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Abstract: An intelligent physical fitness testing system leverages advanced technologies to 

monitor and evaluate individuals’ fitness levels accurately. It integrates real-time data 

acquisition, and analysis, to support personalized physical training and health management. 

This study aims to evaluate the practical application and effectiveness of an intelligent system 

for real-time physical fitness testing in the context of physical training. Our suggested model 

employs portable sensing devices and we proposed a novel Northern Goshawk optimization-

driven Gate Customized Long Short-Term Memory (NG-GC-LSTM) for enhancing accuracy 

in evaluating the individuals’ physical fitness levels. Data acquisition involves gathering bio-

sensing data from 25 individuals during diverse physical training activities. The Min-Max 

Scaling algorithm is utilized to pre-process the obtained sensor data. We employed a Short-

Time Fourier Transform (STFT) for extracting crucial features from the processed data. In our 

proposed framework, the NG optimization algorithm iteratively fine-tunes the GC-LSTM 

architecture for the accurate evaluation of an established intelligent physical fitness testing 

system. The recommended model is executed in Python software. During the result analysis 

phase, we assess the efficacy of our model’s performance across a variety of parameters. 

Additionally, we conduct comparative analyses with existing methodologies. The obtained 

outcomes demonstrate the efficacy and superiority of the suggested framework. 

Keywords: intelligent physical fitness testing system; real-time application and effectiveness 

assessment; northern goshawk optimization-driven gate customized long short-term memory 

(NG-GC-LSTM) 

1. Introduction 

Physical exercise is critical for preserving and improving overall health, wellness, 

and efficiency [1]. It includes a range of exercises and activities aimed at increasing 

endurance, flexibility, power, and coordination. Physical fitness, as measured by 

morphological structure, psychological characteristics, physiological functions, 

physical fitness, and capacity to exercise, is a comprehensive and generally constant 

quality of the human body that is obtained from innate genetics and acquired during 

the developing procedure. It refers to the body’s ability to function optimally at work 

and play, maintain good health, withstand hypokinetic disease, and respond to 

emergencies. Attaining and sustaining a high level of physical fitness needs frequent 

physical activity and a well-rounded workout routine [2]. 

Obesity is responsible for two-thirds of all fatal noncommunicable diseases 

worldwide [3]. Exercise on a regular basis can assist people lose weight and improve 

their overall well-being. School children are especially encouraged to seek exercise 

since it is an important objective for a life of wellness [4]. But physical education 

lessons in schools sometimes fall short of properly imparting required fitness 

information. An excellent fitness training program may expose students to fitness 
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activities, while designing a tailored aerobics routine that includes variables such as 

Body Mass Index (BMI), Basal Metabolic Rate (BMR), welfare issues, fitness levels, 

health issues, and calorie burning is difficult [5]. 

The incorporation of advanced physical fitness testing technologies into physical 

education has transformed the measurement and assessment of fitness intensity. These 

sophisticated systems use cutting-edge technology, containing sensors, data analysis, 

and machine learning (ML) techniques, to provide accurate, real-time feedback on a 

variety of fitness indicators. Intelligent fitness monitoring systems may give 

individualized insights and recommendations by continually monitoring crucial 

cryptograms, immediate models, and performance data. This enhances the efficacy of 

training regimens. 

The purpose of this study is to evaluate the practical use and efficacy of an 

intelligent physical fitness assessment system in real-time physical training settings. 

Previous research in the topic has shown substantial advances in monitoring and 

measuring physical fitness; yet, it also has certain limits. Numerous existing systems 

lack the incorporation of modern optimization algorithms, resulting in less accurate 

evaluations and longer response times [6]. Furthermore, these systems frequently do 

not give individualized training suggestions using real-time data, which limits their 

practical value in varied physical training contexts. 

To overcome these constraints, the proposed study presents the Northern 

Goshawk optimization-driven Gate Customized Long Short-Term Memory (NG-GC-

LSTM) model. This approach is intended to improve the accuracy and effectiveness 

of fitness evaluations by combining portable sensing devices for real-time data 

gathering with powerful machine learning algorithms for data analytics. The NG-GC-

LSTM model uses the Northern Goshawk optimization technique to fine-tune the GC-

LSTM architecture, assuring optimum efficiency in assessing physical fitness levels. 

The NG-GC-LSTM model not only enhances the precision of fitness tests, but it 

also provides real-time suggestions and individualized training suggestions, creating 

it a valuable tool for a wide range of applications, containing professional sports, 

rehabilitation, and overall health monitoring. This research will describe the technique 

utilized to create and apply the model, provide the outcomes of its use, and analyse its 

possible influence on physical fitness monitoring and training programs. 

The contributions of this paper are as follows: 

 The introduction of the NG-GC-LSTM model, which uses the Northern Goshawk 

optimization method to improve the accuracy and effectiveness of physical 

fitness evaluations. 

