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Abstract: Biomechanics, as an interdisciplinary field involving multiple fields, can help 

analyze individual differences, develop personalized training plans, and effectively prevent 

injuries to vulnerable areas of athletes. This article used a high-precision 3D motion capture 

system and various physiological monitoring devices to collect athletes’ motion and 

physiological data. Combined with biomechanical modeling and risk assessment methods, 

the impact of five key parameters, step frequency, stride, joint angle, muscle strength, and 

speed, on injury risk was analyzed. The experimental results showed that implementing the 

personalized biomechanical prevention strategy applied in this article reduced the incidence 

of sports injuries by 20%, and optimizing step frequency, stride length, and enhancing muscle 

strength can significantly reduce the risk of injury. This article provided a scientific basis for 

developing personalized prevention strategies, which can help improve athletes’ athletic 

performance and safety. 

Keywords: prevention of sports injury; biomechanical principle; risk factor assessment; 

prevention strategy development; data collection 

1. Introduction 

With the continuous development and progress of various disciplines in 

competitive sports, the incidence and prevalence of sports related injuries have 

become increasingly serious problems, posing significant challenges and ultimately 

having adverse effects on the career trajectory and overall quality of life of athletes 

participating in these physically demanding activities. Traditional training methods 

often lack specificity and are not tailored to the individual needs of athletes. It is 

extremely difficult to effectively reduce the unique and personalized risks associated 

with injuries that each athlete may face based on their specific physiological and 

biomechanical characteristics. Therefore, it is necessary to conduct a comprehensive 

analysis and investigation of the application of biomechanical principles related to 

the prevention of sports injuries, and to develop and implement personalized training 

programs, both of which have significant practical significance and significant 

scientific value in the fields of sports science and athlete welfare. 

The principles of biomechanics cover a wide range of potential implementation 

schemes and have broad and profound applicability in the field of sports science, 

significantly enhancing people’s understanding and optimization of athletic 

performance. By using complex biomechanical analysis techniques, researchers and 

practitioners have a unique opportunity to carefully evaluate the stress conditions 

experienced by athletes during physical exertion, making it easier to identify specific 

areas where injury or risk of injury may exist. At the same time, when this analysis is 

combined with high-precision cutting-edge data acquisition technology and 

advanced multimodal data fusion algorithms, it becomes feasible to achieve 
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real-time monitoring and in-depth comprehensive analysis of athletes’ sports status 

and performance indicators. The integration of this technological advancement not 

only provides strong technical support for developing strategically targeted injury 

prevention methods, but also plays a key role in enhancing the scientific rigor and 

effectiveness of training programs designed specifically for athletes. 

This article aims to analyze the application of biomechanical principles in the 

prevention of sports injuries, using high-precision 3D motion capture systems and 

various physiological monitoring devices to collect athletes’ motion and 

physiological data. Through biomechanical modeling and risk assessment methods, 

the impact of key biomechanical parameters on injury risk can be analyzed, and 

personalized prevention strategies can be developed based on this. This article not 

only enriches the theoretical system of sports injury prevention, but also provides 

valuable reference and inspiration for practical training work. In the future, the 

article hopes to provide athletes with safer and more efficient training programs, 

promoting the healthy development of the sports industry. 

2. Related work 

Sports injuries are a common problem in sports and daily exercise [1,2]. Many 

scholars have conducted strategic research on issues related to sports injuries [3,4]. 

Goddard et al. [5] systematically reviewed the psychological factors that affect 

compliance with rehabilitation for sports injuries. The study identified key factors 

such as motivation, psychological support, personality traits, and self-efficacy. 

