 1 convolution layer (bottleneck layer) to reduce the 

number of channels. Then, convolutional layers with different kernel sizes are applied. 

To reduce parameters, two stacked 3 × 3 layers replace larger kernels (e.g., 5 × 5). 

Additionally, 1 × n and n × 1 convolutions are used in place of square kernels. 

The output of each branch’s convolution is: 

Fbranch(x) = Convn×n(Conv1×1(x)) (1) 

where, Fbranch(x) is the output feature map, Conv1×1(x) reduces the feature map 

size,Convn×n(x)  performs feature extraction. After the convolution layers, each 

branch applies a dilated convolution layer. Dilated convolutions increase the receptive 

field size without increasing the number of parameters or reducing resolution. The 

dilation rate d controls the spacing between kernel elements. 

The dilated convolution output is: 

Fdilated(x) = Convn×n,d(x) (2) 

where Convn×n,d(x) is the dilated convolution with kernel size n × n and dilation 

rate d. 

The outputs from all branches are concatenated to form a single feature map, 

combining features from different scales: 

FRFB(x) = Concat(Fbranch1
(x), Fbranch2

(x), … , Fbranchn
(x)) (3) 
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This allows the model to capture fine and broad movements in the dancers’ 

routines. 

ii) Residual network (ResNet) block. 

The ResNET block is used to classify features extracted by the RFB. It uses skip 

connections to avoid the vanishing gradient problem, allowing deeper networks to 

learn effectively. A ResNET block uses skip connections to bypass specific layers, 

helping the network learn an identity function if deeper layers don’t improve learning. 

The residual block is represented as: 

y = F(x, {Wi}) + x (4) 

where x is the input, F(x, {Wi}) represents the output of the convolutional layers with 

weights Wi, 𝑦 is the final output after input x (skip connection) is added. The ResNET 

block has two convolutional layers, with a skip connection that adds the input directly 

to the output. Convolutional layers use 3 × 3 kernels to extract features. 

These are followed by batch normalization (BN) and a ReLU activation function: 

F(x,W) = ReLU(BN(Conv3×3(x,W))) (5) 

where, Conv3×3(x,W) is the convolution operation with a 3 × 3 kernel and weights 

W , BN is batch normalization, and ReLU is the activation function. The skip 

connection adds the input 𝑥 to the final layer output: 

y = ReLU(F(x,W) + x) (6) 

ResNET blocks are stacked to form a deep network. The final layers perform 

classification based on the learned features, identifying differences between pre-and 

post-training performances. The classification is formalized as: 

O(x) = SoftMax(Wout ⋅ FResNet(x)) (7) 

where FResNet(x) is the output from the ResNET, Wout  represents learned weights, 

O(x) is the predicted class label (e.g., improved flexibility), determined by the softmax 

function. 

iii) RFB/ResNet Benefits: 

1) Improved Multi-Scale Feature Extraction: The framework detects specific and 

overall movement patterns using RFB’s fine-grained movement detection and 

ResNet’s deep learning framework. 

2) Improved Behavior of Complex Motion Sequences: ResNet collects dynamic 

dance movements and prevents data loss, while RFB improves visual perception 

between dimensions. 

3) Enhanced Generalization: Using these two approaches improves dance 

movement evaluation, as well as the flexibility and adaptability of the approach 

for a variety of dance styles and mobility ranges. 

4. Analysis 

The results in Table 4 and Figure 7 of the Physiological and Aerobic Metrics 

indicate clear improvements in the dancers’ physiological performance following the 

8-week HFT program. The OC decreased from 2.02 ± 0.21 L/min pre-training to 1.85 

± 0.18 L/min by the end of the training period (P < 0.05), demonstrating enhanced 
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aerobic efficiency. HR presented a similar trend, dropping from 172 ± 6 bpm to 165 ± 

5 bpm by week 8 (P < 0.05), indicating a reduced cardiovascular load during the 

routine. EC also decreased, from 50.1 ± 7.2 kJ/min to 45.6 ± 6.4 kJ/min (P < 0.05), 

reflecting more efficient energy use in performing the dance movements. The RPE fell 

from 16.7 ± 1.1 to 14.8 ± 0.9 post-training (P < 0.05), suggesting that participants felt 

less exertion during performance after the HFT program. Reposition time was 

improved from 1.02 ± 0.10 s to 0.91 ± 0.07 s (P < 0.05), highlighting enhanced agility 

and quicker movement transitions. 