 Demonstration of the model’s applicability utilizing real-time data acquired from 

portable sensing devices during different physical training sessions. 

 Comparison of the NG-GC-LSTM model’s effectiveness against previous 

models, emphasizing advances in accuracy, precision, and real-time feedback 

abilities. 

The study is structured as follows: Section 2 examines similar works, focusing 

on existing approaches and their constraints. Section 3 describes the methodology 

employed in this study, including the design and execution of the NG-GC-LSTM 

model. Section 4 contains the model’s application results and inferences, as well as a 

full discussion of their implications. Section 5 concludes the paper by summarizing 
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major findings and making recommendations for further research. This organized 

approach guarantees a thorough knowledge of the NG-GC-LSTM model’s abilities 

and its ability to transform physical fitness evaluation and training. 

2. Related works 

Qualitative analysis [7] and a combination of the novel were used to develop a 

new hypothetical construction for evaluating and considering physical education 

parameters. There were four main concepts identified as follows adding a new, 

quantifiable element, elucidating measurements of training effects, incorporating sport 

performance outcomes, and strengthening connections between contextual and 

individual elements. The recognition of everyday actions using accelerometers 

included in smartphones was investigated in [8]. Twenty-five volunteers who were 

engaged in five different daily activities provided accelerometer data to the 

researchers. They used pre-processing methods, trained nine machine learning (ML) 

models, and retrieved fifteen statistical characteristics. The AdaBoost classifier fared 

better than any other model. 

A group of human Digital Twins (DTs) [9] recorded behaviour metrics related to 

an athlete’s level of fitness for the study. When training, the DTs forecast performance 

and offer suggestions for changes when less-than-ideal outcomes arise. SmartFit is a 

software framework that helps coaches and trainers keep an eye on and manage 

athletes’ fitness activities. The athlete’s team was connected to it. SmartFit continually 

captured measurements through the use of Internet of Things (IoT) sensors in wearable 

and manual recording apps. It enabled dynamic data adaption and prediction. After 

analysis, the measurements were saved as historical data, which was then processed 

once again to provide accurate forecasts. The IoT [10] to develop an intelligent 

physical fitness monitoring system was used. It monitored the physical state of athletes 

using variables including body composition, quick leg raises, and vertical jump. 

Athletes are marked using radio frequency identification (RFID) technology, and an 

evaluation model was established using particle swarm optimization (PSO). A new 

technology and scientific tool to increase the effectiveness of physical training and 

make it more scientific is the use of simulations, which can forecast athletes’ physical 

conditions with great accuracy. The method was made to satisfy the needs of athlete 

training monitoring and smartphone popularity. 

College students’ physical fitness exams, as part of the traditional teaching style, 

sometimes lack impartiality and scientific validity [11]. Data analysis and interview 

techniques were used to employ intelligent information technology (IT) to investigate 

and enhance the system. By emphasizing the value of health, the research attempts to 

offer a more appropriate approach for the physical exam of college students. The 

Intelligent Physical Education Tracking System (IPETS) utilizes information and 

communication technology (ICT) [12] to enhance athletic training techniques. It 

includes learning platforms, application programs, and performance monitoring. The 

system also assessed athletic knowledge through computer evaluation, promoting 

Artificial intelligence (AI)-powered instruction. 

To improve college students’ physical health and integrate sports, education, and 

medical care, a cloud-based platform for physical assessment and examination data 
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analysis was developed [13]. It entailed building a cloud-based intelligent construction 

module for non-medical health intervention and scientific physical education 

curriculum, in addition to an intelligent early warning and screening module for 

physical fitness test levels and prevalence rates. A wearable, intelligent method [14] 

for evaluating physical fitness that uses smart wristbands to gather physiological data 

while exercising was suggested. After extracting important characteristics, the system 

was examined using back propagation neural networks (BPNN) and generalized 

regression neural networks (GRNN). Traditional fitness tests may be effectively 

supplemented or replaced with the neural network-based technique, which is more 

accurate than multiple linear regressions (MLR). 

Big data analysis to develop an intelligent control mechanism for the training 

progress of athletes was used [15]. The model guarantees efficient operation and 

enhances the algorithm. The high accuracy and fluency of the model were confirmed 

by simulation trials. The model can accomplish intelligent operations, solve data 

volatility, and swiftly create training plans. The use of digital and intelligent image 

processing [16] in sports fitness was investigated using a treadmill as an example. It 

analyzed the motion model of the primary control motor, suggested an upper and lower 

computer control scheme, and created the calculation model for calorie intake and 

heart rate regulation. The outcomes demonstrated that the treadmill industrial control 

system can precisely acquire and convey data, get a high degree of accuracy in 

ultrasonic distance detection, and gather the human body’s heart rate pulse through the 

use of digital technology. 

