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Abstract: In response to the problems of low reliability and long time consumption in 

traditional research on sound production, this article used electromyography (EMG) signals as 

input signals to build a high-precision sound production mechanics model. A Proportional-

Integral-Derivative (PID) controller was used to dynamically adjust the model and develop a 

real-time feedback system. This article established a detailed three-dimensional (3D) finite 

element model including the vocal cords and throat, defined the nonlinear elastic properties 

and linear elastic properties of different tissues, and used tetrahedral grid partitioning 

technology to improve the computational accuracy of the model. Through a EMG sensor, an 

individual EMG was collected and filtered to remove noise. The processed EMGs were used 

as input parameters for the finite element model to drive the muscle units in the model. By 

using a PID controller to receive real-time EMG input, the error was calculated and the model 

was adjusted, enabling accurate simulation of the mechanical properties of vocal cord vibration 

under different vocal states and achieving real-time feedback. Considering the complexity of 

vocal cord vibration driven by biological signals, this article simulated and analyzed the modal 

characteristics of vocal cord vibration, and analyzed the differences in vocal cord vibration 

characteristics under different vocal states. The sound pressure distribution and resonance 

frequency were simulated and analyzed to understand the propagation characteristics of sound. 

Finally, by comparing and analyzing the simulated data with the actual collected data, it was 

found that the maximum relative error rate of the model under different sound states was 6.14%, 

and the overall error rate of the model was relatively low, which verified the reliability of the 

model. The findings demonstrated that the feedback delays of the model in different sound 

states were all within 100 milliseconds, indicating that the system had high real-time 

performance and accuracy, which was promising in practical applications. 

Keywords: three-dimensional finite element analysis; biological signal feedback; mechanical 

properties; PID controller; vocal cord vibration 

1. Introduction 

As technology has developed in recent years, the study of sound production 

mechanisms has become more and more in-depth. The study of sound production 

mechanisms is important in many fields (including biomechanics, acoustics and 

medicine) [1–3]. In this article, a 3D finite element model is constructed and individual 

biosignals are applied into the acoustic model [4–6] to enhance the accuracy and 

applicability of the model. 

Finite element analysis [7–9] is a broadly utilized analytical method in 

biomechanical and acoustic studies for simulating and analyzing the mechanical 

behavior of complex structures. Within the research of sound vocalization, finite 

element analysis is used to construct a 3D model of the vocal cords to study the 

mechanical properties of vocal cord vibration, sound wave propagation, and sound 
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pressure distribution [10,11]. Most of the early studies were carried out using 

simplified models and low-resolution grids, making the accuracy of model simulations 

and the effectiveness of practical applications less than ideal. By applying high-density 

grids and more accurate linear and nonlinear elastic models [12,13], the accuracy and 

reliability of three-dimensional finite element model simulation are greatly improved, 

which also enables it to play a significant role in practical applications. 

Biosignal acquisition and processing is one of the key steps in constructing high-

precision acoustic models [14–16]. The common biological signal used for sound 

production research is EMG [17–19], which can directly capture the electrical activity 

of the vocal cords and related muscles, providing more accurate sound production data. 

After signal acquisition, EMG is usually preprocessed to remove noise and 

interference [20,21]. 

Real-time control and dynamic adjustment are key technologies for achieving 

high-precision sound simulation [22,23], which can significantly improve the 

adaptability and accuracy of the model. PID controller, as a classic real-time control 

algorithm [24–26], is widely used in industrial automation and process control, and is 

often used in the construction of real-time feedback systems. 

This article proposes a three-dimensional finite element acoustic dynamics model 

based on biological signal feedback. By applying high-precision EMG acquisition and 

processing technology, combined with PID controller to achieve real-time dynamic 

adjustment, a vocal cord vibration model with real-time feedback capability is 

constructed. The experimental findings demonstrate that the model has high accuracy 

and real-time performance, and can be effectively used for personalized medical 

diagnosis and treatment, which has a broad application prospect. 

