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Abstract: Leisure sports activities, as a healthy form of entertainment, have garnered 

increasing recognition. This paper introduces a data analysis model designed for behavior 

prediction and health benefit evaluation in leisure sports activities, utilizing multiple 

physiological features. The proposed model offers recommendations for leisure sports 

activities and provides health assessment results based on an array of physiological feature data. 

Constructed using a combination of Lasso (Least Absolute Shrinkage and Selection Operator) 

and GBDT (Gradient Boosting Decision Tree) regression models within the Stacking ensemble 

learning framework, the model leverages physiological feature data from the dataset for 

training. Experimental results reveal that the combined prediction model achieves a coefficient 

of determination of 0.9832, effectively mitigating the impact of pathological data on model 

fitting and demonstrating superior accuracy and stability compared to individual prediction 

models. Finally, this paper explores the future prospects of wearable devices for physiological 

feature data collection and the potential advancements in behavior prediction and health benefit 

evaluation methods based on such information. 

Keywords: analysis of physiological characteristics; leisure sports; physical fitness and 

health; Lasso; GBDT 

1. Introduction 

In recent years, there has been a growing global preoccupation and appreciation 

for recreational sports activities. This trend is evident not only in developed countries 

but also in emerging nations [1]. The concept of leisure sports refers to various 

physical activities that people engage in during their leisure time. These activities not 

only provide physical health benefits but also contribute to social and psychological 

well-being. Extensive research has been conducted on the health benefits of leisure 

sports. Studies have shown that engaging in leisure sports can effectively reduce the 

risk of chronic diseases [2]. Despite the plethora of positive health effects associated 

with recreational physical activities, they may also have adverse impacts on 

individuals’ well-being, such as the risk of injury, overexertion, and psychological 

stress related to performance pressure. To tackle these issues, monitoring devices can 

be employed to assess and predict individuals’ exercise status, providing scientific 

recommendations that promote health benefits while mitigating potential harm. 

Presently, wearable exercise monitoring devices are emerging in great numbers 

as hardware devices continue to shrink. Wearables offer numerous advantages over 

bulky machines, such as the provision of precise, real-time data feedback to aid users 

in better understanding their exercise status [3]. 

Upon obtaining the data, it is imperative to conduct a thorough and effective 
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analysis of the physiological information in order to arrive at accurate outcomes. 

Thanks to the advancements in computing power, the academic community has 

witnessed an array of emerging data analysis methods. Research on the utilization of 

regression algorithms to analyze physiological feature information and predict bodily 

states has permeated multiple fields, such as medicine, bioinformatics, and health 

management [4]. Several of these achievements have already been extensively applied 

in clinical practice and health management. Some commonly used regression 

algorithms include linear regression, logistic regression, ridge regression, and Lasso 

regression [5]. Furthermore, the advancement of machine learning and deep learning 

technologies has enabled the application of regression algorithms to become more 

widespread and flexible. 

The problem addressed in this paper pertains to regression analysis, which 

involves the use of models to predict specific numerical values. We leverage regression 

algorithms to predict the physiological state and health benefits of users during 

exercise. In this paper, we present a method for analyzing data collected by wearable 

fitness devices, providing recommendations for leisure sports activities and evaluating 

health benefits. This approach can effectively enhance the health benefits of leisure 

sports and prevent injuries resulting from excessive exercise. 

We propose a method for predicting leisure sports behavior and evaluating health 

benefits based on the analysis of multiple physiological features, using a combination 

of Lasso and GBDT regression models based on Stacking ensemble learning. We 

validate the effectiveness of this method through practical application. By providing 

recommendations for exercise types and amounts before exercise, this method reduces 

the occurrence of injuries resulting from excessive or improper exercise. Experimental 

results demonstrate that the determination coefficient of the combined prediction 

model can reach 0.9832, and the number of injuries caused by improper exercise 

methods decreases by 41% when this method is applied. Based on multiple evaluation 

criteria, the health benefit index generated by the recommendations provided by this 

method shows a 21% improvement compared to exercise performed with the same 

duration under other circumstances. 