Furthermore, Recent research has looked into numerous methods for improving 

physical fitness and evaluating training. Yuan et al. [17] created a motion sensor-based 

system with neural networks for basketball and fitness testing. Zhamardiy et al. [18] 

concentrated on fitness technologies for young students, whereas Kosholap et al. [19] 

emphasized neuropsychological aspects of fitness for future teachers. Chaabene et al. 

[6] evaluated home-based exercise programs for older persons, while Cocca et al. [20] 

investigated the effects of game-based physical education on children’s fitness and 

mental health. Ramirez-Campillo et al. [21] explored plyometric jump training for 

basketball players, whereas Kljajević et al. [22] analyzed physical activity among 

university students. Simonsen et al. [23] connected high-intensity training to post-

surgery recovery, whereas Neil-Sztramko et al. [24] examined school-based physical 

activity programs. Zhamardiy et al. [25] studied fitness technologies in teaching. 

Nuzzo [26] questioned the significance of flexibility in fitness, whereas Sánchez-

Muñoz et al. [27] analyzed elite padel players’ fitness profiles. Saunders et al. [28] 

reviewed fitness training for stroke patients. Each study provides unique insights on 

fitness measurement and training methods. 

Research gap 

These existing physical fitness assessment systems frequently suffer from 

multiple drawbacks, containing low accuracy, a lack of real-time feedback, and 

inadequate customization. These conventional approaches do not include complex 

optimization techniques, resulting in longer response times and less exact assessments. 

Furthermore, numerous existing systems do not give personalized training 
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suggestions, which are critical for optimal fitness training. These constraints 

emphasize the necessity for more complex methods that can provide precise, real-time 

evaluations and individualized feedback. The presented NG-GC-LSTM model 

addresses these gaps by using the Northern Goshawk optimization algorithm to 

improve the precision and effectiveness of the Gate Customized Long Short-Term 

Memory (GC-LSTM) architecture. This connection enables for the continuous 

monitoring of numerous fitness indicators via portable sensing devices, resulting in 

rapid and personalized feedback that increases the overall efficacy of fitness training 

regimens. 

3. Methodology 

This research employs a comprehensive research design focused on the novel 

NG-GC-LSTM model, which integrates sophisticated sensing technology and 

advanced data processing techniques. Data collection included 50 individuals who 

wore bio-sensing devices to record physiological parameters in real time throughout 

physical training sessions. Preprocessing was performed on the obtained data using 

Min-Max scaling to standardize the sensor values and assure consistency. To extract 

key properties from time-series data, the Short-Time Fourier Transform (STFT) was 

used. The NG-GC-LSTM model then used these processed attributes to properly 

examine and assess the individuals’ physical fitness levels. This methodological 

strategy, which combines cutting-edge technology and powerful machine learning 

techniques, seeks to improve the precision and efficacy of real-time fitness 

assessments. 

3.1. Data set 

The data includes biosensing data obtained from 50 people (25 males and 25 

females) using smart bands throughout different physical training activities. Each 

participant is uniquely recognized by a participant ID, and their gender, age, and 

geographic area are recorded, as shown in Table 1. The participants range in age from 

teenagers to older adults, and they come from a variety of fitness backgrounds, 

comprising those who routinely participate in physical activities and those who don’t. 

Geographic variety is also reflected, with individuals from urban, suburban, and rural 

settings. As shown in Figure 1, the data includes the sorts of activities (Running, 

Walking, Cycling, Jumping Jacks, Swimming, and Ascending) that each person 

participated in, as well as the duration in minutes. Additionally, the dataset records 

individuals’ average heart rate (bpm) during activities, the number of steps taken, and 

the estimated calories burned during each movement. The goal of this dataset is to 

evaluate how successfully the NG-GC-LSTM model determines an individual’s 

physical fitness level during in-person training sessions. 
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Figure 1. Physical training activities. 

Table 1. Participant bio-sensing during physical activity. 

Participant ID Gender Age Location Fitness Level Activity Type Duration Heart Rate Steps Calories Burnt 

1 Male 16 Urban Regular Running 40 160 5000 400 

2 Female 21 Suburban Occasional Walking 30 120 3000 250 

3 Male 26 Rural Regular Cycling 55 150 7000 500 

4 Female 31 Urban None Jumping Jacks 20 170 2500 200 

5 Male 37 Suburban Regular Swimming 40 140 3500 350 

... ... ... ... ... ... ... ... ... ... 

50 Female 55 Rural Occasional Ascending 30 144 3600 330 

3.2. Min-max scaling algorithms for pre-processing 

Min-max normalization is an extensively used method for normalizing 

information, mainly useful for transforming values within a specified range, usually 

[0–1]. This method preserves the relationships within the data, making it ideal for 

preparing bio-sensing data for analysis in physical fitness assessments. In this study 

min-max normalization is applied to the bio-sensing data collected from 25 individuals 

during various physical training activities. The transformation is performed in 

Equation (1). 