2. Related work 

Traditional studies of sound production are usually grounded on idealized 

geometrical structures in two or three dimensions [27–29]. These research methods 

are difficult to accurately reflect the dynamic changes in individual physiological 

characteristics and vocal states [30,31]. In recent years, significant progress has been 

made in the study of sound production mechanisms, and many researchers have made 

relevant research results. Jiang W [32] et al. conducted a study on the influence of 

vocal cord cover thickness on vocal cord vibration and vocalization, analyzing the 

impact of cover thickness on vibration dynamics during vocalization from multiple 

perspectives such as fundamental frequency, characteristic frequency, and 

characteristic mode. Zhang Z [33] studied the oral vibration during speech production 

under different throat and semi-occluded channel configurations. During the study, a 

three-dimensional speech model was used to quantify the oral sound pressure level 

(SPL) and make adjustments to speech therapy under different semi-occluded channel 

configurations. The research ideas of the above studies provided reference for the 

research of this article. Many researchers have also made relevant research summaries 

in the field of biological signals. Sharma A [34] et al. explored the application 

scenarios of EMG signals and proposed that time-frequency analysis should usually 

be used when EMG signals are used for clinical evaluation. The time-frequency 
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analysis in the research process involves converting signals in different domains and 

extracting useful physiological information. This study provided a theoretical basis for 

this article. 

In sound generation simulation, the PID controller can receive real-time feedback 

from biological signals, continuously adjust the parameters and boundary conditions 

of the sound generation model, ensure the consistency between the model output and 

the actual biological signals, and maintain the dynamic response capability of the 

model. There are also many researchers involved in the field of combining finite 

element analysis with PID controllers for research. Kamel M A [35] et al. developed a 

new vibration control dynamic model through finite element analysis. This study 

conducted frequency analysis (modal and harmonic) on the model and combined it 

with a PID controller to achieve an intelligent controller system with good system 

performance. Guan W [36] et al. proposed a mathematical modeling method for 

lumbar spine deformation based on finite element simulation using response surface 

methodology. This experiment was based on CT (Computed Tomography) scan data, 

reconstructed a three-dimensional model of the lumbar spine including vertebral 

bodies and intervertebral discs, and used finite element method to analyze the lumbar 

spine. Based on simulation results, relevant mathematical models were established and 

PID controllers were combined to construct a position control system. The 

effectiveness of the mathematical model was verified through simulation and 

comparative experiments on the control system. The above research provided a more 

specific research approach for this article. 

Based on the above research, by applying EMG as input, combined with finite 

element analysis and real-time control technology, a high-precision and dynamically 

responsive vocal model was ultimately constructed. These studies not only enhanced 

the theoretical understanding of vocalization mechanisms, but also provided new 

methods and means for personalized medical diagnosis and treatment. 

3. Specific implementation of three-dimensional finite element 

analysis 

3.1. Construction of 3D finite element model 

To realize 3D finite element analysis of the mechanical properties of sound 

production, it is necessary to first construct accurate three-dimensional finite element 

models of the vocal cords and throat. High-resolution CT scans and MRI (Magnetic 

Resonance Imaging) data are used to obtain geometric information of the vocal cords 

and larynx. CT scans can provide density information of bones and soft tissues, while 

MRI can provide more detailed structural information of soft tissues. CT and MRI data 

are subjected to denoising, smoothing, and segmentation processing. The 

segmentation process extracts the vocal cords and throat from surrounding tissues, 

generating a 3D contour of the target area. The segmented data is utilized for surface 

reconstruction, generating three-dimensional surface models of the vocal cords and 

throat. The generated surface model needs to be smoothed to remove artifacts and 

noise generated during the reconstruction process. The model is illustrated in Figure 

1. 
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Figure 1. Three-dimensional geometric model of throat and vocal cord. 

In order to accurately describe the mechanical behavior of materials during stress 

and deformation, material properties are defined. The vocal cords and other parts of 

the throat are composed of various types of tissues, such as muscles, mucous 

membranes, and cartilage. Different organizations have different mechanical 

properties and exhibit different responses under the same conditions. By defining 

material properties, these specific responses can be simulated. The collected CT and 

MRI data is classified based on tissue density and magnetic resonance signal intensity. 

For muscle tissue, the Ogden model is used to describe its nonlinear elastic behavior. 

The Ogden model is a more general nonlinear elastic model that is applicable to a 

wider range of materials, including some complex biological tissues. It flexibly 

describes the nonlinear behavior of materials through a series of parameters, as shown 

in Equation (1). 

W =∑μi

N

i=1

αi(λ1
αi + λ2

αi + λ3
αi − 3) (1) 

Among them, W  is the strain energy function. μi  and αi  are the material 

parameters of the Ogden model. λ1, λ2 and λ3 are the principal strains, representing 

the deformation of the material in three main directions. 

