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Abstract: MicroRNAs (miRNAs) play a crucial role in regulating fundamental biological 

processes such as the cell cycle, differentiation, and apoptosis by directly interacting with 

multiple genes (mRNAs). This regulatory mechanism has a profound impact on cellular 

function and the overall physiological condition of an organism. However, the prediction of 

miRNA-mRNA interactions encounters computational challenges in the field of biology due 

to the diverse sequences and complex data patterns. To overcome these obstacles, this research 

effort introduced DeepmiRNATar, a tool designed to precisely pinpoint miRNA targets, 

offering essential assistance in the realm of disease management. DeepmiRNATar leverages 

the Word2vec-based DeepLncLoc approach for encoding miRNA sequence characteristics and 

utilizes the DNABERT pre-trained model for in-depth semantic comprehension of target 

sequences. Through the integration of TextCNN, BiLSTM, and SpatialConv Attention 

mechanisms, the model scrutinizes structural features, temporal relationships, and overall 

interactions within the sequences. Following a series of experimental assessments, 

DeepmiRNATar attained an impressive AUC of 99.15% on the evaluation dataset, on par with 

the current leading prediction methodologies. Notably, the precision-recall curve, sensitivity, 

and F-measure values reached 99.18%, 97.43%, and 95.47%, respectively. Compared to 

existing miRNA target prediction models, DeepmiRNATar demonstrates a notable 

enhancement in overall predictive accuracy. The successful creation and experimental 

validation of the DeepmiRNATar model signify a significant advancement in miRNA target 

identification technology. 

Keywords: MiRNA-mRNAs prediction; deep learning; TextCNN; BiLSTM; SpatialConv 

attention 

1. Introduction 

MicroRNAs (miRNAs) are a group of non-coding single-stranded RNA 

molecules approximately 22 nucleotides long, found widely in plants and animals [1]. 

Studies suggest that miRNAs may control around one-third of human genes [2], and 

their abnormal levels are directly linked to the onset of various diseases [3], including 

cancer and cardiovascular conditions. For example, miR-21 is excessively expressed 

in multiple cancers, stimulating tumor growth and spread by suppressing tumor 

suppressor gene expression [4]. Similarly, irregular miR-155 expression is associated 

with different inflammatory diseases and specific cancer types [5]. miRNAs typically 

develop complementary binding sequences with targets (mRNAs), acting after 

transcription to inhibit gene expression or mRNA cleavage [6]. Understanding the 

interactions between miRNAs and their targets is crucial for improving the accuracy 

of mRNA vaccine design and the identification of drug targets in drug development 

[7]. 
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Given the importance of miRNAs in cellular regulation, multiple computational 

techniques have been proposed to tackle the miRNA target prediction challenge [6–

10]. Presently, miRNA target identification heavily relies on biological experiments 

and computational predictions. Traditional biological methods for miRNA target 

identification, while highly precise, are expensive and time-intensive. Early software 

simulations like miRanda [6], TargetScan [7], and Probability of Interaction by Target 

Accessibility (PITA) [8], primarily aimed to improve prediction performance by 

enhancing seed sequence matching and target accessibility. However, these methods 

face significant issues with high false positive rates. This problem arises because their 

algorithms rely on fixed seed sequence matching rules, which are inadequate for 

capturing the complex interactions between miRNAs and mRNAs. To boost prediction 

accuracy, machine learning methods were subsequently introduced. These methods 

used manually crafted feature descriptors like those in TargetSpy [9] and mirSVR [10]. 

While these methods offered some improvements, they were limited by their reliance 

on predefined features, which could not fully capture the complexity of miRNA-

mRNA interactions. Manually defined feature descriptors could not entirely capture 

the intricate interactions between miRNAs and target sequences. 

With advancements in technology, deep learning methods have gained 

widespread application in miRNA target prediction [11]. MiRTDL [12] utilizes the 

robust feature extraction capabilities of convolutional neural networks (CNNs) with 

20 features to forecast miRNA targets. While this enhances automatic feature 

evaluation, the outcomes remain limited by these predetermined features. DeepTarget 

[13] employs deep recurrent neural networks (RNNs) to discern interactions from 

miRNA-mRNA sequence data, thereby circumventing the dependence on predefined 

features. However, RNNs might not efficiently capture the spatial features intrinsic to 

miRNA-mRNA interactions. DeepMirTar [14] adopts a strategy involving stacked 

denoising autoencoders to process 750 features, yet it still concentrates on traditional 

feature categories, failing to transcend their inherent constraints. miRAW [15] 

integrates autoencoders with feedforward networks to learn miRNA-mRNA 

interaction features from raw data directly, but feedforward networks struggle with the 

spatial and sequence complexity of this data. Additionally, miTAR [16] is a hybrid 

miRNA target prediction model that comprises six layers, combining convolutional 

neural networks (CNNs) with bidirectional RNNs (BiRNN). However, miTAR 

employs concatenated sequence inputs, which makes it challenging for the model to 

accurately differentiate and capture the specific interaction features between miRNAs 

and targets. TEC-mitar [17] merges CNNs with Transformer encoders to process 

sequence data. By generating a “contact map,” this model adeptly manages the 

variations and products between miRNA and candidate target site sequences (CTS), 

thereby predicting interaction probabilities. However, this model relies on complex 

sequence transformations, which may result in high computational resource 

consumption when handling high-dimensional data. 