𝑢′ =
𝑢 − min𝐵

max𝐵 − min𝐵
(newmax𝐵

− newmin𝐵
) + new_min𝐵 (1) 

where 𝑢′the new normalized value, 𝑢 is the original value for the given feature, max𝐵 

is the maximum value for the given feature 𝐵, 𝑚𝑖𝑛𝐵 is the minimum value for the 

given feature 𝐵, while newmax𝐵
 and newmin𝐵

 represent the maximum and minimum 

values for the new considered range. 

In this research, min-max normalization is used to guarantee that all bio-sensing 

data attributes are scaled proportionally, making it easier to compare and combine 

diverse features throughout the analysis. This approach aids in preserving the relative 

differences between the original results, which is critical for effectively measuring 

physical fitness. By normalizing attributes like heart rate, steps walked, and calories 
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burnt, the NG-GC-LSTM model may learn more efficiently from the data, resulting in 

better model performance and more trustworthy fitness assessments. 

Furthermore, min-max normalization accelerates the convergence of the 

optimization techniques utilized in the NG-GC-LSTM model. When features have 

comparable sizes, the model can better explore the solution space during training. This 

preprocessing phase lowers the likelihood of features with wider ranges dominating 

the learning procedure, guaranteeing a balanced contribution from all features. 

Overall, using min-max normalization in preprocessing improves the resilience and 

accuracy of the NG-GC-LSTM model’s forecasts, allowing for a more accurate and 

personalized evaluation of physical fitness. 

3.3. Short-time Fourier transform (STFT) for feature extraction 

Bearing vibration signals are intricate and include a wealth of information. The 

vibration signals will alter concurrently with changes in the bearing condition. A well-

crafted analytic system may clearly articulate the alterations, simplifying and 

enhancing the diagnostic process. A common time-frequency analysis technique that 

is often employed in the field of signal processing is STFT. This method multiplies 

time series using a window function, where the non-stationary signal is roughly 

regarded as locally stationary, and then converts them into a time-frequency domain. 

Using this technique, we may identify the spectral components in a spectrogram as 

discrimination. Equation (2) is a description of STFT. 

𝑇(𝑠, 𝑒) = ∫ 𝑤(𝑠 + 𝜏)𝑥(𝜏) exp(−2 𝑖π𝑒𝜏) 𝑐𝜏, (2) 

where 𝑠  is the time, 𝑒  is the frequency, 𝑥(𝑡) is the sliding window function (also 

known as the Hanning window), and 𝑤(𝑠) is the signal to be taken into consideration. 

Due to the ease of handling the amplitude spectrum, the phase of 𝑇(𝑠, 𝑒), is typically 

disregarded. As a result, we solely evaluate the detected signals’ amplitude spectrum. 

Even though wavelet transform is frequently utilized in the field of signal analysis, the 

wavelet basis function has a significant impact on the outcomes that follow. Vibration 

signals in an industrial setting are typically impacted by many components. 

Additionally, when the fault develops, other localized features, such as a single-sided 

impulse component and a double-sided impulse component, are present for varying 

fault severities. The signal in this case is too complex to be broken down by a very 

small wavelet, even when attempts are made to minimize the impact of artificial 

elements and combine all the previously discussed components. The STFT approach’s 

simple premise and excellent capacity are the reasons it is selected as a suitable 

instrument. 

STFT enables real-time assessment of vibration signals by giving a precise and 

thorough time-frequency representation. This allows the identification of transient 

events and localized variations in the signal, which is critical for early defect discovery 

in bearings. STFT aids in detecting the precise point at which a problem begins to 

occur and how its features vary over time by gathering both time and frequency data. 

This capacity is especially useful in predictive maintenance, where early intervention 

can avoid more serious damage and minimize downtime. The NG-GC-LSTM model 

uses the comprehensive attributes retrieved by STFT to improve the accuracy of its 
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fitness level forecasts. By including time-frequency domain attributes, the model 

could better grasp and interpret complicated patterns in biosensing data, resulting in 

more accurate and personalized fitness assessments. 

Furthermore, using a window function in STFT allows for the effective analysis 

of complicated and non-stationary data by isolating brief parts of the signal. This 

localized assessment is useful for differentiating between various types of errors and 

their severity levels. For instance, single-sided and double-sided impulse components 

could be detected and classified more precisely, resulting in improved diagnostic 

conclusions. STFT’s flexibility and resilience make it an ideal choice for industrial 

applications where the operational setting might introduce noise and disturbances that 

hinder signal processing. The NG-GC-LSTM model’s integration of the STFT for 

feature extraction and the GC-LSTM network for time series analytics enables 

thorough monitoring and forecasting of fitness levels, resulting in high-performance 

and dependable physical fitness evaluation in real-time. 