For cartilage tissue, a linear elastic model is used to describe its mechanical 

properties. The stress-strain equation shown in Equation (2) is used to describe the 

relationship between the stress generated by a material under strain, which is the 

constitutive equation of a linear elastic material. 

σij = Cijklϵkl (2) 

Among them, σij is stress, describing the internal forces of the material. Cijkl is 

the elastic constant (or material stiffness matrix), which describes the mechanical 

properties of the material. ϵkl is strain, describing the degree of deformation of the 

material. 

Through the application of the above models, accurate simulation of biological 

tissues can be achieved, providing a foundation for personalized medical diagnosis 

and treatment. 

After completing the definition of material properties, grid division is carried out 

to partition the continuum into a finite number of small cells, and approximate 
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calculations are carried out within each cell, thus improving the overall calculation 

accuracy. In addition, grid partitioning can better capture the details of complex 

geometric structures, improve the accuracy of simulations, and minimize the 

consumption of computing resources while ensuring computational accuracy, thus 

improving computational efficiency. 

This article adopts adaptive grid partitioning technology to adjust grid density 

according to the complexity of geometric shapes. By using the dynamic equation 

shown in Equation (3), the dynamic response of the vocal cords and throat under 

external forces such as airflow pressure and muscle drive is described. 

Mü + Cu̇ + Ku = f (3) 

The finite element model is validated through experimental data. According to 

the verification results, the model parameters are adjusted. The material properties, 

boundary conditions, and grid density are optimized to ensure that the model 

accurately reflects the mechanical behavior of the vocal cords and throat. Through 

repeated verification and adjustment, a high-precision three-dimensional finite 

element model is established. 

3.2. Biological signal acquisition and processing 

To realize a 3D finite element model driven by biological signals, high-precision 

collection and processing of the individual EMG are required. Firstly, high-quality 

surface electrodes or insertion electrodes are used to capture the electrical signals 

generated by muscle activity. Then, differential amplification technology is employed 

to improve the signal-to-noise ratio and reduce common mode noise caused by 

electromagnetic interference or other external sources. Next, a bandpass filter with a 

frequency range of 20 Hz to 500 Hz is applied to remove irrelevant low-frequency and 

high-frequency noise. After signal digitization, data smoothing is used for further 

denoising. Figure 2 is a schematic diagram of signal acquisition. 

This article uses a highly sensitive and high signal-to-noise ratio Surface 

Electromyography (sEMG) sensor, branded Delsys Trigno series, as shown in Figure 

2a. Based on anatomical knowledge, sEMG sensors are placed on the surface of vocal 

related muscle groups. In this study, EMG signals are collected on the surfaces of the 

left and right sternocleidomastoid and cricothyroid in the throat. The positions of the 

left and right sternocleidomastoid and cricothyroid in the human body are shown in 

Figure 2b,c, respectively, and the placement position of the sEMG sensor is shown in 

Figure 2d. During the placement of sensors, cleaning and exfoliating treatments are 

used to reduce the resistance between the skin and electrodes, thereby improving 

signal transmission efficiency. The skin is cleaned with alcohol swabs to ensure good 

contact between the electrodes and the skin. 
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Figure 2. Schematic diagram of signal acquisition. (a) represents a Delsys Trigno 

series brand; (b) represents the position of the left and right sternocleidomastoid muscles 

in the human body; (c) represents the position of the cricothyroid membrane in the 

human body; and (d) represents the placement position of the sEMG sensor. 

The sampling frequency is set to 1000 Hz during the signal acquisition setup 

phase to ensure sufficient EMG details are captured. During the collection process, 

participants are required to perform a series of standardized vocal tasks and record 

electromyographic signals under different vocal states. From the perspective of vocal 

continuity, vocal states can be classified into three types: Single Syllable, Speech, and 

Singing. The signals collected on the surfaces of the left sternocleidomastoid (Left 

SCM), right sternocleidomastoid (Right SCM), and cricothyroid are shown in Figure 

3, indicating a significant difference in continuity. 

 

Figure 3. Diagram of EMG under different vocal states 

The collected raw EMG are subjected to signal processing, which is a crucial step 

in converting the collected raw EMG into inputs that can be used for finite element 

models. 