The interactions between miRNAs and their targets hinge on a sequence known 

as the seed region within the miRNA molecule, encompassing bases 2–8 at the 5’ end 

of the miRNA [18]. This seed region pairs with a complementary sequence in the 3’ 

Untranslated Region (3’ UTR) of the mRNA (Figure 1), leading to mRNA 

degradation or translational inhibition, thereby controlling gene expression levels. 
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Most predictive models take only the seed region sequence into account. However, 

recent research indicates that many targets involve nucleotides beyond the seed region, 

implying that target prediction algorithms should consider the entire miRNA sequence 

[19,20]. Consequently, this study employs deep learning methods to analyze the entire 

mature miRNA transcript, rather than focusing solely on the seed region. By 

accounting for the entire miRNA sequence, the model can identify key interaction sites 

beyond the seed region, enhancing the accuracy and scope of predictions. This 

approach allows identification of more potential miRNA-mRNA interactions, 

uncovering more complex regulatory mechanisms. 

 

Figure 1. MiRNA biogenesis and functional mechanism. 

This paper introduces a deep learning-based method named DeepmiRNATar, 

designed to enhance miRNA target prediction. It leverages DeeplocLnc and 

DNABERT to process miRNA and target sequences, respectively, and employs Text 

Convolutional Neural Network (TextCNN) and Bidirectional Long Short-Term 

Memory (BiLSTM) to extract local and global sequence features. An advanced multi-

head attention mechanism is utilized for target prediction. Compared to a rule-based 

software simulation method, a machine learning-based approach, and three recently 

developed deep learning models, DeepmiRNATar showed superior performance 

across nearly all evaluation metrics. DeepmiRNATar not only significantly improves 

prediction accuracy but also eliminates the need for cumbersome manual feature 

extraction, highlighting the vast potential of deep learning in tackling complex 

bioinformatics challenges. 

2. Materials and methods 

2.1. Dataset 

The dataset employed in this research has been sourced from DeepMirTar and 

miRAW studies. DeepMirTar offers miRNA-gene interaction data with thorough 

annotations at both the site and gene levels [14]. miRAW provides an extensive 

validated dataset, containing both canonical and non-canonical miRNA-mRNA 
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interaction pairs [15]. Positive pairs in these datasets are derived from reputable 

biological databases such as miRTarBase. For DeepMirTar, negative pairs are created 

by arbitrarily shuffling actual mature miRNA sequences, whereas for miRAW, 

negative pairs are chosen from mRNA 3’ UTR regions that can form stable miRNA 

bindings. The miRNA duplex secondary structure is forecasted using RNACoFold, 

with negative binding energy serving as a criterion for identifying potential negative 

sites. For comprehensive details on the dataset generation process, please refer to 

DeepMirTar [14] and miRAW [15]. 

The DeepMirTar dataset consists of two categorizations of miRNA-mRNA 

information: site-level and gene-level datasets (Figure 2). In the site-level dataset, it 

is assumed that a gene sequence contains multiple candidate target sites (CTSs), which 

are potential miRNA binding sites, some of which are true miRNA targets. Each CTS 

is marked to show whether it is an authentic miRNA target. Conversely, in the gene-

level dataset, CTSs are not individually marked; instead, the entire gene sequence is 

labeled. The site-level dataset is used to assess prediction model accuracy at the CTS 

level, whereas the gene-level dataset evaluates performance at the gene level. Given 

that a single miRNA can interact with multiple sites on the mRNA sequence of a target 

gene, this study opts to use site-level datasets to ensure a thorough identification of all 

potential target sites. This approach offers more detailed information on the target sites, 

preventing the omission of essential miRNA-mRNA interactions. 

 

Figure 2. Definition of dataset for site-level and gene-level targeting. 

Table 1. DeepmiRNATar dataset overview. 

number miRNA name mRNA name miRNA sequence mRNA sequence label 

1 hsa-miR-520d-3p CDH1 AAAGUGCUUC... AGCTCCCCAA... 0 

2 hsa-miR-19a-3p ZNF217 UGUGCAAAUC... TACAGTTGTG... 1 

3 hsa-miR-301b-3p BTBD3 CAGUGCAAUG... AGTAAATGGT... 1 

4 hsa-miR-145-5p SPARC GUCCAGUUUU... AGTAATGACT... 0 

5 hsa-miR-141-3p EDEM1 UAACACUGUC... TTTTCATGTT... 1 
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The miRAW dataset includes validated miRNA-mRNA pairs from Diana 

TarBase [21] and MirTarBase [22], offering a substantial number of positive and 

negative samples. Initially, the datasets from DeepMirTar and miRAW were 

combined, and duplicates were removed. Subsequently, the miRNA sequences from 

the miRAW database were cross-verified with the latest miRBase version, removing 

any unlisted miRNA entries and we ensure that there is no duplication of data between 

the training set and the test sets to ensure the integrity of the evaluation process. 

Following these processes, a final dataset of 55,722 miRNA-mRNA interaction pairs 

was compiled. Table 1 provides a sample of this dataset. 

In addition, this paper obtained 48 positive sample data from the PAR-CLIP 

experiment study by Hafner et al. [23] as an independent dataset, which was used 

during the testing phase to examine the model’s ability to identify and recognize 

positive samples. This independent dataset has been used in the studies by Ding et al. 

[24] and Wang et al. [25]. The PAR-CLIP experiment offers significant advantages in 

microRNA target gene analysis. By introducing photo-crosslinking technology, it 

significantly reduces the occurrence of false-positive predictions and greatly narrows 

the search range for microRNA binding sites. Therefore, PAR-CLIP data can more 

precisely identify the binding sites of AGO2 protein and RNA across the genome. 