However, individual differences are complex and diverse, and research has not fully 

covered all possible psychological variables. Bullock et al. [6] reviewed the research 

methods and performance of current musculoskeletal injury prediction models. The 

focus was on analyzing the design of the model, data sources, variable selection, and 

statistical methods. However, most models lack external validation and have 

relatively small and single datasets, making it difficult to generalize to a wider range 

of athlete populations. Song and Montenegro-Marin [7] explored the application of 

deep learning techniques based on convolutional neural networks in sports injury 

prediction, emphasizing safety prediction and evaluation. Despite advanced 

technology, the transparency and interpretability of the model are insufficient. In 

addition, the large amount of annotated data required for training the model is 

difficult to obtain in practical applications. Soligard et al. [8] analyzed the impact of 

sports injuries and diseases during the Olympic Games, particularly the COVID-19 

pandemic and high temperature environments, on the health of athletes. Due to the 

unique environment of the specific Olympic Games, the results are not applicable to 

other events. The impact of the epidemic as a variable may change in the future and 

requires further long-term research. Palmer et al. [9] studied the relationship between 

self-reported sports injuries and later life and health status through a survey of retired 

Olympic athletes. It is difficult to determine causal relationships due to memory bias 

in self-reported data. Salim and Wadey [10] studied the use of gratitude interventions 

to promote psychological growth after sports injuries and explore psychological 

recovery strategies. As a psychological intervention, the effect of gratitude varies 

from person to person and may be influenced by cultural background. In summary, 



Molecular & Cellular Biomechanics 2025, 22(2), 330. 
 

3 

although these studies provide important insights for the prevention, prediction, and 

rehabilitation of sports injuries, there is still a need to strengthen methodological 

standardization, sample diversity, and validation in practical applications. Future 

research can combine principles of biomechanics to advance cutting-edge 

developments in the field of sports injuries. 

The principles of biomechanics are the scientific basis for studying the motion 

of objects and their interactions with forces [11,12]. Therefore, many scholars apply 

it to various fields [13,14]. Febriani et al. [15] proposed B-Balance; E-Eyes; 

E-Elbow; F-Follow (“BEEF”) based on biomechanical analysis to improve the 

accuracy of basketball free throws. By analyzing the physical posture and 

movements of athletes, he provided specific technical improvement suggestions for 

coaches and athletes. Wang et al. [16] utilized biomechanical principles to optimize 

athletes’ training programs and combined modeling and simulation techniques to 

study health promotion strategies for sprinters, ultimately improving athletic 

performance and reducing injury risks. In Ali’s study [17], the influence of resistance 

training on the arm muscle strength and speed of water polo athletes was explored by 

introducing variable biomechanical markers, providing practical insights for 

improving water polo athlete performance. The research of Trasolini et al. [18] 

mainly analyzed the biomechanical characteristics of throwing athletes, especially 

the movement patterns, muscle activity, and load distribution of the shoulder and 

elbow joints, providing important biomechanical guidance for medical staff and 

coaches in developing rehabilitation plans and training programs to promote athletes’ 

health recovery and athletic performance. Plesa et al. [19] discussed how some key 

biomechanical variables can be used for sports performance monitoring and training 

optimization, including mechanical loads, kinematic and biomechanical parameters. 

This provides coaches and sports scientists with a range of tools and methods to 

optimize training plans and maximize athlete performance. Overall, these studies 

emphasize the central role of biomechanics in understanding and improving athlete 

performance, particularly in the prevention and rehabilitation of sports injuries. 

Therefore, in-depth analysis of the application of biomechanical principles in the 

prevention of sports injuries is very valuable. 

3. Biomechanical principles 

3.1. Data collection 

The data collection process is shown in Figure 1. Figure 1 uses the 

high-precision 3D motion capture system Vicon to collect full body motion data of 

athletes. The system includes multiple high-definition cameras arranged around the 

sports field to ensure coverage of all motion trajectories. The frame rate of each 

camera is set to 120 fps (Frames Per Second) to capture details in high-speed motion. 

When using Vicon systems for 3D motion capture, ambient lighting and background 

noise can affect the accuracy of the data. Therefore, a polarizing filter is used on the 

camera to reduce light reflection.Time synchronization between cameras ensures 

consistency of multi view data. In order to reduce environmental interference and 

improve data quality, the site background is simplified by using uniform colors and 
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low contrast backgrounds. Athletes wear marked clothing and use computer vision 

algorithms to automatically recognize and track these marked points, obtaining 

information such as the athlete’s position, velocity, and acceleration during the 

movement [20]. 