The following is a summary of the main contributions of this article: 

1) Based on the annotated data in the dataset, a regression model that utilizes Lasso 

in conjunction with GBDT was trained. By comparing the predicted results of the 

instances, the composite prediction model yields a mean absolute error (MAE) of 

1.0168, a root mean square error (RMSE) of 1.1933, and a coefficient of 

determination (R2) of 0.9832. 

2) Using this model, we have successfully developed a methodology for predicting 

behavior and evaluating health benefits. This methodology leverages 

physiological monitoring devices, such as those that track heart rate, blood 

oxygen saturation levels, and step count, to provide users with exercise 

recommendations. 

3) Analyzed and discussed were the prospects for the development of physiological 

feature information gathering equipment, as well as prediction of leisure sports 

behavior and assessment of health benefits based on such information. It was 

concluded that with the miniaturization of electronic devices and the 
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advancement of machine learning techniques, individuals can readily achieve 

physiological feature monitoring and health benefit assessments. 

2. Related works 

The relationship between health issues in modern life and leisure sports activities 

is closely intertwined. With the development of society and the improvement of living 

standards, people’s lifestyles have changed, and some health problems have emerged. 

As health issues become increasingly prominent, daily leisure sports activities are 

receiving more attention from people. Proper leisure sports activities can help people 

alleviate health problems and maintain physical and mental health. 

The impact of leisure sports activities on the physical and mental health of 

contemporary people has received sufficient attention from academia, and related 

research is relatively mature. O’Donoghue et al. [6] used a regression-based approach 

to model and analyze the physical status of tennis player. The results showed that the 

model had certain predictive ability, but the accuracy needs to be improved. In addition, 

Wang [7] proposed a probability-based simple Bayesian distribution regression 

learning framework for studying the body recovery during sports training. Bayesian 

regression is capable of addressing the issue of limited sample sizes by leveraging 

prior knowledge to stabilize the model, thereby mitigating the risk of overfitting. 

However, it has been observed that the efficacy of this method declines when applied 

to high-dimensional data. 

With the advancement of hardware technology and increased computing power, 

wearable devices have become possible for monitoring physical activity. In their study, 

Zhou et al. [8] examined the characteristics of spatio-temporal data sequences and 

utilized L1 regularization to sparsely weight and combine multiple STELM models 

for predicting athletic performance. The results indicate a high level of predictive 

accuracy, yet with a notable increase in computational complexity and a potential risk 

of excessive sparsity leading to information loss. Leveraging the voluminous data 

generated by wearable devices, Wang and Cai [9] have achieved promising results by 

applying big data techniques and enhancing the K-means ant clustering algorithm. 

This approach has effectively addressed the issue of missing data in remote health 

monitoring of semi-disabled elderly individuals. In the context of the widespread 

application of machine learning methods, the classic machine learning algorithm of 

BP neural networks has found extensive use in regression problems. Wang et al. [10] 

have applied the BP neural network to predict the brightness and color comfort of LCD 

screens as perceived by the human eye. Gao et al. [11] integrated the BP neural 

network with a genetic algorithm based on the results of ultrasound examination for 

fetal weight prediction. However, the training process of the backpropagation neural 

network is based on gradient descent, which is prone to getting trapped in local optima 

and unable to find the global optimum. Additionally, the training results of the 

backpropagation neural network are highly dependent on the initial selection of 

weights, as different initial weights can lead to different outcomes. Nevertheless, the 

approach used to address similar issues is worth considering in this study. 

Regression algorithms are a type of machine learning algorithm used to predict 

continuous variables. During the monitoring of physiological characteristics, devices 
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collect a vast amount of physiological data, which can be used to train regression 

algorithms to predict an individual’s health status. Gregori et al. [12] evaluated the 

trend of cardiovascular disease and diabetes development and established a healthcare 

cost model for physiological feature analysis. The interpretability of the study is 

limited, and the findings are largely dependent on the choice of the model, which could 

lead to false results and conclusions. Kozlovskaia et al. [13] investigated the exercise 

habits of recreational runners in Australia, comparing the physical, lifestyle, and 

training characteristic data of male and female groups using the chi-square test. They 

evaluated the impact of running experience on weight and health status using the 

multivariate logistic regression method. Using the predictions from the model, 

researchers evaluated the trends in weight and health status among runners, which can 

aid in developing recreational sports programs that include leisurely running. 