Due to the weak and noisy sEMG signals collected, signal amplification and 

filtering are required. A differential amplifier is used to preliminarily amplify the 

signal, and a bandpass filter (such as 20 Hz to 500 Hz) is used to remove low-
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frequency noise and high-frequency interference. The specific filter design is shown 

in Equation (4). 

𝐻𝑏𝑝(s) =
𝜔ℎ𝑠

𝑠2 + (𝜔ℎ +𝜔l)𝑠 + 𝜔ℎ𝜔𝑙
 (4) 

Among them, 𝜔ℎ   and 𝜔𝑙  are the high-frequency and low-frequency cutoff 

frequencies, respectively, and 𝑠 is the complex frequency variable. 

At the same time, a notch filter is used to remove power frequency interference 

(such as 50 Hz or 60 Hz), and the notch filter design is shown in Equation (5). 

𝐻𝑏𝑟(𝑠) =
𝑠2 + 𝜔0

2

𝑠2 + 𝜔𝑏s + 𝜔0
2 (5) 

Among them, 𝜔0 is the center frequency of the power frequency; 𝜔𝑏 is the width 

of the stopband; 𝑠 is a complex frequency variable. The design parameters of the pass 

filter and notch filter are shown in Table 1: 

Table 1. Filter design parameters. 

Parameter Band-pass filter Notch filter 

Lower Cutoff Frequency 20 Hz - 

Higher Cutoff Frequency 500 Hz - 

Center frequency - 50 Hz 

Bandwidth 480 Hz 2 Hz 

Order 4th order 2nd order 

Finally, wavelet transform is used to further remove residual noise. Wavelet 

transform can perform multi-scale analysis on signals in the time-frequency domain, 

effectively separating signals and noise. EMG signals are usually non-stationary, and 

their statistical characteristics vary over time. Wavelet transform is adaptive and can 

automatically adjust the size of the analysis window based on the local characteristics 

of the signal. It also allows for multi-resolution analysis, which involves observing the 

signal at different scales. This multi-scale analysis helps distinguish different features 

in the signal. The choice of wavelet basis will affect the time-frequency characteristics 

of the decomposition results. The choice of threshold directly affects the denoising 

effect. A threshold that is too low can result in excessive noise residue, while a 

threshold that is too high may delete some useful information from the signal. For 

electromyographic signals, wavelet bases with good time localization and frequency 

localization are usually selected. Appropriate wavelet bases for multi-level 

decomposition of signals are selected to obtain detail coefficients and approximation 

coefficients at different scales. The detail coefficients are subjected to threshold 

processing to achieve the effect of removing noise components. The commonly used 

threshold processing methods include hard threshold and soft threshold processing. In 

this article, soft threshold processing is adopted, as shown in Equation (6). The 

processed detail coefficients and approximation coefficients are subjected to inverse 

wavelet transform to reconstruct the denoised signal. 

𝑑𝑖′ = sign(𝑑𝑖) ⋅ max(|𝑑𝑖| − 𝜆, 0) (6) 
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Among them, 𝑑𝑖  is the original detail coefficient; 𝜆  is the threshold; 𝑑𝑖′  is the 

processed detail coefficient. Soft thresholding can smoothly reduce the amplitude of 

wavelet coefficients, thereby reducing noise components in the signal while 

maintaining the main characteristics of the signal. This method can better protect the 

continuity of the signal. 

Through the above filtering process, the obtained EMG signal is made purer, 

which facilitates subsequent analysis and research. 

3.3. Model input and dynamic adjustment 

In three-dimensional finite element analysis, using processed EMG as input 

parameters for the model plays a crucial role in driving the muscle units in the model. 

Firstly, the processed EMG signal needs to be converted into input parameters that the 

model can recognize and process in order to drive muscle units. The common method 

is to establish a relationship model between EMG and muscle stress. 

In order to achieve dynamic adjustment of the model, this article adopts a PID 

controller to dynamically adjust the parameters of the finite element model. The PID 

controller dynamically adjusts the model parameters and boundary conditions through 

real-time collected biological signal feedback to ensure that the output of the model 

matches the actual physiological state. Assuming EMG EMG(t) is the input, its control 

signal 𝑢(𝑡) is shown in Equation (7). 