2.2. Data processing 

2.2.1. miRNA sequence data processing 

For feature extraction of miRNA sequences, typical methods include one-hot 

encoding and k-mer feature representation. One-hot encoding translates each 

nucleotide into a four-dimensional vector but fails to capture nucleotide relationships, 

leading to sparse data. The k-mer feature accounts for the frequency of k nucleotides 

in the sequence but overlooks positional information.To address these limitations, this 

study uses the DeepLocLnc [26] method for miRNA sequence encoding. 

In Figure 3, for a given miRNA nucleotide sequence 𝑆𝑚𝑖 and a positive integer 

k, 𝑆𝑚𝑖 can be segmented into several miRNA nucleotide subsequences of length k 

using a “sliding window” approach. As k increases, the k-mers can span over more 

short-length repeated sequences, but a larger k value results in fewer k-mers. The 

interconnections between k-mers mean that a reduction in the number of k-mers can 

hinder the extraction of features from nucleotides at different positions. 

 

Figure 3. Schematic diagram of the “sliding window” word segmentation operation. 

To address these issues, this study chooses a k value of 4. This choice is based on 

the k-value settings discussed in references [27,28] and takes into account the length 
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of microRNA sequences. Setting k to 4 allows for the generation of overlapping k-

mers, which captures sufficient sequence information while avoiding the feature 

sparsity issues associated with larger k values. This k-mer selection method effectively 

maintains local detail information in the sequence while capturing long-range 

dependencies, balancing the trade-off between redundant features and information 

sparsity. 

This approach utilizes the gensim library to learn k-mer representation of miRNA 

sequences, using the word2vec algorithm to generate vector representations for each 

k-mer. The sequence is divided into k-mers using a sliding window, and pre-trained 

vectors are assigned to them. An average pooling layer extracts features, and 

subsequence vectors are merged to create a concise sequence representation, which 

serves as input for the deep learning model. This method avoids the sparsity of one-

hot encoding and preserves contextual information via word2vec. In this study, k is set 

to 4, and the miRNA sequence feature representation dimension is set to 34. 

2.2.2. Target sequence data processing 

This study employs the DNABERT model for encoding target sequences, which 

is proficient in directly visualizing nucleotide-level significance and semantic 

relationships within sequences [29]. The diversity of regulatory codes is pivotal to 

gene expression regulation, varying by cell type and organism. DNABERT aims to 

explore this diversity comprehensively, capturing the semantic information of 

sequences using a self-attention mechanism. 

The BERT model comprises a stack of multi-layer Transformer encoders. The 

architecture used is identical to the original BERT, encompassing 12 Transformer 

encoding layers, each with 768 hidden units and 12 attention heads. DNABERT 

processes sequences represented as k-mer tokens. By embedding each token into 

numerical vectors, sequences are represented as a matrix E. DNABERT captures 

contextual information by employing multi-head self-attention on E: 

ℎ𝑒𝑎𝑑𝑖 = softmax [
𝐸𝑊𝑖

𝑄(𝐸𝑊𝑖
𝐾)𝑇

√𝑑𝑘

] 𝐸𝑊𝑖
𝑉 (1) 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝐸) = Concat(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 (2) 

𝑊𝑂 and 𝑊𝑖
𝑄,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉 , {𝑊𝑖

𝑄 ,𝑊𝑖
𝐾 ,𝑊𝑖

𝑉}
𝑖=0

𝑏
 are the learned parameters for linear 

projections, and ℎ𝑒𝑎𝑑𝑖 represents the output of a single attention head. Attention on 

each subspace calculates the similarity between two k-mers using scaled dot-product 

attention. The similarity coefficients are then employed to linearly combine 

corresponding word vectors, resulting in the output. Feature matrices from multiple 

subspaces are concatenated for a comprehensive feature representation. 

During the pre-training phase, the objective task utilizes the traditional Masked 

Language Model (MLM). Given the specificity of gene sequences, if only a single k-

mer fragment is masked, it can be readily inferred from adjacent k-mer fragments. This 

simplifies the pre-training task, hindering deep semantic relationship learning. 

Consequently, unlike the original MLM, consecutive k words (k-mer fragments) are 

masked during pre-training, conducted in a self-supervised manner without manual 

labels, facilitating the extraction of implicit general knowledge from unlabeled data. 
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In this study, k is set to 4, and the target sequence feature representation dimension is 

set to 96. 

2.3. The architecture of DeepmiRNATar 

The DeepmiRNATar model is based on an encoder-decoder framework, 

leveraging advanced deep learning methodologies to model and analyze the intricate 

interactions between miRNA and target sequences. Initially, miRNA and target 

sequences are regarded as natural language texts, and feature information is extracted 

from both using the DeepLncLoc technique and the DNABERT pre-trained model. 

The extracted feature representations are then input into the encoder, where they 

undergo interactions and weight calculations through the attention mechanism. These 

features are further processed by a multi-layer feedforward network and layer 

normalization in the decoder. Finally, the Softmax function is employed to predict the 

interaction probability between miRNA and their targets. The architecture of the 

DeepmiRNATar model is depicted in Figure 4. 

 

Figure 4. DeepmiRNATar model architecture diagram. 

Within the encoder phase, TextCNN is employed to extract local features from 

sequences through one-dimensional convolutional kernels, effectively encoding 

information in miRNA and gene sequences. Subsequently, the BiLSTM layer 

processes these sequences in parallel to capture long-term dependencies, ensuring 

comprehensive consideration of the contextual information. This tandem architecture 
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leverages convolutional neural networks’ feature extraction capabilities while utilizing 

BiLSTM to capture positional and directional information in the sequences. 