120 fps
Mark point

Motion capture studio software

Spatio-temporal 

calibration algorithm

Electromyography apparatusInfrared temperature sensor

Timestamp synchronization 

method

Multi-modal data fusion 

algorithm

Relational database 

management system  

Figure 1. Data collection process. 

P(t) = Po + vt +
1

2
at2 (1) 

P(t) is the displacement vector of time t, P_o is the initial position vector, v is 

the velocity vector, and a is the acceleration vector. 

After collecting video data, it is processed through spatiotemporal calibration 

algorithms to eliminate the differences in camera angles and generate unified 3D 

motion trajectory data. The spatiotemporal calibration algorithm is based on the 

principle of multi view geometry, combined with the known positions of marker 

points, to optimize the calculation of camera parameters and ensure the accuracy of 

3D reconstruction. Motion Capture Studio software can be used to analyze action 

videos and extract data such as athletes’ posture, trajectory, and joint angles during 

the movement process. 

The Delsys Trigno electromyography device can be used to collect the muscle 

activity of athletes during exercise. The instrument is placed on the main muscle 

groups for time-domain, frequency-domain, and time-frequency analysis of muscle 

electrical signals to understand the degree of muscle activation and fatigue during 

exercise. The instrument is connected wirelessly to the data logger to ensure that the 

freedom of movement is not affected by cable constraints during the movement 

process. Surface electromyography (sEMG) evaluates muscle contraction by 

detecting the electrical signals generated by muscle activity [21,22]. The collection 

formula is as follows: 

E(t) = A × sin(ωt + ∅) (2) 

A is amplitude, ω is angular frequency, and ∅ is phase. 

Using electrocardiogram to monitor physiological indicators of athletes’ heart 

rate and heart rate variability, evaluate exercise intensity and load. The frequency 
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components of the heart rate signal are analyzed using fast Fourier transform, and the 

formula is as follows [23,24]: 

HR(f) = ∫ HR(t)e−i2πftdt
∞

−∞

 (3) 

HR(f) represents frequency domain analysis of heart rate variability. 

The formula for heart rate variability HRV analysis is: 

HRV =
∑ ∆R − RN
i=1

N − 1
 (4) 

∆R-R is the time difference between adjacent heartbeat intervals, and N is the 

number of heartbeat intervals. 

Skin temperature monitoring uses infrared temperature sensors to record 

real-time changes in skin temperature during exercise. According to the skin 

temperature signal, the temperature curve is smoothed using a moving average filter, 

and the formula is as follows [25]: 

Tsmooth(t) =
1

2M + 1
∑ Tskin(t + k)

M

k=−M

 (5) 

M refers to the half width of the moving average window, while k refers to the 

index variable. 

After the data collection is completed, the timestamp synchronization method is 

used to align the data collected by different devices through a unified timestamp. All 

data collection devices are timed through Global Positioning System (GPS) to ensure 

accurate and consistent timestamps. After data synchronization, the integration 

process uses multimodal data fusion algorithms to optimize data consistency and 

integrity during the fusion process based on the correlation between motion 

trajectories and physiological indicators, forming a complete motion dataset [26]. 

The data synchronization formula is: 

∆t = |tvi − tpj|i,j

min
 (6) 

tvi refers to the timestamp of video data, while tpj refers to the timestamp of 

physiological indicator data. 

Preprocess and clean the integrated dataset. Firstly, remove noise and outliers 

from the data. The noise in the video data is removed by a low-pass filter. The 

formula is: 

y(n) = x(n) − αx(n − 1) (7) 

y(n) refers to the filtered signal, x(n) refers to the original signal, and α is the 

filtering coefficient. 

Abnormal values in physiological indicator data are detected and removed using 

standard deviation methods to ensure the authenticity and reliability of the data 

[27,28]. Then the outlier satisfies: 

|xi − μ| > 2σ (8) 
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xi refers to the data set, μ is the mean and the standard deviation is σ.Data 

points that exceed a preset threshold are identified as outliers. 