𝑢(𝑡) = 𝐾𝑝[EMG(𝑡) − EMGref] + 𝐾𝑖 ∫ [EMG(𝜏) − EMGref]
t

0

d𝜏 + 𝐾𝑑
d

d𝑡
[EMG(𝑡) −

EMGref]

 (7) 

Among them, EMGref  is the reference EMG value, and 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑   are the 

proportional, integral, and differential gain coefficients, respectively. 

The control signal is input into the finite element model and the material 

properties of the model are adjusted. Due to the use of the Ogden model to describe 

the nonlinear elastic behavior of muscle tissue, the material properties of the model 

are updated through real-time feedback. Cartilage tissue is described for its mechanical 

properties using a linear elastic model, and the material properties of the model are 

represented by a stress-strain relationship. The adjustment of the Young’s modulus E 

and Poisson’s ratio 𝜈 of the material is shown in Equations (8) and (9). 

𝐸(𝑡) = 𝐸0 +𝐾𝐸𝑢(𝑡) (8) 

𝜈(𝑡) = 𝜈0 + 𝐾𝜈𝑢(𝑡) (9) 

Among them, 𝐸0 and 𝜈0 are initial values, and 𝐾𝐸  and 𝐾𝜈 are control gains. 

The boundary conditions of the model are adjusted based on real-time feedback 

of biological signals using Equation (10). 

𝐾 = 𝐾0 + 𝛥𝐾
𝐶 = 𝐶0 + 𝛥𝐶
𝑀 = 𝑀0 + 𝛥𝑀

 (10) 
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Among them, 𝐾0, 𝐶0, and 𝑀0 are the initial stiffness matrix, damping matrix, and 

mass matrix, respectively, while Δ𝐾 , Δ𝐶 , and Δ𝑀  are the dynamic adjustment 

quantities based on real-time biological signal feedback. 

By using the processed EMG signal as an input parameter and utilizing PID 

control algorithm to dynamically adjust the model parameters, the mechanical 

behavior of the vocal mechanics model can be effectively simulated and optimized, 

providing new methods and technical support for personalized medical diagnosis and 

treatment. In the process of using a PID controller for dynamic adjustment, the Ziegler 

Nichols rule is first used for preliminary parameter tuning. When the proportional gain 

Kp is set to 0.5, the system begins to oscillate with an oscillation period of Tp = 2 

seconds. Calculate the initial parameters of the PID controller according to the Ziegler 

Nichols rule. Among them, the proportional gain is 0.3, the integral gain is 0.18, and 

the differential gain is 0.075. Test the response of the system under different vocal 

states (monosyllabic pronunciation, speech, singing), and record the response time and 

stability of the system. If the system response is too slow, gradually increase the 

proportional gain. If there is steady-state error in the system, gradually increase the 

integral gain to ensure that the PID controller can effectively control the system 

response during dynamic adjustment. 

Hexahedral meshes usually provide higher accuracy and stability when 

simulating solid structures, so this article uses hexahedral meshes for mesh 

partitioning. To ensure that the model can accurately capture the complex geometric 

features of the vocal cords and throat, the basic mesh size is first determined to be 

1mm. Perform local mesh refinement in key areas such as vocal cords and larynx. The 

grid size of the vocal cord area will be refined to 0.5mm. Refine the throat area locally, 

with a grid size of 0.5mm. 

Using adaptive grid partitioning technology, dynamically adjust the grid density 

based on the distribution of stress or strain during the simulation process. Ensure that 

the generated mesh meets quality standards, with a minimum angle of no less than 20 

degrees and a maximum distortion of no more than 0.8. 

The vocal cords are mainly composed of elastic fibers, with a selected elastic 

modulus of 500 kPa and Poisson’s ratio of 0.45. The elastic modulus of muscles is 

generally between 1 kPa and 100 kPa. Considering the characteristics of the throat 

muscles, an elastic modulus of 50 kPa and a Poisson’s ratio of 0.5 were chosen. To 

simulate the structure of laryngeal cartilage, an elastic modulus of 5 MPa and a 

Poisson’s ratio of 0.45 were selected. The elastic modulus of the mucosa is 0.5 kPa, 

and the Poisson’s ratio is 0.45. The interface properties between vocal cords and 

surrounding tissues need to consider friction coefficient and adhesion force. Set the 

friction coefficient between the vocal cords and the soft tissues of the throat to 0.2. 

Enter the above material properties in finite element analysis software to ensure 

that each tissue type has corresponding property values. Choose a linear elastic model 

to simulate the behavior of biological tissues. 