In addition to the aforementioned conventional methods, the Lasso regression 

model and the Gradient Boosting Decision Tree algorithm in machine learning can 

also be employed [14]. Based on the existing literature, it is evident that a single model 

can achieve a good fit for linear data. Nonetheless, when the variable data exhibits a 

large amplitude of fluctuations, the predictive error tends to deviate substantially.  

These studies evince the wide-ranging potential of regression algorithms in 

analyzing physiological feature information and predicting health benefits. Moreover, 

they can furnish useful insights for clinical practice and health management. 

Nonetheless, further research and development are still needed to surmount the 

existing challenges and limitations, thereby enhancing the accuracy and reliability of 

the models.  

To this end, we present a novel approach that leverages Stacking ensemble 

learning to combine Lasso and GBDT regression models, thereby facilitating the 

prediction of health benefits in leisure sports activities. 

3. Methods 

The prediction and health benefit assessment of leisure sports activities based on 

multi-physiological feature analysis is a health management approach that relies on 

data analysis and machine learning techniques. By monitoring and analyzing a variety 

of physiological features of individuals and employing machine learning algorithms, 

this approach is capable of predicting user behaviors in different leisure sports 

activities and evaluating their health benefits [15]. 

To be more refined, the fundamental procedure of this method comprises several 

sequential steps: 

1) Data Acquisition: The study employs state-of-the-art equipment, including 

sensors, wristbands, and smartwatches, to monitor a multitude of physiological 

indicators in individuals, including heart rate, blood oxygen saturation, and step 

count. 

2) Data Processing: The collected data undergoes rigorous cleaning, preprocessing, 

and feature extraction to obtain a comprehensive profile of the individual’s 

physiological characteristics. 

3) Behavior Prediction: The present study utilizes a Stacking ensemble learning 

approach, combining Lasso and GBDT models, to establish a sophisticated model 
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for predicting an individual’s physiological status during leisure sports activities. 

4) Health Benefit Evaluation: Based on the prediction results, the study assesses the 

health benefits of individuals participating in various leisure sports activities. 

This methodology not only enables individuals to gain insights into their 

behavioral performance and health benefits during different leisure sports activities 

but also provides valuable reference for health management institutions to develop 

tailored health management plans [16]. 

The methodology proposed in this manuscript is presented in its entirety in 

Figure 1. 

 
Figure 1. Processing flow. 

Figure 1 illustrates the comprehensive workflow of the proposed methodology. 

Initially, the approach employs the Lasso regression and GBDT regression models as 

individual learners, utilizing a combination strategy known as Stacking. Lastly, the 

Lasso regression predictive model is integrated once again to forecast the predictions 

of individual learners, and its output serves as the ultimate prediction outcome. 

3.1. Lasso 

The Lasso algorithm, short for Least Absolute Shrinkage and Selection Operator, 

represents a linear regression method that achieves feature selection in high-

dimensional datasets by introducing an L1 regularization term to the loss function, 

ultimately enforcing sparsity. The loss function in the Lasso algorithm comprises two 

parts: the squared error and the L1 regularization term. The squared error is used for 

data fitting, while the L1 regularization term constrains the model complexity, pushing 

the model coefficients towards zero and thus accomplishing feature selection [17]. The 

mathematical expression for the Lasso regression model is presented in Equation (1). 

𝑚𝑖𝑛{
1

2𝑛
∑(𝑦𝑖𝑗 − 𝛽0 −∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

+ 𝜆∑|𝛽𝑗|

𝑝

𝑗=0

𝑛

𝑖=1

} (1) 

In this context, 𝑛  denotes the number of samples, 𝑝  represents the number of 

features, 𝑥𝑖𝑗  denotes the 𝑗 − 𝑡ℎ  feature value of the 𝑖 − 𝑡ℎ sample, 𝑦𝑖𝑗   denotes its 

corresponding label value, 𝛽𝑗 represents the coefficient for the 𝑗-th feature, and 𝜆 is a 

hyperparameter used to control the strength of the regularization term. 