The processed data are formatted to create feature vectors that integrate data 

from different sensors to form the final input used for modeling.It is then stored in a 

high-performance database for subsequent access and analysis. The database adopts 

a Relational Database Management System to support efficient storage and query of 

large-scale data. All data is stored according to a predefined structure, including 

motion trajectory data, physiological index data, and related metadata. To ensure 

data security and privacy protection, the database adopts strict access control 

mechanisms, and only authorized personnel can access and manipulate data. At the 

same time, data can be backed up regularly to prevent data loss and damage. 

3.2. Biomechanics analysis and modeling 

Based on the anatomical structure and kinematic parameters of athletes, a 

three-dimensional kinematic model can be established (as shown in Figure 2). 

Skeletal structure

External force

Muscle strength

Gravity

Force of joint

Ground reaction force

 

Figure 2. Three dimensional kinematic model. 

Figure 2 illustrates the complex interplay of various biomechanical factors 

among athletes during exercise [29]. The force exerted by muscles at joints can be 

calculated based on physiological parameters and kinematic models, using the 

following formula: 

Fij = Fmax ∙
θj(t) − θmax

θmax − θmin
 (9) 

Fmax refers to the maximum contraction force of muscles, while θmax and 

θmin  are the maximum and minimum contraction angles of muscles at joints, 

respectively. Using the Newmark method to solve biomechanical equations, obtain 

the angular acceleration, angular velocity, and angle of the joint at different time 

points [30]. The solution formula is: 

{
θpredict = θ(tn) +

1

2
∆tθ̇(tn)

θ̇predict = θ̇(tn) +
1

2
∆tθ̈(tn)

 (10) 

The time steps of ∆t, θ(tn), and θ̇(tn) represent the initial conditions. 
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By calculating the stress state of joints at different time points, the injury risk of 

athletes is evaluated. There are three evaluation indicators, namely joint stress, joint 

strain, and injury probability: 

{
  
 

  
 ρl =

Fcorrected
A

ρb =
∆θ

θmax

P =∑Pi

n

i=1

 (11) 

A  is the joint contact area, ∆θ  is the joint angle change, and Pi  is the 

probability of the ith injury event. 

This article uses a multi rigid body biomechanical model to represent the 

movement of athletes [31]. Assuming that the athlete is composed of n rigid bodies 

(bones), each with a mass and acceleration of mi and ai, respectively. 

Fnet =∑Fi =∑miai

n

i=1

n

i=1

 (12) 

Fnet refers to the sum of all external forces, while Fi  refers to the force 

exerted on the ith rigid body. 

During the movement, the rotation of each joint is derived using the 

Euler-Lagrange equation, with the formula [32,33]: 

d

dt
(
∂L

∂q̇j
) −

∂L

∂qj
= τj (13) 

Among them, L is the difference between kinetic energy and potential energy, 

qj represents joint coordinates, q̇j is the velocity of the joint, and τj is the external 

torque applied to the joint. 

Using inverse biomechanical methods, muscle forces, joint forces, and ground 

reaction forces are solved using analytical numerical methods by measuring joint 

angles, angular velocities, and angular accelerations. 

Fmuscle =
d

dt
(
1

2
m(v(t))2) (14) 

(
1

2
m(v(t))2  refers to the kinetic energy generated during muscle fiber 

contraction. 

3.3. Risk factor assessment 

SPSS (Statistical Package for the Social Sciences) and R statistical software can 

be used for data analysis. Firstly, correlation analysis is conducted to evaluate the 

linear relationship between various biomechanical parameters and injury risk using 

Pearson correlation coefficient [34,35]. The formula is as follows: 

r =
∑(Xi − X̅)(Yi − Y̅)

√∑(Xi − X̅)
2(Yi − Y̅)

2
 (15) 
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𝑋  and 𝑌  represent biomechanical parameters and injury incidence, 

respectively, while X̅ and Y̅ are their means. Select the significance level for 

statistical testing to determine whether the correlation is significant. Based on the 

previous correlation analysis results, select significantly correlated parameters to 

establish a multiple linear regression model. 

Y = β0 + β1X1 + β2X2+. . . +βnXn + ϵ (16) 

βn refers to the model parameters, while ϵ refers to the error term. 