3.4. Sound simulation and mechanical properties 

The vocal cords, the most important part of vocalization, are simulated and 

analyzed. Figure 4 shows a three-dimensional geometric model simulation image of 
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the opening and closing of the vocal cords during the vocalization process. 

 

Figure 4. Three-dimensional geometric model simulation of vocal cord opening and 

closing. (a) vocal cord closing; (b) vocal cord opening. 

Vocal cord vibration analysis is the key to understanding the mechanical 

properties during the process of vocalization. By combining collected biological 

signals to simulate the vibration behavior of vocal cords, how biological signals affect 

the dynamic properties of vocal cords is revealed. Modal analysis method is used to 

simulate the vibration mode of vocal cords and analyze their natural frequency and 

amplitude. Modal analysis is a method used to determine the dynamic properties of a 

system under natural vibration conditions. 

The dynamic equation shown in Equation (3) is established, where the external 

force vector 𝑓 = 0, indicating that there is no external force acting on the system, that 

is, the system is in a state of natural vibration. Ignoring the damping term, a simplified 

eigenvalue problem can be obtained, as shown in Equation (11). 

(𝐾 − 𝜔2𝑀)𝑢 = 0 (11) 

The eigenvalue 𝜔2 and corresponding eigenvector u of the system are obtained 

by solving the equation. The eigenvalue 𝜔2 corresponds to the natural frequency of 

the system, and the eigenvector u corresponds to the mode shape of the system. 

Based on the eigenvalues and eigenvectors, the natural frequency and vibration 

mode of the vocal cords are determined. Figure 5 shows the vibration patterns of the 

vocal cords at different frequencies, providing a visual representation for 

understanding the mechanical properties of the vocal cords. 

 

Figure 5. Vibration mode diagram of different sound states. 
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The vibration frequency and amplitude of the vocal cords vary among single 

syllable vocalization, normal speech, and singing. By comparing the vibration patterns 

under different vocal states, it can be seen that the frequency is lower and the harmonic 

components are less in the single syllable vocal state; under normal speech conditions, 

the frequency is high and there are many harmonic components; when singing, the 

frequency is the highest and the harmonic components are the most complex. This 

reflects the differences in vocal cord vibration characteristics under different vocal 

states. 

To further analyze the acoustic mechanical properties, this article conducts 

simulation analysis on its key indicators (sound pressure distribution and resonance 

frequency). The sound pressure distribution is obtained by simulating the propagation 

of sound waves, reflecting the energy distribution of sound waves in the channel. The 

calculation of resonance frequency is based on the frequency response of the sound 

pressure field, which is obtained by extracting the frequency components of the sound 

pressure field through Fourier transform using Equation (12). The sound pressure 

distribution image and resonance frequency image are shown in Figures 6 and 7, 

respectively. 

𝑋[𝑘] = ∑ 𝑥

𝑁−1

𝑛=0

[𝑛]e−𝑗
2𝜋
𝑁
𝑘𝑛

 (12) 

Among them, 𝑋[𝑘] is the 𝑘-th frequency component in the frequency domain; 

𝑥[𝑛] is the 𝑛-th sample value in the time domain; 𝑁 is the total number of samples in 

the signal; 𝑗 is an imaginary unit. 

 

Figure 6. Sound pressure distribution diagram for different sound states 

The sound pressure distribution results show significant differences in sound 

pressure distribution under different sound states. In the single syllable sound state, 

the color transition of the sound pressure image is natural, that is, the sound pressure 

distribution is uniform; under normal speech conditions, the sound pressure image 

forms multiple highlighted areas, indicating the presence of high-pressure regions; in 

the singing state, the sound pressure image forms distinct resonant cavities (areas with 

obvious shapes and large color changes) and nodes (large areas with darker colors). 
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These high-pressure regions and resonant cavities also reflect the existence of 

resonance phenomena. 

 

Figure 7. Resonance frequency diagram of different vocal states. 

The resonance frequency results show that the resonance frequency of single 

syllable vocalization is concentrated in the low-frequency region; under normal speech 

conditions, the resonance frequency range is wide and contains multiple frequency 

components; when singing, the resonance frequency range is the largest and the 

frequency distribution pattern is the most complex. These resonance frequencies 

reflect the main frequency components and propagation characteristics of vocal cord 

vibration. 