The Lasso algorithm employs coordinate descent to optimize the model, updating 

only one coefficient at a time while keeping the others constant, until it converges. 

One of the benefits of the Lasso algorithm is that it can compress coefficients to reduce 

the model’s complexity. Additionally, it can perform feature selection by removing 

features with small contributions to the prediction results [18]. 
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3.2. GBDT 

The GBDT regression model is an ensemble learning model based on the decision 

tree algorithm. It achieves high accuracy in predicting the target variable by iteratively 

training the model and performing weighted combinations [19]. 

As depicted in Figure 2, in the GBDT regression model, each decision tree serves 

as a weak learner, progressively enhancing the overall performance of the model 

through iterative processes. Specifically, the GBDT model first employs a simplistic 

model for prediction, then computes the error between the predicted and actual results, 

taking this error as the target for the next round of training, and fitting a new model to 

this error. This process continues until the error cannot be further reduced. 

 

Figure 2. GBDT structure. 

In each iteration, the GBDT model adjusts the sample weights based on the errors 

between the previous model’s predictions and the actual results, to enable the 

subsequent training model to better fit the error. Furthermore, the GBDT model 

improves the generalization capability of the model and avoids overfitting by selecting 

and splitting features [20]. 

Ultimately, the gradient boosted decision tree model amalgamates all the decision 

trees obtained from the training process through a weighted combination, thereby 

yielding a final prediction. Given that each decision tree is a weak learner, and the 

combination process allows for mutual complementation, the GBDT model exhibits 

remarkable predictive and generalization capabilities. 

3.3. Stacking 

Stacking is a form of ensemble learning that integrates the predictions of multiple 

base models. It involves utilizing a meta model to blend these predictions and produce 

the ultimate prediction result [21]. 

The computational process of Stacking is illustrated in Figure 3. The Stacking 

method initially divides the dataset into several subsets, one of which is set aside as 

the testing set and the remaining subsets are used as the training set. In the first stage, 
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each training set is employed to train a base model, which upon completion of training, 

becomes a primary learner. Each primary learner is then employed to make predictions 

on the testing set. In the second stage, all the predictions made in the first stage are 

combined to create a novel feature matrix, which serves as input to the meta-model. 

The feature matrix and the testing set are then utilized to train the meta-model. For 

testing data, the predictions made by each base model are merged to create a new 

feature matrix, which serves as input to the meta-model. The meta-model then 

generates the final prediction results. 

 

Figure 3. Stacking structure. 

The advantage of Stacking lies in its ability to leverage the advantages of multiple 

base models, thereby enhancing the overall predictive performance [22]. Moreover, 

the meta-model can effectively utilize the strengths of each base model by providing 

weighted predictions for different base models. In this study, we have employed the 

Stacking technique to combine Lasso and GBDT models. 

3.4. Evaluation method 

Classification and prediction models’ accuracy in predicting training sets cannot 

fully reflect the performance of the predictive models. Therefore, it is necessary to 

introduce evaluation metrics for correction. This article calculates the mean absolute 

error (MAE), root mean square error (RMSE), and coefficient of determination (R2) for 

the prediction results of the three models, respectively. The Equations are presented 

below. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦�̂� − 𝑦𝑖|

𝑛

𝑖=1

 (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦�̂� − 𝑦𝑖)2
𝑛

𝑖=1

 (3) 

𝑅2 =
∑ (𝑦�̂� − �̅�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)2
𝑛
𝑖=1

 (4) 

In this Equation, the variable 𝑛 denotes the total predicted time. The value of 𝑦�̂� 

represents the predicted result at time 𝑖, while 𝑦𝑖 denotes the true value at that moment. 

