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Abstract: Protein sequence information is believed to embed the hint of their structures. To 

uncover the nature between protein sequence and their structures, this study motivates to 

inspect the dynamic interactions between various protein sequence features, and identify the 

sequential differences between the different protein structures. Protein sequence data from all 

structural classes in CATH and SCOP, and the structural disordered proteins from DisProt, as 

well as the structural motifs in PROSITE, are analyzed in this study. Betweenness and 

closeness centrality measures are employed to capture the topology of the networks constructed 

from amino acid feature interactions, while statistical tests are further implemented to compare 

the feature series distributions. Key findings suggest that in all structural classes, the features 

for Ala and α-helix and bend preference property, Ala and side-chain size, Ala and Gly, as well 

as Met and Leu attain significant interactions between each other, and the feature for Leu, Val, 

and Asn are acted as the critical sources of feature interactions, whereas Cys, His, Trp, and Met 

exhibit weak intra-type interactions with other features. These implicate that these feature 

interactions may have little impact in coding the structural differences. For the α structures, 

Glu, Pro and side-chain size, hydrophobicity properties exhibit high importance in feature 

interactions, whereas Gly, Thr and physical properties such as α-helix and bend preference, 

extended structural preference, pK-C value and surrounding hydrophobicity for β structures, 

show special high importance in β structures. Both α and β types of structures show Ser as the 

common sources of feature interactions, while the mixed α and β structures not only show 

common characters with the α and β types of structures, but also preferred interactions between 

Met, Lys and double-bend preference property, and between the sequence arrangements of Cys, 

His, Met, Tyr and amino acid composition features. The intrinsically disordered proteins (IDPs) 

present high frequency for the repetition patterns of certain amino acids, while the different 

structural motifs also show special characters. More sequential differences between the 

structures can also be identified from K-mers statistics and feature series distributions. The new 

discoveries reveal the nature of amino acid feature interaction mechanics, and show great 

importance of these interactions in coding the different types of protein structures. The results 

can not only contribute to future molecular design for protein-based vaccine or drug, but also 

enlighten the development for new protein structural classifiers. 

Keywords: protein sequence feature; structural types; relationship measures; network; 

statistics 

1. Introduction 

Classifying or predicting protein 3D structures using amino acid sequence 

homology is hot research topics in bioinformatics, where protein sequence information 

shows great influences on their structures [1–5]. As technology develops, many 

artificial intelligence techniques have been proposed for protein structural 
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classifications. Alpha Fold [6] and its improved version Alpha Fold2 [7] developed by 

DeepMind attain the overall best accuracy in protein structural predictions [7]. Wu et 

al. have developed a deep learning-based protein structural model refinement method 

ATOM Refine [8]. Hong et al. have proposed a novel protein 3D structural modeling 

method A-Prot by implementing the protein language model MSA Transformer [9]. 

Pearce et al. have innovated an open-source protein structural prediction algorithm 

Deep Fold by implementing multi-task deep residual neural-networks [10]. Kruglov 

et al. have extended the evolutionary algorithm USPEX into a novel protein structural 

prediction method using global optimization [11]. Stapor et al. have invented a multi 

contact-based folding method Multi C Fold [12]. Stapor et al. also innovated a new 

lightweight deep network ProteinUnet2 with U-Net convolutional architecture [13]. 

Kim et al. have proposed a new accurate prediction algorithm AttSec using 

transformer architecture [14]. Zhang et al. [15] have proposed a new protein structural 

optimization algorithm based on deep learning technology. Yasin et al. [16] have 

proposed a novel deep learning model based on graph convolutional network. Zhang 

et al. Al [17] have invented a new atomic-level protein structural model by means of 

Cryo-EM density maps. Liu et al. [18] have invented a new protein fold identifiers 

using deep learning and support vector machines. Wan et al. [19] have analyzed the 

symmetry of intra-type feature relations, and extract monotonic centrality 

characteristics for protein structures. Other protein structural studies may use spatial 

classifiers such as Minimum-Square-Error hyper-planes [20,21], convex hulls [22] or 

other clustering algorithms to classify protein features.  

On of the bottleneck in protein structural classification or prediction tasks is the 

feature extraction from protein sequence. Typical protein feature methods map the 

compositions, arrangements, physical properties of amino acids as well as alignment 

scores into real vectors or matrices [3,20,23]. These methods are for instances, the 

natural vector (NV) [3], averaged property factors (APF) [20], PSSM [23], PseAAC 

[24], Pse-in-One [25]. Since Kmer methods show good advantage in faster 

construction of phylogenetic trees [26], which can significantly minimize the memory 

requirements for their employment, many K-mers methods are developed for feature 

extraction [27]. Liu et al. [28] have developed a computational method based on auto-

cross covariance transformation with K-mers composition. Wen has proposed a K-

mers sparse matrix account for K-mer appearances in genetic sequences [29]. Recent 

methods such as FEGS [30] consider to use graphical tools and amino acid pairs to 

present better protein sequence features. 

Traditional protein structural classification analysis only takes uses of protein 

sequences to classify or predict their structures, but never give further inspect on how 

these amino acid sequences encoding their structures. Therefore, how the amino acid 

combination and their physical properties influence the structures, and which critical 

sequence factors that own crucial impacts on the formation of different protein 

structures are still unknown. To uncover the dynamical nature between protein 

sequence and their structures and identifying the critical factors that influence the 

formation of different types of protein structures, this research aims to use complex 

network approaches to model the protein sequence feature interactions, and utilize 

statistical methods to examine the K-mers and feature series distributions. In this 

study, protein structural data from not only macro level of top structural classes and 
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folds but also micro level of structural motifs are analyzed. The outcomes of the 

research elucidate the mechanics of amino acid feature interaction, the key findings 

regarding can further be used for protein molecular design or developing new protein 

structural classifiers. 