The decoder consists of four modules, each comprising a multi-head self-

attention layer, augmented by a convolution operation and a feedforward network 

layer. The application of layer normalization and residual connections markedly 

enhances the model’s ability to handle gradient instability and maintain stability 

during training. This architectural design improves the model’s accuracy in identifying 

complex biological sequence patterns and accelerates convergence. 

The DeepmiRNATar algorithm is elaborated as follows: 

Algorithm 1 Pseudo-code of DeepmiRNATar 

1: Input: N miRNA-mRNA pairs (𝑆𝑚𝑖
1 , 𝑆𝑚

1 ), … , (𝑆𝑚𝑖
𝑁 , 𝑆𝑚

𝑁) and labels (𝑙1, … , 𝑙𝑚)，where in the ith pair comprises one miRNA 

sequence 𝑆𝑚𝑖
𝑖 , one mRNA sequence 𝑆𝑚

𝑖 , and the corresponding labels 𝑙𝑖. 

2: Output: y_pred 

3: 1: For each miRNA and mRNA pair, this study uses the pre-trained DeepLocLnc model to extract miRNA features and the 

DNABERT model to extract mRNA features, resulting in the encoding matrices 𝑿_𝒎𝒊 and 𝑿_𝒎 (where 𝐿𝑚𝑖  and 𝐿𝑚 

represent the lengths of the miRNA and mRNA sequences, and k represents the k-mer size, i.e., the number of bases in 

each segment).                           [𝑥𝑚𝑖
1 ; … ; 𝑥𝑚𝑖

𝐿𝑚𝑖−𝑘+1
] and [𝑥𝑚

1 ; … ; 𝑥𝑚
𝐿𝑚−𝑘+1

] 

4: 2: Input 𝑿_𝒎𝒊 and 𝑿_𝒎 into TextCNN and BiLSTM to obtain the encoded feature matrix 𝑯_𝒎𝒊 and 𝑯_𝒎 , respectively.             

[ℎ𝑚𝑖
1 ; … ; ℎ𝑚𝑖

𝐿𝑚𝑖−𝑘+1
] 𝑎𝑛𝑑 [ℎ𝑚

1 ; … ; ℎ𝑚
𝐿𝑚−𝑘+1

] 

5: 3: Input 𝑯_𝒎𝒊 and 𝑯_𝒎 into the fusion convolutional multi-head attention and feedforward neural network to generate a 

comprehensive feature representation that captures the potential interactions between miRNAs and their mRNApairs.            

[𝑂𝑑𝑒𝑐
1 ; … ; 𝑂𝑑𝑒𝑐

𝐿max _𝑚𝑖−𝑘+1
] 

6: 4: Obtain the final predicted probability 𝑦𝑝𝑟𝑒𝑑 through the softmax function.        𝑦𝑝𝑟𝑒𝑑  

7: 5: During training, the cross-entropy loss function is used to minimize the difference between the model predictions and the 

true interaction labels. The loss function is defined as 𝐿𝑜𝑠𝑠 = −(𝑦 × log(𝑦𝑝𝑟𝑒𝑑) + (1 − 𝑦) × log (1 − 𝑦𝑝𝑟𝑒𝑑))， where y 

is the true label and 𝑦𝑝𝑟𝑒𝑑  is the model’s predicted output. 

8: 6: Optimize the model parameters through multiple iterations (i.e., training epochs) until the loss function converges or 

reaches the preset maximum number of iterations. 

The model utilizes convolutional layers to extract key local features and 

integrates BiLSTM to capture the bidirectional dependencies within sequence data. 

Additionally, a self-attention mechanism is implemented to thoroughly analyze global 

interaction patterns across the entire sequence, incorporating spatial convolution 

techniques to account for the spatial properties and secondary structure. This 

multidimensional deep learning strategy significantly enhances the understanding of 

sequence structure and spatial characteristics, thereby improving the accuracy of 

miRNA-mRNA interaction predictions. 

2.3.1. Encoder 

The first sub-layer of the encoder adopts an improved TextCNN architecture 

(Figure 5). Traditionally, the classic TextCNN structure includes one-dimensional 

convolutional layers and max-pooling layers to effectively capture key sequence 

features [30]. However, to better retain information from miRNA and target sequences, 

the max-pooling layers are omitted from the TextCNN design. Various scales of 

convolutional kernels sample miRNA and target sequences through a sliding window, 
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obtaining local features of different ranges to capture semantic information at multiple 

levels within the sequences. 

 

Figure 5. The structure diagram of TextCNN network. 

The convolutional layer is fundamental to TextCNN. In experiments, three 

convolutional kernel sizes—1, 3, and 5—were chosen to extract diverse text features. 