Construct a regression model with the probability of injury occurrence as the 

dependent variable and the selected biomechanical parameters as independent 

variables. Use stepwise regression to optimize the model, eliminate insignificant 

variables, and improve the explanatory power of the model. Use variance inflation 

factor to detect collinearity between independent variables, ensuring that each 

parameter is relatively independent. 

𝑉𝐼𝐹𝑖 =
1

1 − 𝑅𝑖
2 (17) 

Ri
2 is the coefficient of determination of the regression model between the 

independent variable Xi and other independent variables. Generally speaking, if 

VIF > 10 occurs, it indicates the presence of severe collinearity. 

Through the above analysis, t-tests can be performed on each independent 

variable in the regression model, with p-values recorded and parameters with p < 

0.05 selected as key parameters. The standardized regression coefficients of each 

parameter can be calculated to evaluate their impact on damage risk and determine 

the degree of influence. Based on the identified key parameters, a risk classification 

system can be established to differentiate the injury risk levels of athletes according 

to different biomechanical characteristics, providing a basis for the development of 

personalized prevention strategies in the future. 

The above evaluation results are shown in Table 1. 

Table 1. Risk assessment results of biomechanical parameters. 

Biomechanical 

parameters 
𝐗 Standard deviation 𝒓 p-value 

Standardized regression 

coefficient 
𝐕𝐈𝐅 Key parameter 

Stride frequency 

(steps/min) 
180 10 0.45 0.002 0.32 1.5 Yes 

Stride length (m) 1.2 0.15 0.30 0.045 0.25 1.2 Yes 

Joint angle (degrees) 75 5 0.60 0.001 0.45 2.1 Yes 

Muscle strength 

(Newtons) 
250 30 0.50 0.005 0.38 1.8 Yes 

Speed (m/s) 3.5 0.5 0.20 0.150 0.10 1.1 No 

In the risk factor assessment, Table 1 shows the relationship between different 

biomechanical parameters and the risk of sports injuries. Firstly, the mean step 

frequency is 180 steps per minute, with a standard deviation of 10 and a Pearson 

correlation coefficient of 0.45, indicating a moderate positive correlation between 

step frequency and injury risk (p-value of 0.002, high significance). The stride 
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correlation coefficient is 0.30 (p = 0.045), indicating a weak positive correlation, 

suggesting that longer strides may be associated with a certain risk of injury. The 

correlation coefficient of joint angle is as high as 0.60, with a p-value of 0.001, 

indicating that improper joint angle significantly increases the risk of injury. The 

correlation coefficient of muscle strength is 0.50 (p = 0.005), indicating that the 

enhancement of muscle strength helps to reduce the risk of injury. The velocity 

correlation coefficient is only 0.20 (p = 0.150), indicating that there is no significant 

correlation between velocity and damage risk. The stride frequency, stride length, 

joint angle, and muscle strength marked as "key parameters" have a significant 

impact on the injury risk of athletes, providing data support for the development of 

personalized sports injury prevention strategies in the future. 

To present the analysis results more intuitively, a correlation matrix heatmap (as 

shown in Figure 3) and a regression analysis fit (as shown in Figure 4) were plotted. 

 

Figure 3. Correlation matrix heat map. 

 

Figure 4. Fit plot of regression analysis. 

In Figure 3, 1 refers to Stride frequency, 2 refers to Stride Length, 3 refers to 

Joint angle, 4 refers to Muscle strength, 5 refers to Speed, and 6 refers to Injury risk. 

The correlation coefficient between stride frequency and injury risk is −0.3322, 

indicating a moderate negative correlation between stride frequency and injury risk, 
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meaning that higher stride frequency results in lower injury risk. The correlation 

coefficient between stride length and injury risk is −0.7259, indicating that a larger 

stride length significantly reduces the risk of injury. In addition, the correlation 

coefficient between muscle strength and injury risk is −0.8322, indicating a strong 

negative correlation, which means that enhancing muscle strength significantly 

reduces injury risk. 

Figure 4 shows the relationship between actual injury incidence and predicted 

values to validate the accuracy of the model. As the actual damage incidence rate 

increases, the predicted damage incidence rate also increases accordingly, indicating 

that the model is effective in identifying damage risks. 