These data preprocessing techniques used—Min-Max Scaling and STFT—were 

selected for their effectiveness in preparing and analyzing biosensing data for physical 

fitness evaluations. 

3.4. Northern goshawk optimization-driven gate customized long short-

term memory (NG-GC-LSTM) 

Our proposed model combines the NGO algorithm with the GC-LSTM network. 

NGO simulates goshawk hunting to efficiently explore the solution space, enhancing 

global exploration and convergence. The GC-LSTM model with the modified forgets 

gate and cell input states, accurately processes continuous sensor data for fitness 

tracking. By integrating NGO for optimal parameters tuning and GC-LSTM for 

advanced time series analysis, the NG-GC-LSTM provides precise, real-time physical 

fitness evaluation, ensuring personalized and accurate fitness assessments. 

3.4.1. NG optimization algorithm 

The NGO algorithm’s search mechanism is derived from its effective prey-

hunting and catch process. Prey identification, prey capture, and population 

initialization make up the three steps of the method. 

 Initialization: First, matrix X may be used to display the northern goshawk’s 

initialization population, which is displayed in Equation (3). 

𝑊 = [
𝑊1
𝑊2

⋮
𝑊𝑀

] = [
𝑤1,1
𝑤2,1

⋮
𝑤𝑀,1

𝑤1,2
𝑤2,1

⋮
𝑤𝑀,2

⋯
⋯
⋱
⋯

𝑤1,𝑀
𝑤2,𝑀

⋮
𝑤𝑀,𝑁

] (3) 

𝑊𝑗, 1 ≤  𝑗 ≤  𝑀 indicates the 𝑗-th person in the populace as a whole. 𝑀 and 𝑁 

indicate the population mass and the dimension of the objective function, respectively. 

The elements of 𝑊𝑗  may be calculated for the optimization of a single objective 

setback with lower bound LB and upper bound UB by Equation (4). 

𝑤𝑗,𝑖 = LB + rand. (UB − LB), 1 ≤ 𝑗 ≤ 𝑀; 1 ≤ 𝑖 ≤ 𝑁 (4) 

 Prey identification: In the early stages, the northern goshawk would select its 

victim and try to attack it. Considering that the prey is selected at random, this 
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behavior might point to the algorithm’s ability to explore the whole possible 

space globally. Equation (6) replicates the northern goshawk attacking its prey if 

the target selected by the individual 𝑊𝑗is the 𝑝𝑟𝑒𝑦𝑗, as shown by Equation (5). 

prey𝑗 = 𝑊𝑜, 𝑗 = 1,2, ⋯ , 𝑀; 𝑜 = 1,2, ⋯ , 𝑗 − 1, 𝑗 + 1, ⋯ , 𝑀 (5) 

{
𝑊𝑗

new = 𝑊𝑗 + 𝑞(prey𝑗 − 𝐽𝑊𝑗), Fit(prey𝑗) < Fit(𝑊𝑗),

𝑊𝑗
new = 𝑊𝑗 + 𝑞(𝑊𝑗 − prey𝑗), Fit(prey𝑗) ≥ Fit(𝑊𝑗),

 (6) 

where 𝐽 is a vector made up of one or two values, and 𝑞 is a random vector with 

numbers in the range [0, 1]. To increase the algorithm’s unpredictability and conduct 

a more thorough search of the space, 𝑞 and 𝐽 are utilized. Equation (7) will then update 

each 𝑊𝑗. 

{
𝑊𝑗 = 𝑊𝑗

new, Fit(𝑊𝑗
new) < Fit(𝑊𝑗),

𝑊𝑗 = 𝑊𝑗, Fit(𝑊𝑗
new) ≥ Fit(𝑊𝑗),

 (7) 

 Capture of prey: When the northern goshawk pounces and starts fighting its 

victim, it will become agitated and start to run. This is the time for the northern 

goshawk to keep chasing its prey. The swiftness of the northern goshawk’s 

pursuit allows it to track and eventually capture prey in almost any situation. 

Equation (8) may be used to replicate this stage when the chasing behavior is 

within a circle of radius r. 

𝑊𝑗
new = 𝑊𝑗 + 𝑄(2𝑞 − 1)𝑊𝑗, (8) 

𝑄 = 0.02(1 − t/T). The current iteration was denoted by 𝑡, and 𝑇 is the utmost 

number of iterations. After that, Equation (9) modifies each𝑊𝑗  individually. The 

original NGO algorithm’s flow chart is shown in Figure 2. 

{
𝑊𝑗 = 𝑊𝑗

new, Fit(𝑊𝑗
new) < Fit(𝑊𝑗),

𝑊𝑗 = 𝑊𝑗, Fit(𝑊𝑗
new) ≥ Fit(𝑊𝑗).