Additionally, �̅�𝑖 corresponds to the mean value. 
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4. Experiment 

4.1. Dataset preview 

In our experiment, we utilized a comprehensive dataset comprising 2443 records 

of physiological measurements collected using state-of-the-art physiological 

monitoring devices. The dataset includes three key types of physiological data: heart 

rate, blood oxygen saturation, and step counts. Specifically, it consists of 801 heart 

rate measurements, 829 blood oxygen saturation records, and 813 step count 

observations. The physiological measurements were captured using the Fitbit Charge 

4 for heart rate and step counts, and the Pulse Oximeter Model 50B for blood oxygen 

saturation. 

The data collection process involved these advanced monitoring devices to 

ensure high precision and consistency in the measurements. To maintain the quality of 

the dataset, a rigorous preprocessing pipeline was employed. This process began with 

data cleaning to address any missing values, followed by normalization to standardize 

measurements across different physiological parameters. Outlier detection methods 

were also applied to identify and mitigate the impact of anomalous readings, thereby 

enhancing the overall reliability of the dataset. 

Despite the thorough preprocessing, several potential biases may still affect the 

dataset. Variations in device calibration, particularly with the Fitbit Charge 4 and the 

Pulse Oximeter Model 50B, could introduce discrepancies in the recorded 

measurements. Additionally, individual health conditions of the participants could lead 

to variability in physiological readings, as different health states may influence heart 

rate, blood oxygen saturation, and step count. Environmental factors, such as 

temperature or humidity, could also affect the physiological measurements, further 

introducing potential sources of bias.  

We partitioned the dataset into a training set, which accounted for 70% of the 

data, and a testing set, which comprised the remaining 30%. The training set was 

further divided into two subsets, each representing 35% of the overall dataset, and was 

utilized as training data for Lasso and GBDT, respectively. Our aim was to train 

regression models that could effectively predict users’ exercise evaluation results. 

Table 1 shows specific values selected for each parameter and aspect: 

Table 1. Model parameters. 

Aspect Parameter Name Reference Value 

Model Parameter Selection 

Regularization Strength (Lasso) 0.1 

Number of Boosting Stages (GBDT) 300 

Learning Rate (GBDT) 0.05 

Maximum Depth (GBDT) 7 

Number of Leaves (GBDT) 50 

Training Process 

Learning Rate (GBDT) 0.05 

Number of Boosting Rounds (GBDT) 300 

Early Stopping Rounds 15 
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Table 1. (Continued). 

Aspect Parameter Name Reference Value 

Validation Strategy 

Number of Folds (Cross-Validation) 10-fold 

Stratified Sampling Applied in classification tasks 

Repeated (Cross-Validation) 3 repetitions 

Table 2 presents the distribution of the data among the different categories after 

the dataset was partitioned. 

Table 2. The number of different categories of data. 

Category Training (Lasso) Training (GBDT) Testing Total 

Heart rate 280 281 240 801 

Oxyhemoglobin saturation 290 290 249 829 

Step number 284 285 244 813 

In order to visually show the correlation of data, we used the t-SNE algorithm to 

reduce the dimensionality of the data vectorization results in the data set, and the visual 

results were shown in Figure 4. 

 

Figure 4. Visualization of t-SNE results. 

The figure clearly illustrates the differential distribution of various data types. 

The green data points, which represent heart rate information, are located in the upper 

left corner of the chart. The blue data points located in the middle of the chart represent 

blood oxygen saturation information, while the red data points in the lower right corner 

represent step count information. Notably, there is a significant gap between the data 

points of heart rate and step count information, indicating a weak correlation between 
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the two. However, it is possible that they are linked through blood oxygen saturation 

information. 

4.2. Experimental method 

Given the diverse units and large numerical disparities among the three 

physiological metrics, this study calculates a temporary evaluation value through 

weighted averaging of the data, as depicted in Equation (5). 

𝐻 =
𝑟

100
+ 𝑑 +

𝑠

10000
 (5) 

In this study, the variable r represents the numerical value of heart rate, measured 

in beats per minute (BPM), while d denotes the numerical value of blood oxygen 

saturation, measured as a percentage. The variable s represents the number of steps 

taken. The Lasso regression model employed in this study was assigned a weight of 

20. Following the principles of the Lasso regression model, we conducted simulations 

on the predicted results, and the trends of these simulated results are presented in 

Figure 5. 