4. Model performance evaluation and real-time performance 

4.1. Model performance evaluation 

In order to evaluate the reliability of the constructed three-dimensional finite 

element model, this article compares the simulated data of the model with 

experimental data, and comprehensively evaluates the reliability of the model through 

two quantitative evaluation methods: correlation coefficient and root mean square 

error. These two methods can effectively measure the consistency and accuracy of the 

model with experimental data, providing clear directions for model improvement. The 

collected and preprocessed EMG data is used as input to drive a three-dimensional 

finite element model for simulation.  

A total of 15 participants were recruited for this experiment, ranging in age from 

20 to 50 years old, with an average age of 35 years old. This age group covers early to 

middle adulthood, with 8 males and 7 females among the participants, with a gender 

ratio close to 1:1, ensuring that the experimental results are not significantly affected 

by gender factors. All participants were confirmed by medical examination to have no 

hearing impairment, vocal cord disease, or other health issues that may affect their 

vocal ability. Special attention was paid to excluding smokers to reduce the potential 

impact of tobacco use on experimental results. 
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The output of the model simulation includes the displacement time series of vocal 

cord vibration, sound pressure distribution, and resonance frequency under different 

vocal states. The correlation coefficient and root mean square error (RMSE) are used 

to quantitatively evaluate the consistency and accuracy between the model simulation 

results and experimental data. The specific data is shown in Table 2. 

Table 2. Statistical table of correlation coefficient and root mean square error 

Vocalization State 
Vocal Cord Vibration 

Correlation Coefficient 

Vocal Cord 

Vibration 

RMSE 

Sound Pressure 

Distribution 

Correlation 

Coefficient 

Sound Pressure 

Distribution 

RMSE 

Resonance 

Frequency 

Correlation 

Coefficient 

Resonance 

Frequency 

RMSE 

Single 
Syllable 

Left SCM 0.9123 0.1534 0.8765 0.2047 0.9432 0.1045 

Right 
SCM 

0.9054 0.1578 0.8845 0.1983 0.9517 0.1098 

Cricothyr
oid 

0.8947 0.1459 0.8921 0.2105 0.9589 0.1153 

Speech 

Left SCM 0.8798 0.1845 0.8521 0.2473 0.8965 0.1221 

Right 

SCM 
0.8834 0.1812 0.8476 0.2539 0.9024 0.1187 

Cricothyr

oid 
0.8712 0.1876 0.8583 0.2445 0.8941 0.1265 

Singing 

Left SCM 0.9538 0.0987 0.9165 0.1523 0.9754 0.0843 

Right 

SCM 
0.9491 0.1032 0.9238 0.1487 0.9712 0.0876 

Cricothyr

oid 
0.9617 0.0954 0.9112 0.1576 0.9786 0.0809 

For each set of data, the correlation coefficient ranges from −1 to 1, with values 

closer to 1 indicating higher consistency between the model and experimental data. 

The smaller the root mean square error, the closer the model simulation results are to 

the experimental data. From the data in Table 1, it can be found that the simulated 

results of vocal cord vibration, sound pressure distribution, and resonance frequency 

under different vocal states of the model have high consistency and small errors with 

experimental data. The correlation coefficient is mostly above 0.85, and only the 

correlation coefficient of sound pressure distribution when speaking normally at the 

right sternocleidomastoid muscle is 0.8476, which is less than 0.85. The RMSE 

coefficient is mostly within 0.2, but there are also 5 groups of data that exceed 0.2. 

The overall level is good but the level is poor compared to the correlation coefficient 

data. Among them, the RMSE data of the 3 groups in normal speech state is 

significantly higher than that in single syllable vocalization and singing state, which 

may be due to the larger range of normal speech and more influencing factors. The 

above data indicates that the model can accurately simulate the biomechanical 

properties under different vocal states, which has high reliability. 

To understand the robustness and adaptability of the model, this article collected 

electromyographic signal data from different individuals, and selected a representative 

group of participants, including individuals of different genders, ages, and 

occupational backgrounds, to cover a wide range of vocal cord usage. The basic 

information of the participants is shown in Table 3: 
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Table 3. Basic information of participants. 

Participant 

sequence 
Gender Age 

Professional 

background 
Sound type 

Health 

condition 

P1 Male 27 Singer High pitch Healthy 

P2 Female 35 Teacher Middle pitch Healthy 

P3 Male 42 Lawyer Low pitch Healthy 

The experimental data of different individuals are shown in Table 4: 

Table 4. Experimental data from different individuals. 