 (9) 

 

Figure 2. NG optimization algorithm flow chart. 
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3.4.2. Gate customized long short-term memory (GC-LSTM) 

The LSTM network is a type of RNN designed to handle time series data by 

maintaining long-term-series data by maintaining long-term dependencies between 

subsequent time steps. This makes it particularly suitable for analyzing continuous 

sensor data in real-time physical fitness evaluation. In the context of our intelligent 

physical fitness testing system, the LSTM processes sensor data 𝑤 collected at each 

time step 𝑠 during physical training activities. The core idea is to create a constant 

error path, ensuring accurate tracking and prediction of an individual’s fitness levels 

over time. The equations for the LSTM are expressed in Equations (10)–(15). 

ℎ𝑠 = tang(𝑋ℎ𝑤𝑤𝑠 + 𝑋ℎ𝑔𝑔𝑠−1 + 𝑎ℎ) (10) 

𝑗𝑠 = 𝜎(𝑋𝑗𝑤𝑤𝑠 + 𝑋𝑗𝑔𝑔𝑠−1 + 𝑎𝑗) (11) 

𝑗𝑠 = 𝜎(𝑋𝑗𝑤𝑤𝑠 + 𝑋𝑗𝑔𝑔𝑠−1 + 𝑎𝑗) (12) 

𝑑𝑠 = 𝑒𝑠 ⊙ 𝑑𝑠−1 + 𝑗𝑠⨀ℎ𝑠 (13) 

𝑝𝑠 = 𝜎(𝑋𝑝𝑤𝑥𝑠 + 𝑋𝑝𝑔𝑔𝑠−1 + 𝑎𝑝) (14) 

𝑒𝑠 = 𝑝𝑠⨀tang(𝑑𝑠) (15) 

here, ℎ stands for the input block. The input, forget, and output gates are denoted by 

the letters 𝑗, 𝑒, and 𝑝. The variables 𝑑, 𝑒, 𝜎, and ⨀ represent the memory cell values, 

block output, sigmoid function, and element-wise Hadamard product, respectively. 

The multiplicative forget gate was not a part of the original LSTM design. However, 

the ability to ignore previous inputs lets LSTM handle longer sequences without 

interfering with the error signal’s back-propagation. 

The unit known as the Gate Customized Long Short-Term Memory (GC-LSTM) 

represented in Figure 3, provides adjustments to the cell input state and the for-get 

gate, as seen in Equations (16) and (17). This improvement enables the computation 

to include the cell state from the preceding time step as well, enabling the 

determination of adding and forgetting information at the same time. 

 

Figure 3. Improved diagram of the LSTM unit structure. 
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𝑑𝑠 = 𝑔𝑠𝐷𝑠−1(1 − 𝑔𝑠)�̃�𝑠 (16) 

𝑒𝑠 = 𝜎(𝑋𝑒 [
𝐷𝑠−1
𝑒𝑠−1
𝑤𝑠

] + 𝑐𝑒 (17) 

The GC-LSTM model enhances the conventional LSTM by modifying the cell 

input state and forgetting gate. This improvement allows concurrent assessment of 

information addition and forgetfulness, crucial for accurately evaluating physical 

fitness levels in real-time. The GC-LSTM process continues sensor data, enhancing 

the effectiveness of our intelligent physical fitness testing system. 

The NG-GC-LSTM model improves physical fitness assessments by combining 

the NGO algorithm with the GC-LSTM network. The NGO method optimizes 

parameter tuning by using prey identification, capture, and pursuit phases, which are 

parameterized by a population matrix (W), lower (LB), and upper boundaries (UB), as 

well as random vectors (q and J). The GC-LSTM network, modified to omit particular 

gate and cell input states, evaluates continuous sensor data using equations that include 

input (h), forget (j), and output (p) gates, as well as cell memory (d) and output (e). 

These configurations were selected to raise the NGO’s effective solution space 

exploration and GC-LSTM’s expertise in processing time-series data, resulting in 

accurate, real-time physical fitness evaluations by collecting intricate bio-sensing data 

correlations. 

During the optimization process, The NGO algorithm initially creates a 

population matrix to depict possible solutions. It then detects and chases prey by 

simulating the goshawk’s hunting behavior utilizing random vectors, allowing it to 

examine the solution space more extensively. The method iteratively refines solutions 

by adjusting spots in response to fitness assessments. This strategy provides 

comprehensive parameter exploration and fine-tuning, which improves the model’s 

capacity to converge on optimum solutions. These methods improve the NG-GC-

LSTM model’s performance by efficiently tweaking its parameters, resulting in more 

precise and trustworthy real-time physical fitness assessments. 

4. Experimental result 

4.1. System configuration 

The NGLSTM system for physical fitness testing was implemented using Python 

3.8. It utilized TensorFlow 2.4 for deep learning and required 16 GB of RAM for 

optimal performance. The system included customized gate functions tailored to 

enhance the prediction accuracy of fitness test outcomes. 