When the kernel size is 1, it can capture fine-grained local features; with kernel sizes 

of 3 and 5, it can capture broader contextual information, thereby enhancing the 

diversity of feature representation. Padding is applied using the formula 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =

𝑘_𝑠𝑖𝑧𝑒//2  to maintain the same output length post-convolution for subsequent 

operations. The convolutional layer computation formula is as follows:  

𝑐𝑖 = 𝑓(𝜔𝑖 × 𝑎𝑖:𝑖+𝑘_𝑠𝑖𝑧𝑒−1 + 𝑏𝑖) (3) 

Here, 𝑓 denotes a nonlinear function, typically ReLU. 𝜔𝑖 represents the weights 

corresponding to the 𝑖-th node of the output matrix. 𝑎𝑖:𝑖+𝑘_𝑠𝑖𝑧𝑒−1 is the subsequence 

of the input miRNA and target sequences, with a length equal to 𝑘_𝑠𝑖𝑧𝑒, corresponding 

to the receptive field of the convolutional kernel. 𝑏𝑖 is the corresponding bias, and 𝑐𝑖 

is the result after convolution. The feature vectors of the miRNA sequence 𝑆𝑚𝑖 and 

the target sequence 𝑆𝑚 processed by TextCNN can be formally described as follows: 

𝐶𝑚𝑖 = 𝑇(𝑆𝑚𝑖) = 𝑇𝑒𝑥𝑡𝐶𝑁𝑁(𝑥𝑚𝑖) (4) 

𝐶𝑚 = 𝑇(𝑆𝑚) = 𝑇𝑒𝑥𝑡𝐶𝑁𝑁(𝑥𝑚) (5) 

Here, 𝐶𝑚𝑖, 𝐶𝑚 ∈ ℝ𝑑𝑡  represent the output feature vectors of 𝑆𝑚𝑖  and 𝑆𝑚 

respectively, where 𝑑𝑡 is the dimension of the feature vector. T denotes the improved 

TextCNN model. 𝑥𝑚𝑖 is the output of the miRNA sequence 𝑆𝑚𝑖 after being processed 

by the DeepLncLoc model, and 𝑥𝑚 is the output of the target sequence 𝑆𝑚 after being 

processed by the DNABERT model. 

The second sub-layer of the encoder in the DeepmiRNATar model employs a 

BiLSTM. BiLSTM, which enhances the original LSTM by considering both forward 

and backward inputs simultaneously, is crucial for capturing contextual relationships 

in sequence data. Thus, DeepmiRNATar utilizes BiLSTM to capture deep sequential 

features, thereby improving expressiveness. The feature vectors of the miRNA 
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sequence S_mi and the target sequence S_m processed by BiLSTM can be formally 

described as: 

ℎ𝑚𝑖 = 𝐿(𝑆𝑚𝑖) = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑐𝑚𝑖)⨁𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑐𝑚𝑖) (6) 

ℎ𝑚 = 𝐿(𝑆𝑚) = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑐𝑚)⨁𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑐𝑚) (7) 

Here, ℎ𝑚𝑖, ℎ𝑚 ∈ ℝ𝑑𝑙  represent the output feature vectors of 𝑆𝑚𝑖  and 𝑆𝑚 , 

respectively, where 𝑑𝑙 is the dimension of the feature vector. L denotes the BiLSTM 

model. 𝐶𝑚𝑖 and 𝐶𝑚 are the feature vectors of the miRNA sequence 𝑆𝑚𝑖 and the target 

sequence 𝑆𝑚 after being processed by TextCNN. 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(∙) and 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (∙) capture the 

latent interactions in the context in the forward and backward directions, respectively. 

The symbol ⨁  denotes the concatenation of the outputs from the forward and 

backward LSTM units. 

2.3.2. Decoder 

When miRNA binds to its target, a double-stranded structure indicating the 

spatial properties of miRNA-mRNA interactions forms (Figure 6). CNNs are 

designed to capture spatial features. To effectively discern complex miRNA and target 

sequence relationships, the decoder was enhanced by integrating convolution 

operations into the standard multi-head attention layer, naming this innovative module 

SpatialConv Attention (Figure 7). 

 

Figure 6. Secondary structure diagram of miRNA and target binding. 

In the DeepmiRNATar model, SpatialConv Attention is a core sub-layer of the 

decoder. This design merges the multi-head attention mechanism with convolution 

operations to enhance feature capture capabilities, allowing the model to focus on 

multiple key areas of the encoder output [31]. Through an additive fusion operation, 

multi-head attention results are combined with convolution output. This fusion retains 

fine-grained information from multi-head attention while integrating spatial feature 

recognition from convolution. 
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Figure 7. The structural diagram of the SpatialConv attention network. 

This design ensures the model balances multi-head attention and convolution 

contributions, enhancing representation of complex miRNA-target interactions. A 

learnable scaling parameter β adjustably weights the contributions of multi-head 

attention and convolution, enabling the model to optimally extract key features from 

miRNA and target sequences. 

𝐹𝑜𝑢𝑡 = 𝐹𝑎𝑡𝑡 + 𝛽𝐹𝑐𝑜𝑛𝑣 (8) 

The decoder’s second sub-layer is a feedforward neural network layer. This layer, 

consisting of two fully connected layers and utilizing the ReLU function as the 

nonlinear activation function, is depicted in Equation (9). The output from the 

SpatialConv Attention operation is further refined by the feedforward neural network 

layer. This process amplifies the model’s capacity to spatially represent miRNA 

sequences and their target sequences through increased nonlinear processing. 

𝐹𝐹𝑁 = Max(0, 𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2 (9) 

Here, 𝑋  represents the output matrix after SpatialConv Attention, 𝑊1  and 𝑊2 

represent the weight matrices, and 𝑏1 and 𝑏2 represent the biases of the network. 