Table 4. Physiological and aerobic metrics. 

Variable Pre-Training Post-Training (Week 4) Post-Training (Week 8) Significant Difference 

OC (L/min) 2.02 ± 0.21 1.98 ± 0.19 1.85 ± 0.18 
P < 0.05 
(Week 8 vs. Pre) 

HR (beats/min) 172 ± 6 168 ± 5 165 ± 5 P < 0.05 (Post vs. Pre) 

EC (kJ/min) 50.1 ± 7.2 47.8 ± 6.9 45.6 ± 6.4 P < 0.05 (Week 8 vs. Pre) 

RPE 16.7 ± 1.1 15.2 ± 1.0 14.8 ± 0.9 P < 0.05 (Post vs. Pre) 

Reposition Time (s) 1.02 ± 0.10 0.96 ± 0.08 0.91 ± 0.07 P < 0.05 (Post vs. Pre) 

 

Figure 7. Analysis of physiological and aerobic metrics. 

The results in Table 5 and Figure 8 show the improvement in Kinematic 

Performance following the 8-week HFT program. Hip flexion increased from 65.4 ± 

4.5° pre-training to 75.2 ± 3.7° post-training, while hip extension improved from 25.3 

± 2.4° to 30.1 ± 2.1°, both showing significant differences (P < 0.05). Similarly, hip 

abduction rose from 41.2 ± 4.0° to 47.8±3.5°, and hip adduction increased from 22.7 

± 3.5° to 26.3 ± 2.8°. Joint velocity also showed a marked improvement, going from 

1.18±0.15 m/s pre-training to 1.32±0.12 m/s by the end of the program (P < 0.05). 

Stride length increased from 110.2±8.5 cm to 118.3 ± 7.8 cm, and movement 

coordination improved from 78.4 ± 5.3% to 85.6 ± 4.5%, indicating better overall 

performance post-training. 
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Table 5. Kinematic performance metrics. 

Variable Pre-Training Post-Training (Week 4) Post-Training (Week 8) Significant Difference 

Hip Flexion Angle (°) 65.4 ± 4.5 70.8 ± 3.9 75.2 ± 3.7 P < 0.05 (Post vs. Pre) 

Hip Extension Angle (°) 25.3 ± 2.4 28.6 ± 2.2 30.1 ± 2.1 P < 0.05 (Post vs. Pre) 

Hip Abduction Angle (°) 41.2 ± 4.0 44.5 ± 3.7 47.8 ± 3.5 P < 0.05 (Post vs. Pre) 

Hip Adduction Angle (°) 22.7 ± 3.5 24.9 ± 3.2 26.3 ± 2.8 P < 0.05 (Post vs. Pre) 

Joint Velocity (m/s) 1.18 ± 0.15 1.25 ± 0.13 1.32 ± 0.12 P < 0.05 (Post vs. Pre) 

Stride Length (cm) 110.2 ± 8.5 114.8 ± 8.1 118.3 ± 7.8 P < 0.05 (Post vs. Pre) 

Movement Coordination (%) 78.4 ± 5.3 82.5 ± 4.8 85.6 ± 4.5 P < 0.05 (Post vs. Pre) 

 

Figure 8. Analysis of kinematic performance metrics. 

Table 6 and Figure 9 show the improvements in performance efficiency and 

movement symmetry before and after the HFT program. The Stride frequency 

increased from 90.2 ± 8.1 steps/min pre-training to 95.4 ± 7.5 steps/min post-training 

the 8 weeks (P < 0.05), showing an improvement in the rate of steps during routines. 

Gait symmetry, which measures the uniformity of leg movements, improved from 84.2 

± 5.4% to 89.6 ± 4.7% post-training (P < 0.05). Movement symmetry, representing 

the coordination of the entire body during dance routines, increased from 81.5 ± 6.2% 

to 88.3 ± 5.4% by 8 weeks (P < 0.05). The efficiency index, which evaluates the 

overall performance efficiency, improved from 75.6 ± 4.9% to 82.4 ± 4.1% post-

training (P < 0.05), reflecting enhanced energy use and movement control. Balance 

control also improved, with the time to regain balance reducing from 1.03 ± 0.08 s to 

0.91 ± 0.06 s post-training (P < 0.05), indicating faster recovery in maintaining 

stability during movements. 
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Table 6. Performance efficiency and movement symmetry metrics. 