4.2. Performance evaluation 

In comparison to the conventional one-class support vector machine (OC-SVM) 

and deep neural network (DNN) [29] our study’s precision, recall, and F-measure 

values provide insights into how effectively our proposed model detects different 

physical activities. 
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 Precision: The model accuracy is determined by how well its optimistic 

prediction matches reality. The excellent accuracy of the model indicates a low 

false positive rate. 

 Recall: True positive rate also known as recall is a metric that measures how 

successfully the model can identify each relevant episode in the data set. High 

recall rates indicate that the model’s false negative rate is low. 

 F-Measure: It shows the Harmonic mean of recall and precision and it provides 

a particular measure that point’s equilibrium between recall and precision, which 

is mainly supportive when one has to strike that balance. Each evaluation metric 

and its formulas are shown in Table 2. 

Table 2. Metrics and their formulas. 

Metrics Formula 

Precision 
True Positive

True Positive + False Positive
 

Recall 
True Positive

True Positive + False Negative
 

F-Measure 2 ×
Precision ×  Recall

Precision + Recall
 

Table 3 depicts the accuracy percentages of the proposed model in distinguishing 

diverse physical activities from biosensing data. Running and cycling achieved the 

highest precision at 99.7% and 99.6%, respectively, indicating excellent accuracy. 

Walking and ascending also showed strong accuracy at 95.2% and 95.4%. Jumping 

jacks and swimming had slightly lower accuracy of 94.9% and 94.5% respectively, 

but still demonstrated effective performance. These results highlight the model’s 

robustness in accurately evaluating a range of physical activities, validating its 

effectiveness for real-time fitness monitoring. This is also graphically represented by 

Figure 4. 

Table 3. Accuracy for various physical activities. 

Physical activities Accuracy (%) 

Running 99.7 

Walking 95.2 

Cycling 99.6 

Jumping jacks 94.9 

Swimming 94.5 

Ascending 95.4 
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Figure 4. Accuracy for various physical activities. 

Table 4 compares the precision percentages of three models OC-SVM, DNN, 

and NG-GC-LSTM model demonstrates superior precision in all activities: Running 

(99.7%), Cycling (99.6%), and Ascending (95.4%), outperforming both OC-SVM and 

DNN models. These outcomes are also graphically represented in Figure 5 to indicate 

the superior performance of the proposed model. 

Table 4. Precision of physical activity recognition across different model. 

Precision (%) 

Physical activities OC-SVM DNN NG-GC-LSTM (Proposed) 

Running 90.4 99.3 99.7 

Cycling 82.6 99.3 99.6 

Ascending 82.4 93.5 95.4 

 

Figure 5. Comparison of precision. 

The recall percentages for the DNN, OC-SVM, and our suggested NG-GC-

LSTM models in recognizing activities are shown in Table 5. Recall rates are higher 

for our proposed. Running (98.9%), Cycling (98.8%), and Ascending (97.9%), 

indicating its exceptional ability to correctly identify positive instances of these 



Molecular & Cellular Biomechanics 2024, 21(3), 223.  

14 

activities compared to OC-SVM and DNN. The result is also represented graphically 

in Figure 6 to visualize the superior performance of our suggested model. 

Table 5. Recall of physical activity recognition across different model. 

Recall (%) 

Physical activities OC-SVM DNN NG-GC-LSTM(Proposed) 

Running 88.2 98.3 98.9 

Cycling 81.2 97.8 98.8 

Ascending 78.8 96.3 97.9 

 

Figure 6. Comparison of recall. 

Table 6 presents the F-measure percentages that maintain the balance between 

recall and precision, for the OC-SVM, DNN, and NG-GC-LSTM models. Our 

suggested method shows the highest F-measure scores: Running (99.2%), Cycling 

(98.9%), and Ascending (95.9%), underscoring it’s on the whole better performance 

in recognizing physical fitness actions exactly and constantly. These are also 

represented graphically in Figure 7 to offer a visual comparison of the performance 

of all the models. 

Table 6. F-Measure of physical activity recognition across different model. 

F-measure (%) 

Physical activities OC-SVM DNN NG-GC-LSTM(Proposed) 

Running 91.2 98.8 99.2 

Cycling 89.8 98.5 98.9 

Ascending 80.5 94.9 95.9 
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Figure 7. Comparison of F-measure. 

The presented NG-GC-LSTM model surpasses previous models like OC-SVM 

and DNN because of its novel integration of NGO and GC-LSTM. This hybrid 

strategy uses the advantages of both strategies to improve accuracy, precision, recall, 

and F-measure scores in physical activity identification. The NGO method improves 

the model’s capacity to effectively explore the solution space and improve parameters, 

resulting in faster convergence and global discovery. This leads to better feature 

selection and parameter tweaking, both of which are necessary for precise analysis of 

biosensing data. 