 
Figure 5. Comparison of Lasso predicted results with actual values (only partial 

actual values are shown). 

From the figure, it can be observed that the Lasso regression model initially 

performs well in predicting the response variable, but as time progresses, the predicted 

values gradually deviate from the actual values. Initially, the predictions fit well with 

a small amount of data, but after about 60 min, a significant deviation between the 

predicted values and the actual values can be observed. One possible explanation for 

this phenomenon is that as time progresses, the increasing number of data points 

causes the earlier data to influence the later predictions. The Lasso model performs 

reasonably well, with a coefficient of determination above 0.8. However, the 

differences between the predictions at different times are significant, and the 

individual Lasso model fails to meet the accuracy requirements. 

The GBDT regression model, which is based on a standard decision tree and 

incorporates gradient boosting, has been shown to improve the accuracy of prediction 

models by evolving from a single decision tree to multiple trees. In this study, the 

parameters used were n estimators = 3, max_depth = 2, and min_samples_split = 2. 

The experiment was repeated 500 times. The simulation predictions of the GBDT 

model are depicted in Figure 6. 
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Figure 6. Comparison of GBDT predicted results with actual values (only partial 

actual values are shown). 

From the figure, it is evident that the GBDT regression model fits well with the 

data beyond 70 minutes, but it fails to perform as well as the Lasso model before that 

time. One possible reason is that the GBDT model requires a substantial amount of 

data to fit the real data accurately. Although the coefficient of determination of the 

GBDT model is above 0.9, there exist several outliers in the early data, which require 

further improvement in the prediction stability of the GBDT regression model in 

predicting early data. 

To achieve better predictions for all data, we combined Lasso and GBDT. 

However, the accuracy of the combined model needs further improvement, and the 

stability is stronger than the Lasso regression model. However, at times, the precision 

is lower than that of a single GBDT model. Therefore, we used the stacking method 

to combine Lasso and GBDT models and then used Lasso as the meta-model to 

integrate the predicted results. This model’s stability and accuracy are substantially 

improved, as shown in Figure 7. 

 
Figure 7. Comparison of Stacking predicted results with actual values (only partial 

actual values are shown). 

From the figure, it is evident that the Stacking fused model exhibits superior 

overall data fitting performance. The Stacking model’s coefficient of determination 

surpasses 0.98, effectively mitigating the adverse impact of a limited number of 

pathological data points on the fitting outcome. 

4.3. Evaluation and results 

To contrast the actual performance of various models, we conducted tests using 

multiple models. The evaluation results are presented in Table 3. 
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Table 3. Lasso and GBDT evaluation results. 

Method MAE RMSE R2 

Linear Regression 1.9141 1.9612 0.7569 

Ridge Regression 1.7581 1.8021 0.8052 

Lasso 1.6011 1.8427 0.8726 

GBDT 1.3739 1.4853 0.9257 

Stacking 1.0168 1.1933 0.9832 

Table 3 presents the performance metrics of different models. The comparison 

reveals that the Stacking model remarkably enhances the coefficient of determination 

compared to individual models, while exhibiting higher stability. It is not prone to the 

impact of a small amount of pathological data that may affect the fitting performance. 

The composite model also reduces the mean absolute error and root mean squared 

error compared to the Linear Regression, Ridge Regression, Lasso Regression and 

GBDT Regression models. Therefore, the ensemble prediction model outperforms the 

individual models in terms of prediction accuracy and stability. 

Figure 8 illustrates that the utilization of this approach resulted in a 41% 

reduction in injuries caused by improper exercising techniques among athletes. 

Moreover, adhering to the recommendations provided by this approach during the 

same amount of exercise time led to a 21% enhancement in the health benefit index 

based on multiple evaluation criteria. 

 

Figure 8. Comparison of application. 