As the network depth increases, significant changes in the internal data 

distribution may occur, sometimes resulting in gradient vanishing or explosion, which 

can compromise training stability. To address these challenges, the model incorporates 

two residual connections and two layer normalization (LN) steps to enhance training 

stability. Residual connections combine the input and output of a sub-layer via 

addition, helping to prevent gradient issues in deep networks. Layer normalization 

standardizes the sub-layer output distribution, hastening the model’s convergence. 
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These operations for residual connections and layer normalization are detailed in 

Equation (10): 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑁(𝑋 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟(𝑋)) (10) 

Here, 𝑋 represents the input to each sub-layer, and 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟(𝑋) represents the 

output of the sub-layer itself. The calculation method for LN is described by Equation 

(11): 

𝑓(𝑥) = α
𝑥 − 𝜇

𝜎 + 𝜀
+ 𝛽 (11) 

where 𝜇 and 𝜎 are the mean and standard deviation of 𝑋, respectively, 𝜀 is a small 

constant added for numerical stability, and 𝛼 and 𝛽 are learnable parameters that scale 

and shift the normalized output. This normalization helps stabilize the training process 

by maintaining consistent distributions of the sub-layer outputs. 

2.4. Performance evaluation 

To comprehensively assess the classification model’s performance, multiple 

metrics were employed, covering various aspects of model efficacy. This study 

evaluates DeepmiRNATar’s performance on the test set from four perspectives: Area 

Under the Curve (AUC), Precision-Recall Curve (PRC), sensitivity, and F-measure. 

2.4.1. AUC 

As the area under the ROC curve, AUC gauges the model’s capability to 

distinguish between positive and negative samples across various classification 

thresholds. It is a threshold-independent metric. The horizontal axis denotes the false 

positive rate (FPR), while the vertical axis denotes the true positive rate (TPR). The 

FPR and TPR are calculated using Equations (12) and (13): 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (13) 

In this study, true positive (TP) denotes instances where the model correctly 

predicts an interaction between miRNA and the target (predicted as 1, actually 1). True 

negative (TN) denotes instances where the model accurately predicts no interaction 

(predicted as 0, actually 0). False positive (FP) represents instances where the model 

erroneously predicts an interaction (predicted as 1, actually 0). False negative (FN) 

represents instances where the model falsely predicts no interaction (predicted as 0, 

actually 1). 

2.4.2. PRC 

This reflects the relationship between Precision and Recall, particularly suitable 

for datasets with highly imbalanced positive and negative samples. Recall is calculated 

as shown in Equation (12), while Precision is calculated as shown in Equation (14): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14) 
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2.4.3. Sensitivity 

In predicting miRNA-mRNA interactions, high sensitivity indicates the model’s 

efficacy in correctly identifying true interactions, crucial for avoiding the omission of 

potentially significant biological signals. The sensitivity calculation method is shown 

in Equation (15): 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

2.4.4. F-measure 

F-measure, the harmonic mean of Precision and Recall, offers a balanced metric 

between precision and recall. The F-measure calculation method is shown in Equation 

(16): 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (16) 

Through these metrics, the model’s comprehensive performance can be 

thoroughly evaluated, encompassing its ability to identify true targets and manage 

sample imbalance, thereby ensuring its reliability and accuracy in practical 

applications. 

3. Result 

3.1. Performance evaluation and comparison of DeepmiRNATar 

The DeepmiRNATar model leverages an encoder-decoder architecture with 

enhancements over the conventional Transformer framework. It integrates TextCNN 

and BiLSTM techniques within the encoder, while the decoder employs a combination 

of multi-head self-attention layers and convolution. A series of ablation experiments 

were conducted to assess the significance of each module, using a dataset split into 60% 

for training, 20% for testing, and 20% for validation. 

The DeepmiRNATar-sca variant replaces the standard multi-head attention 

mechanism with SpatialConv Attention. This variant is designed to evaluate the 

impact of SpatialConv Attention on model performance and compare it with the 

traditional multi-head attention mechanism to clarify its role within the model. The 

DeepmiRNATar-textcnn variant excludes the TextCNN module while retaining other 

components. This variant helps in exploring the specific contribution of the TextCNN 

module to model performance and assessing its importance within the overall 

architecture. The DeepmiRNATar-bilstm variant removes the BiLSTM module, 

keeping other components intact. This variant aids in understanding the role of 

BiLSTM in the model and its impact on performance. Additionally, the basic 

Transformer model employs standard Transformer methods. The DeepmiRNATar 

model, which integrates TextCNN, BiLSTM, and SpatialConv Attention, is compared 

with the above-mentioned individual variants to evaluate the effect of combining these 

modules. 

Figure 8A Plot showing the trend of decreasing loss on the validation set as 

epoch increases for different models. Changes in loss across different models (Figure 
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8B). The results of AUC, PRC, sensitivity, and F-measure for different models 

demonstrate the effectiveness of each component in the DeepmiRNATar model. 

Figure 8A depicts the loss reduction trend during training for various models, 

showing that DeepmiRNATar converges more rapidly than the original Transformer, 

thereby enhancing learning efficiency. Post 100 epochs, the loss variance stabilizes, 

indicating model performance stabilization with no overfitting. Figure 8B illustrates 

the comprehensive performance of DeepmiRNATar across several metrics, surpassing 

the baseline Transformer in all areas, most notably in AUC and F-measure scores, 

underscoring its superiority in predicting miRNA-target interactions. 

  

(A) (B) 

Figure 8. (A) Plot showing the trend of decreasing loss on the validation set as 

epoch increases for different models.Changes in loss across different models; (B) the 

results of AUC, PRC, sensitivity, and F-measure for different models demonstrate 

the effectiveness of each component in the DeepmiRNATar model. 