Although SPSS and R software and correlation and regression analysis are 

statistically appropriate, the analysis of complex models requires users to have a 

certain statistical background. Sample size directly affects statistical power, and 

smaller samples may lead to insufficient power. Therefore, it is important to ensure 

that the sample size is large enough to enhance the reliability of the analysis and the 

extrapolation of the results. 

3.4. Development of prevention strategies 

After completing the biomechanical risk factor assessment, personalized 

exercise adjustment plans and rehabilitation plans are developed based on the 

relationship between identified key biomechanical parameters and injury risk (as 

shown in Figure 5). 

Motion optimization

Load management

Core stability

Resume goal setting

Progressive load

Functional training

Dynamic simulation analysis

 

Figure 5. Prevention strategy formulation aspect. 

In Figure 5, the design of the motion adjustment scheme includes three aspects 

(load management, motion optimization, and core stability). Personalized load 

management plans can be developed based on the athlete’s fatigue level and 

biomechanical parameters, adjusting training intensity and frequency. For athletes 

with high knee joint stress, high-intensity running training can be reduced and low 

impact cross training (swimming or cycling) can be increased to distribute joint 

pressure. 
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Data acquisition is the basis for building biomechanical models(See Figure 6). 

In Figure 6, after data acquisition, biomechanical models are built in combination 

with kinematic analysis (describing the geometric characteristics of the motion, 

providing the trajectories of the individual joints and limbs) and dynamic analysis 

(applying the laws of physics, Euler-Lagrange equations and Newmark method to 

understand the relationship between motion and motion). After establishing the basic 

model, the joint force and load calculation are added. This process identifies the 

athlete's non-optimal movement patterns, allowing targeted adjustment of techniques 

to reduce unnecessary joint load.When performing movements such as jumping and 

turning, it is important to emphasize the correct landing posture and turning skills. 

 

Figure 6. Biomechanical modeling process. 

Based on the analysis results, specific core strength training programs can be 

designed to improve the stability of athletes’ core muscle groups, thereby reducing 

joint instability and injury risks. It can be combined with strength training and 

flexibility training to ensure that athletes maintain good posture during critical stages 

of exercise. 

The development of rehabilitation plans also involves three aspects. Specific 

goals for the rehabilitation phase can be set based on the type and location of injury, 

combined with individualized biomechanical models. For athletes with anterior 

cruciate ligament injuries, the goal includes gradually restoring the range of flexion 

and extension of the knee joint and enhancing the strength of the surrounding 

muscles. 

Based on the athlete’s recovery progress, a gradually increasing load plan can 

be designed using simulation software, and parameter adjustments can be made to 

ensure that the athlete gradually adapts to biomechanical loads during the 

rehabilitation period. This can be achieved by adjusting the weekly exercise intensity 

and training type to avoid secondary injuries caused by overtraining. 

Functional training is designed in the later stages of recovery to improve 

athletes’ ability to adapt to biomechanical loads encountered in actual competitions 

by designing functional training related to the sports events they participate in. 
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Biomechanics analysis can be used to determine key stages of movement, set 

corresponding training scenarios, and enable athletes to train in realistic 

environments. 

In addition, the personalized exercise and rehabilitation plan developed will 

face some challenges and limitations in practical application. Specifically, athletes 

may not fully follow the established plan for a variety of reasons (time, interest, or 

confidence), affecting the effectiveness of rehabilitation. Coaches have insufficient 

understanding of biomechanical analysis, and their experience and attitude will 

affect the implementation of the exercise adjustment program. In the actual training 

environment, the limitations of venue, equipment and resources can also affect the 

overall effect. 

4. Principle application effect evaluation 

This article selects 100 athletes who participate in basketball training and 

groups them according to their basic characteristics such as gender, age, weight, and 

sports experience (as shown in Table 2). Among them, 50 athletes were selected as 

the experimental group to implement the personalized biomechanical prevention 

strategy applied in this article. Another 50 athletes served as the control group and 

continued with routine training. 

Table 2. Basic characteristics statistics of athletes. 