5. Discussion 

The exploration of predicting and assessing the health benefits of leisure sports 

activities through multi-physiological feature analysis presents a promising avenue for 

enhancing personalized health recommendations. As biosensing technologies evolve 

and gain traction, an increasing number of studies focus on leveraging physiological 

features such as heart rate, respiration, and exercise posture to predict leisure sports 

activities and evaluate associated health benefits. Research has indicated that these 

physiological indicators can effectively differentiate between types of sports activities 

and exercise intensities, offering more tailored exercise recommendations [23]. 
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The predictive model proposed in this study, which integrates Stacking ensemble 

learning with Lasso and GBDT combination regression, represents a novel approach 

in this domain. Our experimental results demonstrate that the Stacking method, which 

amalgamates multiple algorithms’ strengths, addresses the limitations inherent in 

individual models. Specifically, while the Lasso algorithm provides a high degree of 

stability, it struggles with prediction accuracy. Conversely, the GBDT algorithm offers 

improved accuracy but lacks stability and fails to adequately fit early data. The synergy 

achieved through Stacking, complemented by a meta-model, enhances both accuracy 

and stability. The combined model achieved a mean absolute error (MAE) of 1.0168, 

a root mean squared error (RMSE) of 1.1933, and an R-squared value of 0.9832, 

indicating robust performance in predicting physiological characteristics and 

supporting precise exercise planning. 

However, it is crucial to acknowledge the limitations of our study. First, the 

dataset used for training and validation may not be sufficiently diverse or extensive, 

potentially limiting the model’s generalizability across different populations or 

exercise conditions. Second, the accuracy of the model is contingent upon the quality 

and granularity of physiological data collected. Variations in sensor accuracy or user 

compliance could impact the model’s performance. Additionally, while our model 

demonstrates high accuracy and stability, real-world applications may encounter 

challenges related to the integration of physiological sensors into everyday sports 

activities and the variability of individual responses. 

In-depth analysis of the results underscores the value of leveraging multi-

physiological features for personalized exercise recommendations. Previous studies 

have highlighted the benefits of aerobic exercise in mitigating cardiovascular disease 

risks, improving metabolic rates, enhancing immune functions, and alleviating 

symptoms of mental health conditions such as anxiety and depression [24]. Our 

findings align with these observations, reinforcing the potential of our model to 

provide comprehensive health management recommendations. 

Looking ahead, the advancement of technologies such as artificial intelligence 

and virtual reality holds significant potential for enhancing the prediction and 

assessment of leisure sports behaviors and health benefits. Machine learning and deep 

learning techniques can be further explored to extract more nuanced features from 

extensive physiological datasets, thereby refining prediction accuracy. Additionally, 

virtual reality can offer immersive sports experiences, while real-time monitoring 

through physiological sensors can deliver instant feedback and personalized 

recommendations. 

Future research should focus on expanding datasets to include diverse 

demographics and exercise conditions, addressing sensor reliability, and exploring the 

integration of real-time physiological monitoring systems. By overcoming these 

challenges, we can enhance the applicability and effectiveness of predictive models in 

personalized health management and leisure sports optimization. 

6. Conclusion 

This article primarily investigates a model for predicting leisure sports behavior 

and evaluating health benefits based on multiple physiological features analysis. We 
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discuss the potential of this method in practical applications. We have constructed a 

supervised learning-based algorithm for predicting physiological feature information 

and validated its effectiveness through comparative experiments. The experiment was 

conducted on a dataset collected by physiological monitoring devices. The results 

demonstrate that our proposed model outperforms other models in terms of accuracy 

and stability. The application of this method can reduce the number of injuries caused 

by improper exercise methods by 41% and increase the health benefits index based on 

multiple evaluation criteria by 21% for the same exercise time. 

This study focuses on providing accurate exercise recommendations to users 

based on their physiological features. To monitor the user’s physiological status and 

predict their physiological status during exercise, we utilized information obtained 

from wearable devices, effectively avoiding injuries caused by excessive exercise and 

improving health benefits. However, this study has some limitations. The amount of 

data we used was relatively small, and we only used historical data for simulation and 

prediction. Therefore, more extensive testing and research are needed to address the 

issue of physical differences among a large number of users. Additionally, we need to 

consider a range of technical and legal issues in the practical application of this method, 

such as privacy protection and data security. Future studies can further explore 

personalized exercise recommendations for different populations with varying 

physical conditions. 
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