Participant Phonation modes Correlation coefficient RMSE (Pa) 
Resonance frequency 

error (Hz) 

P1 

Single Syllable 0.8507 0.1277 2.5311 

Speech 0.8021 0.1061 4.0216 

Singing 0.7533 0;1258 6.3349 

P2 

Single Syllable 0.8279 0.1232 3.0527 

Speech 0.7801 0.1547 4.6173 

Singing 0.7325 0.1559 7.1548 

P3 

Single Syllable 0.8882 0.1492 1.5296 

Speech 0.8401 0.1022 3.5355 

Singing 0.8036 0.1339 5.5179 

Overall, from Table 4, the model performs the best in simulating simple vocal 

states (such as monosyllabic sounds), while still maintaining a certain level of 

accuracy when dealing with more complex vocal activities (such as speech and 

singing). 

To evaluate the accuracy of the model, this study compares the simulation results 

with experimental data and calculates the relative error to assess the accuracy of the 

model under different vocal states. The relative error distribution of different vocal 

states is shown in Figure 8. 

 

Figure 8. Distribution of relative error. 
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The results show that the average relative error data between the simulation 

results and experimental data of the model in different vocal states are mostly within 

6%, which is at a good level. Among them, only two groups have an average relative 

error data exceeding 6%, proving that the model has high accuracy overall. 

4.2. Real-time performance of the model 

To evaluate the real-time feedback capability of the model, this article records the 

feedback delay time from signal acquisition to model adjustment in real-time, 

calculates the minimum and maximum feedback delay times, calculates the 

corresponding average feedback delay time and standard deviation, and analyzes the 

feedback delay level and dispersion degree of the simulated data of the model. The 

specific statistical analysis data is shown in Table 5. 

Table 5. Real-time analysis table. 

Vocalization State 
Minimum Feedback Delay 

(ms) 

Maximum Feedback 

Delay (ms) 

Average Feedback 

Delay (ms) 
Standard Deviation  

Single 

Syllable 

Left SCM 45 85 63 9.21 

Right SCM 48 90 66 11.12 

Cricothyroid 42 82 60 8.31 

Speech 

Left SCM 62 126 92 13.20 

Right SCM 65 103 87 12.52 

Cricothyroid 59 95 79 12.02 

Singing 

Left SCM 38 80 58 10.06 

Right SCM 41 83 61 11.40 

Cricothyroid 37 78 55 9.53 

The data in Table 5 shows that the total average feedback delay time of the three 

sets of data in single syllable vocalization state is 63 milliseconds; the total average 

feedback delay time of the three sets of data in normal speech state is 86 milliseconds; 

the total average feedback delay time of the three sets of data in singing state is 58 

milliseconds. The average feedback delay time of the system in all sound states is less 

than 100 milliseconds, which is generally at a good level. In terms of standard 

deviation, the standard deviation data under normal speech state is significantly higher 

than that under single syllable vocalization and singing state, indicating that the 

feedback delay fluctuation is the largest under normal speech state. The feedback delay 

in single syllable vocalization and singing states is relatively stable, which may be due 

to the more variable vibration patterns of the vocal cords in normal speech states 

compared to single syllable vocalization and singing states. The above conclusion 

indicates that the model has good real-time feedback capability. 

5. Conclusions 

This article was based on a three-dimensional finite element analysis method 

using biological signal feedback. By collecting and processing individual EMG in 

real-time as input parameters for the finite element model, the mechanical properties 

of sound production were simulated, and a PID controller was used to dynamically 
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adjust the model. The vocal cord vibration, including vocal cord vibration mode 

analysis, sound pressure distribution analysis, and resonance frequency analysis, was 

simulated and analyzed. By comparing and analyzing simulated data with collected 

data, the results showed that the model had a low error rate. Analyzing the real-time 

feedback capability of the system, the results indicated that the system had high real-

time performance. The above conclusions verified the reliability and practicality of the 

model, providing theoretical and technical support for personalized medical diagnosis 

and treatment. However, this article also has limitations as three-dimensional finite 

element analysis typically requires a significant amount of computational resources to 

solve complex partial differential equations. In real-time applications, fast computing 

speed is essential. In future research, we will consider improving computational 

performance and shortening computation time to promote the high-quality 

development of biological signal feedback. 
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