Feature Experimental group Control group 

Male 30 28 

Female 20 22 

Average age (years) 22.5 22.8 

Average weight (kg) 75.4 76.1 

Average experience (years) 5.2 5.0 

Table 2 shows the basic characteristic statistics of athletes, where the 

experimental group includes 50 athletes with a gender distribution of 30 males and 

20 females, while the control group has 28 males and 22 females, indicating a 

relatively balanced gender composition between the two groups. In terms of age, the 

average age of the experimental group was 22.5 years, slightly lower than the 22.8 

years of the control group, indicating that the two groups of athletes were similar in 

age. In terms of weight, the average weight of the experimental group was 75.4 kg, 

slightly lighter than the control group’s 76.1 kg. In addition, the average exercise 

experience of the experimental group was 5.2 years, slightly higher than the control 

group’s 5.0 years, indicating the advantage of the experimental group in terms of 

exercise background. The similarity of these basic characteristics lays a good 

foundation for subsequent analysis of injury incidence, enabling people to more 

accurately evaluate the intervention effect when exploring the impact of personalized 

biomechanical prevention strategies on sports injuries. 

The experiment is set for 12 weeks, during which athletes’ exercise data and 

injury situations are regularly collected. Data collection is conducted every two 

weeks to ensure timely updates of athletes’ status. Sports injury is defined as any 
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injury that occurs during training or competition that prevents an athlete from 

continuing to participate. This includes but is not limited to recording the training 

situation and injury incidents of each athlete by the training team throughout the 

entire experimental period. Data can be entered using a spreadsheet, as shown in 

Table 3. 

Table 3. Statistics of sports injury occurrence. 

Group Total participants Injured participants Injury rate Main injury types Injury locations 

Experimental 

group 
50 5 10% 

Knee sprain (2) Left knee (1), Right knee (1) 

Ankle sprain (2) Left ankle (1), Right ankle (1) 

Lumbar strain (1) Lower back (1) 

Control group 50 15 30% 

Knee sprain (6) Left knee (3), Right knee (3) 

Ankle sprain (5) Left ankle (2), Right ankle (3) 

Lumbar strain (4) Lower back (2), Upper back (2) 

In the experimental group of Table 3, there are a total of 50 athletes, of whom 5 

have suffered sports injuries, with an injury rate of 10%. In contrast, the control 

group also had 50 athletes, but 15 of them suffered sports injuries, with an injury 

incidence rate as high as 30%. The above data clearly indicates that the experimental 

group has a significantly lower incidence of sports injuries compared to the control 

group, with a reduction of 20%, supporting the effectiveness of personalized 

biomechanical prevention strategies in reducing sports injuries. 

The sports injury data shown in Table 3 are somewhat prevalent across 

different types of sports, genders, and age groups. There are significant differences 

between different types of exercise in terms of the mechanisms and risks of injury 

occurrence. Gender and age are the key factors affecting sports injury. Future studies 

should consider the diversity of large samples. 

SPSS can be used for data analysis, and chi square test can be used to compare 

the difference in injury incidence between two groups. The significance level is set 

to 0.05, and the analysis results are shown in Table 4. 

Table 4. Chi square test results. 

Group Injured participants Total participants Injury rate Chi-square value P value 

Experimental group 5 50 10% 

5 0.025 Control group 15 50 30% 

Total 20 100 20% 

The data in Table 4 shows a chi square value of 5 and a p-value of 0.025, 

indicating that the difference in injury incidence between the two groups is 

statistically significant. This result clearly supports the theme of the article, which is 

that personalized biomechanical prevention strategies have significant effects in 

reducing sports injuries. Especially the lower incidence of injuries in the 

experimental group highlights the effectiveness of this strategy, which helps reduce 

common sports injuries such as knee sprains, ankle sprains, and lumbar strains. 
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Players can choose different sports (running, basketball, soccer), covering 

different genders and age groups. Each sport can recruit 50 athletes. The 

high-precision 3D motion capture system is used to record the movements of athletes 

during exercise, with a focus on analyzing step frequency and stride length. 