GC-LSTM, on the other hand, is specially built to manage time-series data, like 

continuous sensor data collected during physical activities. By changing the cell input 

state and forgetting the gate, GC-LSTM may effectively capture temporal 

relationships and complicated patterns in data. This enables the model to retain long-

term associations between subsequent time steps, which is required for accurate 

monitoring and forecasting of physical fitness levels. The model’s capacity to 

incorporate the cell state from prior time steps guarantees that it can properly predict 

both short-term and long-term trends in the biosensing data. 

The comparison findings in Tables 3–6, as well as Figures 4–7, clearly show 

that the NG-GC-LSTM model performs better. For example, running and cycling have 

considerably better accuracy rates (99.7% and 99.6%, respectively), indicating that the 

algorithm can accurately recognize these activities. The recall rates for running, 

cycling, and ascending are 98.9%, 98.8%, and 97.9%, respectively, demonstrating the 

model’s remarkable capability to identify positive instances of these activities. The F-

measure values support the model’s balanced efficiency in terms of precision and 

recall, with the highest scores for ascending (95.9%), cycling (98.9%), and running 

(99.2%). 

The NG-GC-LSTM model’s high accuracy, precision, recall, and F-measure 

scores lead to considerable real-world applications and advantages. High accuracy 

guarantees that the model accurately recognizes different physical activities, thereby 

reducing errors. High precision shows that the model’s forecasts are accurate and 

consistent, which reduces the possibility of false positives. High recall reflects the 

model’s capacity to catch all important instances of physical activities, resulting in 

thorough monitoring. At last, a high F-measure, which considers both precision and 

recall, represents the model’s overall performance. 
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In practical terms, these metrics indicate that the model may give dependable and 

precise feedback for fitness enthusiasts, athletes, and healthcare practitioners, hence 

improving individualized training programs and correctly tracking physical activity 

levels. This can result in improved fitness results, injury prevention, and optimal 

training routines, creating the NG-GC-LSTM model a useful tool in sports science, 

personal fitness, and healthcare. 

The findings show that the NG-GC-LSTM model surpasses standard models such 

as OC-SVM and DNN in identifying diverse physical activities with higher accuracy, 

precision, recall, and F-measure scores. The model’s remarkable efficiency, 

particularly in sports such as running and cycling, demonstrates its dependability and 

efficacy for real-time fitness tracking. The high accuracy rates for walking and rising 

indicate its durability in a variety of settings, whereas the somewhat lower but still 

great efficiency in jumping jacks and swimming demonstrates its adaptability. These 

results suggest that the NG-GC-LSTM model could be an effective tool for improving 

physical fitness evaluations and treatments, since it provides accurate and consistent 

activity detection that could enable tailored fitness programs and enhance overall 

health results. 

Overall, the NG-GC-LSTM model outperforms other models due to its improved 

optimization and specific management of time-series data. The combination of NGO 

and GC-LSTM enables the model to attain more accuracy and resilience in physical 

activity identification, making it ideal for real-time fitness monitoring purposes. This 

mixture not only enhances overall detecting abilities, however, also provides stable 

and dependable performance over a wide range of physical activities. 

4.3. User experience 

The system communicates with end users via a user-friendly application that 

shows real-time data from portable sensing devices. These devices are intended for 

ease of use, with simple controls and comfortable wear to allow seamless 

incorporation into exercises. Participants expressed excellent satisfaction with the 

system’s straightforward interface and the accuracy of the feedback supplied. The 

simplicity of monitoring physical activities and getting actionable data led to a 

favorable user experience, with participants applauding the system’s capacity to 

successfully customize training suggestions. 

5. Conclusion 

This study shows that the NG-GC-LSTM model is effective for real-time physical 

fitness evaluation by utilizing modern bio-sensing technology and unique machine 

learning approaches. The suggested model attains high accuracy, precision, recall, and 

F-measure scores across a wide range of physical activities by combining portable 

sensing devices with advanced data processing. This improved performance when 

compared to existing techniques demonstrates the model’s potential for improving 

physical fitness monitoring and individualized training. The results highlight the 

importance of intelligent fitness systems in offering personalized insights and real-

time feedback, which contributes to better health results. 
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Future work may focus on expanding the dataset, incorporating additional 

features for analysis, and exploring development in diverse physical training 

environments to further validate the model’s efficacy and generalizability. Because, 

this study may have biases due to the particular activities selected, like running, 

cycling, walking, and others, which may not reflect all possible physical activities. 

Furthermore, the wearable devices employed may have altered the outcomes, as 

various devices have variable degrees of accuracy and sensitivity. Future research 

should overcome these constraints by integrating a broader range of physical activities 

and use a variety of wearable devices to improve generalizability. Expanding the 

dataset to incorporate more diverse activities, as well as evaluating the model under 

various training situations, will aid in determining its resilience and application in real-

world contexts. 
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