3.2. Hyperparameter tunning 

To obtain the optimal model parameters, we conducted a series of controlled 

variable experiments. The analysis primarily focused on batch sizes and dropout. The 

basic parameter settings of the model are shown in Table 2. 

Table 2. DeepmiRNATar model parameter settings. 

parameters value 

TextCNN convolutional kernel size [1,3,5] 

Number of decoder layers 4 

Number of heads in multi-head attention 8 

Dimension of the hidden layer 64 

Batch size 32 

Dropout 0.1 

Learning rate 1e−4 

epoch 100 
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3.2.1. The impact of batch size on the model 

Batch size refers to the count of miRNA-mRNA pairs engaged simultaneously in 

each training iteration. Excessively large batch sizes require substantial GPU memory 

and can diminish the model’s generalization capabilities. Conversely, too small a batch 

size prolongs training duration and can cause gradient oscillations, impeding model 

convergence. Therefore, selecting an appropriate batch size is crucial for model 

training [32]. In our experiments, we tested batch sizes of 16, 32, and 64. 

As illustrated in Figure 9, the model’s performance was evaluated against key 

metrics for batch sizes of 16, 32, and 64. The scores and their error bars clearly 

demonstrate model efficiency. While all batch sizes presented high and similar scores 

in AUC and PRC, a batch size of 32 provided an optimal balance in F-measure scores. 

The F-measure, the harmonic mean of precision and recall, which is crucial for 

assessing classification performance, is particularly vital for our model’s performance 

as it accounts for both false positives and false negatives. Moreover, although the 

sensitivity score for a batch size of 32 was marginally lower than that for 64, 

considering resource expenditure and computational efficiency, a smaller batch size 

proves more practical. Therefore, considering both performance evaluation and 

resource efficiency, a batch size of 32 is a judicious choice. 

 

Figure 9. The impact of different batch sizes on model performance. 

3.2.2. Choice of dropout 

Overfitting is a significant challenge in deep learning methods. Dropout is a 

technique to avert overfitting by randomly omitting some neurons from the network 

with certain probabilities. In this study, we experimented with various dropout rates 

(0.1, 0.2, and 0.3). The experimental results are presented in Figure 10. 

Regarding AUC and PRC metrics, the model performance was consistent across 

different dropout rates. However, in terms of F-measure and sensitivity metrics, the 

model with a dropout rate of 0.1 exhibited superior scores. Although a higher dropout 

rate can help mitigate overfitting, within the context of the current dataset and model 

architecture, a dropout rate of 0.1 offers adequate regularization while preserving 

model performance. 
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Figure 10. The impact of different dropouts on model performance. 

Utilizing the optimal parameters identified, experiments with 100 iterations of 

training were conducted. 

Figure 11A presents the ROC curve of the DeepmiRNATar model, revealing that 

DeepmiRNATar demonstrates excellent classification ability on the test set with an 

AUC value of 0.9915. 

Figure 11B shows the Precision-Recall (PR) curve of the DeepmiRNATar model, 

depicting a significant balance between precision and recall. The PRC value of 0.9918 

confirms the model’s high reliability in positive class predictions, indicating that the 

model accurately identifies true miRNA targets with minimal false negative rates. 

 

Figure 11. (A) ROC curve for the test dataset; (B) PRC curve for the test dataset. 

3.3. The impact of RNN variants on the performance of DeepmiRNATar 

To assess the effectiveness of BiLSTM in the feature extraction process, this 

research compared two variants of recurrent neural networks (RNNs): Bidirectional 

Long Short-Term Memory (BiLSTM) and Bidirectional Gated Recurrent Unit 

(BiGRU). The performance of these two methods was evaluated while keeping other 

modules of DeepmiRNATar constant. The study conducted a quantitative analysis of 

the performance of these two methods, focusing on key metrics such as AUC, PRC, 
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sensitivity, and F-measure to gain a comprehensive understanding of their 

performance in feature extraction and pattern recognition tasks. 

As illustrated in Figure 12, the DeepmiRNATar model employing BiLSTM 

delivers more consistent and efficient results across the testing metrics. This finding 

underscores the potency of BiLSTM in capturing long-term dependencies in miRNA 

and target sequences. The superior performance of BiLSTM further validates the 

potential of deep learning methodologies in accurately predicting miRNA-mRNA 

interactions. 

 

Figure 12. Performance comparison of RNN variants in the miRNA target 

prediction. 

3.4. Comparison with existing methods 

In the experiments, 20% of the dataset was allocated as the test set. The 

performance of the DeepmiRNATar model was compared with the rule-based 

software simulation approach PITA [8], the machine learning-based method mirSVR 

[10], and deep learning-based models miRAW [15], miTAR [16] and TEC-mitar [17]. 

As shown in Table 3, DeepmiRNATar outperformed the other models in nearly all 

evaluation metrics, further validating its capability in predicting miRNA targets. 

Table 3. Comparison results of DeepmiRNATar with existing methods in the field. 

DataSet Test Dataset Independent set 

Methods AUC PRC sensitivity F-measure ACC specificity TPR 

PITA 0.4145 0.5957 0.606 0.744 0.597 0.316 23/48 

miSVR 0.0723 0.2517 0.26 0.41 0.275 0.723 17/48 

miRAW(6-1:10) 0.7064 0.7825 0.795 0.88 0.79 0.619 24/48 

miTAR 0.9481 0.9479 0.9274 0.9398 0.9394 0.9276 36/48 

TEC-miTarget 0.977 0.965 0.9388 0.9369 0.9353 0.9317 39/48 

DeepmiRNATar 0.9915 0.9918 0.9743 0.9547 0.9527 0.9358 41/48 

Figure 13 illustrates the performance of DeepmiRNATar and other methods in a 

radar chart, which provides an intuitive reflection of the models’ performance across 

six key metrics: AUC, PRC, sensitivity, specificity, accuracy (ACC), and F-measure. 