Physiological monitoring equipment electromyography is used to evaluate muscle 

strength. The article still chose the experimental group to apply the training plan 

developed based on biomechanical principles in this article, optimized step 

frequency, stride length, and muscle strength enhancement training, while the control 

group maintained the original training plan. The results before and after training are 

shown in Table 5. 

Table 5. Parameter changes before and after training in different groups. 

Sports 

event 
Group 

Sample 

size 

Average stride frequency (steps 

/min) 

Average stride length 

(m/step) 
Muscle strength (N) 

Running 
Experimental 

group 
25 

Pre-training: 180; post-training: 

185 

Pre-training: 1.2; post-training: 

1.25 

Pre-training: 50; 

post-training: 55 

Running Control group 25 
Pre-training: 180; post-training: 

182 

Pre-training: 1.2; post-training: 

1.22 

Pre-training: 50; 

post-training: 51 

Basketball 
Experimental 

group 
25 

Pre-training: 150; post-training: 

155 

Pre-training: 0.8; post-training: 

0.85 

Pre-training: 70; 

post-training: 75 

Basketball Control group 25 
Pre-training: 150; post-training: 

151 

Pre-training: 0.8; post-training: 

0.82 

Pre-training: 70; 

post-training: 71 

Football 
Experimental 

group 
25 

Pre-training: 160; post-training: 

165 

Pre-training: 1.0; post-training: 

1.05 

Pre-training: 60; 

post-training: 65 

Football Control group 25 
Pre-training: 160; post-training: 

162 

Pre-training: 1.0; post-training: 

1.02 

Pre-training: 60; 

post-training: 62 

In Table 5, under the guidance of a biomechanical training plan, the 

experimental group increased the stride frequency of runners from 180 steps per 

minute before training to 185 steps per minute, the stride length from 1.2 m to 1.25 

m, and the muscle strength from 50 N to 55 N. The control group only showed a 

slight improvement, with step frequency increasing from 180 to 182, stride length 

increasing from 1.2 m to 1.22 m, and muscle strength increasing from 50 N to 51 N. 

In both basketball and football events, the experimental group also showed 

significant improvement, while the changes in the control group were relatively 

small. These data indicate that the key exercise parameters of the experimental group 

have been significantly optimized after training, demonstrating that the 

biomechanical based training plan effectively enhances the athletes’ athletic ability. 

The changes in various parameters and their correlation with damage risk can 

be calculated based on the data in Table 5, as shown in Table 6. 

According to the data analysis in Table 6, by optimizing step frequency, stride 

length, and muscle strength, the athletes in the experimental group not only 

significantly improved in key exercise parameters, but also effectively reduced the 

risk of sports injuries, verifying the effectiveness of biomechanical based training 

programs in improving sports performance and preventing sports injuries. 
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Table 6. Changes in various parameters and their correlation with damage risk. 

Sports 

event 
Group Sample size 

Average stride 

frequency change 

(steps/min) 

Average stride 

length change 

(m/step) 

Muscle strength 

change (units) 

Injury rate 

change (%) 

Running 
Experimental 

Group 
25 +5 +0.05 +5 −40 

Running Control Group 25 +2 +0.02 +1 −8 

Basketball 
Experimental 

Group 
25 +5 +0.05 +5 −40 

Basketball Control Group 25 +1 +0.02 +1 −8 

Football 
Experimental 

Group 
25 +5 +0.05 +5 −40 

Football Control Group 25 +2 +0.02 +2 −16 

5. Conclusions 

This article analyzes the effects of step frequency, stride, joint angle, muscle 

strength, and speed on the risk of sports injuries by combining high-precision 3D 

motion capture systems and various physiological monitoring devices, using 

biomechanical principles. Research has shown that optimizing step frequency, stride 

length, and enhancing muscle strength can significantly reduce the risk of injury. 

However, the research sample is limited, the types of exercise are not diverse enough, 

and the universality is insufficient. Future studies should expand the sample size and 

type diversity to enhance the universal applicability and accuracy of the results. At 

the same time, more intuitive visualization tools and user-friendly interfaces are used 

to make the data analysis results easy to interpret. 
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