Variable Pre-Training Post-Training (Week 4) Post-Training (Week 8) Significant Difference 

Stride Frequency (steps/min) 90.2 ± 8.1 92.8 ± 7.9 95.4 ± 7.5 P < 0.05 (Post vs. Pre) 

Gait Symmetry (%) 84.2 ± 5.4 87.3 ± 4.9 89.6 ± 4.7 P < 0.05 (Post vs. Pre) 

Movement Symmetry (%) 81.5 ± 6.2 85.0 ± 5.8 88.3 ± 5.4 P < 0.05 (Post vs. Pre) 

Efficiency Index (%) 75.6 ± 4.9 78.9 ± 4.5 82.4 ± 4.1 P < 0.05 (Post vs. Pre) 

Balance Control (s) 1.03 ± 0.08 0.97 ± 0.07 0.91 ± 0.06 P < 0.05 (Post vs. Pre) 

 

Figure 9. Analysis of performance efficiency and movement symmetry 

improvements. 

Table 7 and Figure 10 show the Joint Coordination Metrics outcomes before and 

after the HFT program. Hip-knee coordination increased from 80.2 ± 5.3% pre-

training to 86.7 ± 4.5% by 8 weeks (P < 0.05), and hip-ankle coordination improved 

from 78.9 ± 5.8% to 85.5 ± 5.0% during the same period (P < 0.05). Knee-ankle 

coordination also showed improvement, rising from 82.3 ± 4.6% to 87.1 ± 4.1% post-

training (P < 0.05). In terms of joint angles, the knee flexion angle increased from 95.3 

± 6.2° to 101.4 ± 5.6°, and the knee extension angle improved from 15.4 ± 2.9° to 19.6 

± 2.5° by the end of the program (P < 0.05). Ankle flexion showed a significant 

increase from 110.8 ± 5.9° to 117.6 ± 5.4°, and ankle extension improved from 35.2 ± 

3.2° to 40.4 ± 2.8° post-training (P < 0.05). These metrics demonstrate enhanced 

coordination between the hip, knee, and ankle joints and increased flexibility in knee 

and ankle movements. 

Table 7. Joint coordination metrics. 

Variable Pre-Training Post-Training (Week 4) Post-Training (Week 8) Significant Difference 

Hip-Knee Coordination (%) 80.2 ± 5.3 83.5 ± 4.9 86.7 ± 4.5 P < 0.05 (Post vs. Pre) 

Hip-Ankle Coordination (%) 78.9 ± 5.8 82.1 ± 5.4 85.5 ± 5.0 P < 0.05 (Post vs. Pre) 

Knee-Ankle Coordination (%) 82.3 ± 4.6 84.7 ± 4.3 87.1 ± 4.1 P < 0.05 (Post vs. Pre) 

Knee Flexion Angle (°) 95.3 ± 6.2 98.7 ± 5.9 101.4 ± 5.6 P < 0.05 (Post vs. Pre) 

Knee Extension Angle (°) 15.4 ± 2.9 17.8 ± 2.7 19.6 ± 2.5 P < 0.05 (Post vs. Pre) 

Ankle Flexion Angle (°) 110.8 ± 5.9 114.1 ± 5.7 117.6 ± 5.4 P < 0.05 (Post vs. Pre) 

Ankle Extension Angle (°) 35.2 ± 3.2 37.9 ± 3.0 40.4 ± 2.8 P < 0.05 (Post vs. Pre) 



Molecular & Cellular Biomechanics 2024, 21(2), 348. 
 

14 

 

Figure 10. Analysis of joint coordination metrics. 