The comprehensive performance of DeepmiRNATar on these metrics highlights its 
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practicality and efficiency in predicting miRNA-mRNA interactions, especially 

regarding AUC and F-measure. This comparison exhibits the strengths and limitations 

of DeepmiRNATar across multiple dimensions, laying the groundwork for future 

model enhancements and selection. 

 

Figure 13. Performance comparison of DeepmiRNATar with existing methods in 

the field. 

For the PAR-CLIP independent dataset, the model in this study was able to 

correctly predict 85% of the data, with an accuracy higher than other models included 

in the comparative experiments. Since the positive sample data in the PAR-CLIP 

independent dataset has already been verified through biological experiments, this also 

demonstrates the model’s ability to identify and recognize microRNA target genes. 

3.5. Case study 

To further evaluate the generalization capability of the DeepmiRNATar model, a 

case study was conducted on eight disease-related genes. Among them, GNG7 is a 

tumor suppressor gene linked to esophageal cancer, gastric cancer, pancreatic cancer, 

and other diseases [33]. The DNMT1 gene is associated with various diseases, 

including hereditary sensory neuropathy type Ie and autosomal dominant cerebellar 

ataxia, deafness, and narcolepsy [34]. The KLF12 gene encodes a transcription 

repressor and is tied to tumor metastasis and resistance to cancer treatment [35]. 

First, the model was trained using all known association data from the 

experimental dataset, and then predictions were made on unknown associations. The 

prediction results are presented in Figure 14, where blue squares indicate that the 

miRNA regulates the gene, and yellow squares indicate no relationship. All ten 

predicted interaction pairs were correct, demonstrating the effectiveness of the 

DeepmiRNATar model in predicting miRNA-mRNA relationships. 
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Figure 14. Probability heatmap of 8 miRNAs and their disease-related targets. 

4. Dicussion 

By integrating various deep learning techniques, this paper presents an innovative 

miRNA-mRNA interactions prediction model named DeepmiRNATar. Compared to 

existing methods, DeepmiRNATar shows superior performance on multiple metrics, 

such as AUC and AUPRC. DeepmiRNATar uniquely combines TextCNN, BiLSTM, 

and SpatialConv Attention technologies, enabling the model to more accurately 

capture the complex interactions between miRNAs and targets. 

By integrating TextCNN for local feature extraction and BiLSTM for global 

sequence dependency analysis, the DeepmiRNATar model optimizes sequence data 

processing. This combined strategy allows the model to detect subtle interaction 

differences between miRNAs and their targets, which traditional miRNA-mRNA 

prediction models often overlook. Furthermore, the SpatialConv Attention design in 

DeepmiRNATar enhances the understanding of spatial features within sequences. This 

design preserves the fine-grained advantages of the multi-head attention mechanism, 

thereby providing a more comprehensive understanding of the interaction mechanisms 

between miRNA and their targets. 

The development of the DeepmiRNATar model offers a robust method for 

predicting miRNA target interactions, showcasing the tremendous potential of deep 

learning technologies in the field of bioinformatics. With ongoing technological 

improvements and algorithmic innovations, it is expected to play an increasingly 

significant role in disease mechanism research and clinical applications in the future. 

The success of this research not only deepens our understanding of the complex 

regulatory mechanisms between miRNAs and their target genes but also has 

significant practical applications. For example, in precision medicine, the 

DeepmiRNATar model can help identify new biomarkers, thereby enhancing the 
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accuracy of disease diagnosis and treatment. In drug development, the 

DeepmiRNATar model can accelerate the screening and validation of new drug targets, 

reducing the research and development cycle and costs. Additionally, this model is 

also crucial in formulating personalized treatment plans, allowing more effective 

therapeutic strategies based on specific miRNA expression profiles of patients. In 

summary, the success of the DeepmiRNATar model is a strong validation of the 

application of deep learning technologies and provides new tools and perspectives for 

future research in the biomedical field. 

Despite the excellent performance of DeepmiRNATar in predicting miRNA-

mRNA interactions, the model does have some limitations. The datasets we used are 

derived from the studies by miRAW and DeepmiRTar. miRAW primarily utilizes 

human miRNA-mRNA interaction data, while DeepmiRTar encompasses interaction 

data from multiple species[14,6]. Although the dataset from DeepmiRTar has cross-

species characteristics[36], our model training and validation have mainly focused on 

the species represented in the dataset, and were not specifically designed or tested for 

cross-species prediction. Therefore, the model’s cross-species prediction capability 

has not been specifically validated. Differences in miRNA and mRNA sequences 

between species and the coverage of the dataset make cross-species prediction 

complex. We plan to consider and validate the model’s predictive performance on 

unseen species in future work. 

Additionally, the current model primarily targets interactions between miRNAs 

and mRNAs. Although the model theoretically could be extended to predict 

interactions between miRNAs and other types of non-coding RNAs (such as lncRNAs 

and circRNAs), this would require further expansion of the dataset and optimization 

of the model to capture these complex interactions. Thus, we plan to consider these 

extensions in future research to enhance the model’s applicability in predicting non-

coding RNAs. 
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