Table 8 and Figure 11 compare numerous video analysis models used in the 

study, focusing on key performance metrics. The proposed RFB-ResNET model 

achieved the highest accuracy at 92.4%, with a precision of 94.0%, recall of 93.4%, 

and an F1-score of 93.7%. It also had the lowest training loss (0.12) and validation 

loss (0.14), indicating effective learning and generalization. The inference time per 

sample was 0.45 s, and the Area Under the Curve (AUC) was the highest at 0.96. In 

comparison, InceptionV3 reached an accuracy of 89.7%, precision of 90.4%, recall of 

89.2%, and an F1-score of 89.8%, with training and validation losses of 0.15 and 0.17, 

respectively. Its inference time was 0.52 s per sample, and the AUC was 0.91. VGG-

16 showed lower performance, with an accuracy of 87.3%, precision of 88.5%, recall 

of 87.0%, F1-score of 87.7%, and higher losses (training loss 0.18, validation loss 

0.19). The inference time for VGG-16 was the longest at 0.60 s per sample, and the 

AUC was 0.89. The ResNET-50 model performed better than VGG-16 and 

InceptionV3, achieving an accuracy of 90.8%, precision of 91.2%, recall of 90.5%, 

and an F1-score of 90.8%. Its training and validation losses were 0.14 and 0.16, 

respectively, with an inference time of 0.50 s per sample and an AUC of 0.93. The 

Efficient Net showed competitive performance, with an accuracy of 91.2%, precision 

of 92.0%, recall of 91.0%, F1-score of 91.5%, training loss of 0.13, validation loss of 

0.15, inference time of 0.48 s per sample, and an AUC of 0.94. The 3D-CNN model 

had an accuracy of 88.1%, precision of 88.9%, recall of 87.6%, F1-score of 88.2%, 

training loss of 0.17, validation loss of 0.18, and an inference time of 0.58 s per sample. 

Its AUC was 0.90. Overall, the RFB-ResNET model outperformed all other models 

across all key metrics, demonstrating superior accuracy and efficiency in analyzing 

video data for detecting improvements in hip flexibility and movement patterns in 

dancers. 
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Table 8. ML model performance comparison. 

Model Accuracy (%) Precision (%) Recall (%) 
F1-Score 

(%) 
Training Loss Validation Loss 

Inference Time 

(s/sample) 
AUC 

RFB-
ResNET 

92.4 94.0 93.4 93.7 0.12 0.14 0.45 0.96 

InceptionV3 89.7 90.4 89.2 89.8 0.15 0.17 0.52 0.91 

VGG-16 87.3 88.5 87.0 87.7 0.18 0.19 0.60 0.89 

ResNET-50 90.8 91.2 90.5 90.8 0.14 0.16 0.50 0.93 

EfficientNet 91.2 92.0 91.0 91.5 0.13 0.15 0.48 0.94 

3D CNN 88.1 88.9 87.6 88.2 0.17 0.18 0.58 0.90 

 

Figure 11. Analysis of ML model performance. 

5. Conclusion 

This study challenges to recognize the performance optimization level achieved 

in dancesport through Hip Flexibility Training (HFT). The study used Paso Doble as 

the model and employed 12 professional dancers as subjects. To understand the 

effectiveness of the HFT program, the dancers’ performance was captured using 3D 

capturing hardware. After this, the dancers underwent an 8-week training program 

crafted with more focused stretches that could help movements in Paso Doble dance. 

After training again, their performance was captured. The dancer’s movements were 

recorded using reflective markers to capture the kinematics behind the movements. 

The data collected was analyzed using RFB-ResNET, in which the RFB block extracts 

key features, and the ResNET trains using this feature to identify the key performance 

optimization aspects. The study analysis has revealed that the HFT program has 

provided better performance enhancement through metrics such as hip flexion, which 

increased from 65.4 ± 4.5° to 75.2 ± 3.7° (P < 0.05), and hip extension, which 

improved from 25.3 ± 2.4° to 30.1 ± 2.1° (P < 0.05). Joint velocity and stride length 

also show enhancements and the Oxygen Consumption (OC) and Energy Cost (EC) 

decreased significantly. The ML model RFB-ResNET has proven its efficiency by 

outperforming other video analysis methods, achieving the highest accuracy of 92.4% 

and precision and recall rates exceeding 93%. The study thus confirms the importance 

of targeted HFT in optimizing performance for competitive dancers, especially in 

styles that demand high hip control and coordination levels, such as Paso Doble. 
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