2. Methods 

In this section, details of the network and statistical methods used in the study are 

introduced, where the flow charts are presented in Figure 1 and Figure 2. 

 

Figure 1. Diagram for the process of network analysis. 

 
Figure 2. Diagram for the process of statistical analysis. 
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Figure 1 presents the diagram for the process of network analysis. The network 

analysis is made up of feature extraction, the formation of feature series and 

relationship analysis, threshold filtering and network construction, as well as 

normalized centrality analysis. 

Figure 2 presents the diagram for the process of statistical analysis. The statistical 

analysis includes the comparison between feature series, the comparison between 

structural types, and the K-mers analysis. 

2.1. Amino acid feature extractions 

Let first recall some typical methods for amino acid sequence feature extractions. 

2.1.1. Natural vector feature 

The natural vector (NV) feature is a 60-dimensional real vector containing three 

parts [3], namely the amino acid composition numbers (abbreviated as the N features) 

𝑣𝑁 =  (𝑛𝐴, 𝑛𝑅 , … , 𝑛𝑉  ), the geometric mean distances (abbreviated as the 𝜇 features) 

𝑣𝜇 =  (𝜇𝐴, 𝜇𝑅 , … , 𝜇𝑉), and the second-order central moments (abbreviated as the D 

features) 𝑣𝐷 = (𝐷𝐴
2, 𝐷𝑅

2, … , 𝐷𝑉
2), where 𝜇𝑘 =

𝑇𝑘

𝑛𝑘
 denotes the mean distances from the 

amino acid k to the origin (initial amino acid), 𝐷𝑘
2 = ∑

(𝑠[𝑘][𝑖]−𝜇𝑘)2

𝑛𝑘∙𝑛

𝑛𝑘
𝑖=1  is the second 

order central moments of amino acid k, 𝑇𝑘 = ∑ 𝑠[𝑘][𝑖]
𝑛𝑘
𝑖=1 , 𝑠[𝑘][𝑖]  denotes the 

distance between the first and the i-th k-type amino acid in the given sequence, k 

indicates one of the twenty types of amino acids [3], and the symbols 𝐴, 𝑅, ..., V 

represent the twenty kinds of amino acids. 

2.1.2. Averaged property factors 

The averaged property factors (APF) is a 10-dimensional real vector (abbreviated 

as the P  features) 𝑣𝑃 = (〈𝐹(1)〉, 〈𝐹(2)〉, . . . , 〈𝐹(10)〉)  describing the ten physical 

properties of amino acids [20], where 〈𝐹(𝑖)〉 =
1

𝑁
∑ 𝑓𝑘

(𝑖)𝑁
𝑘=1 (i = 1, 2, … , 10) stands for 

the mean value of the i-th factor [20,31], 𝑓𝑘
(𝑖)

 is the i-th factor of amino acid k and N 

is the residue number. The ten properties include the α-helix and bend preference (𝑃1, 

amino acid preferences for alpha-helix or bend-structures) [31], Side-chain size (𝑃2) 

[31], Extended structural preference ( 𝑃3 , 𝛽 -structural preferences) [31], 

Hydrophobicity ( 𝑃4 , hydrophobicity values for amino acids) [31], Double-bend 

preference (𝑃5, normalized proportions of double-bend specified by opposite signs of 

two continues virtual-bond torsion angles) [32], amino acid composition (𝑃6, mean 

values of amino acid compositions) [33], Flat extended preference (𝑃7, mean relative 

proportions of occurrence in extended structural regions 𝐸0) [34], occurrence in α 

region (𝑃8, normalized frequency of α-regions identified by backbone torsion angles) 

[35], pK-C value (𝑃9, polarity parameter for solutes with certain dissociation degree 

in aqueous solution) [36], and the surrounding hydrophobicity (𝑃10, obtained by a 

group of hydrophobic indices for β-structures) [37]. Details of these properties are 

listed in Table V of [31]. 

2.1.3. Occurrence frequencies 

Due to varying lengths of the sequences, simple amino acid numbers are not 

sufficient to characterize the composition features of amino acids, the 20-dimensional 



Molecular & Cellular Biomechanics 2024, 21(4), 202.  

5 

occurrence frequency vector (abbreviated as the 𝐹  features) 𝑣𝐹 =  (𝐹𝐴, 𝐹𝑅 , … , 𝐹𝑉) , 

corresponds to the trivial case of PseAAC when λ = 0 [24], is defined to better present 

the proportions of amino acids in the given protein sequences, where 𝐹𝑘 = 𝑛𝑘/𝑁 

denotes the frequency of the k-type amino acid in a given sequence of N residues. 

2.1.4. Features for structural motifs 

In PROSITE database, the sequence of structural motifs is recorded in patterns. 

To analyze the fixed amino acid combination in these patterns, the occurrence 

frequency feature (F feature): 𝑉𝐹 = (𝑓𝐴, 𝑓𝑅 , . . . , 𝑓𝑉) and the averaged property factor 

feature (APF feature): 𝑣𝑃 = (〈𝐹(1)〉, 〈𝐹(2)〉, . . . , 〈𝐹(10)〉) , are computed from the 

pattern sequence to extract the composition and physical property characters, where 

𝑓𝑘 stands for the pseudo occurrence frequency for the k-type amino acid in the fixed 

pattern, 〈𝐹(𝑖)〉 = ∑ 𝑓𝑘
20
𝑘=1 ∙ 𝑓𝑘

(𝑖)
, 𝑓𝑘 is the pseudo frequency for the k-type amino acid 

and fk
(i)

 is the property value for the i-th factor of the k-type amino acid, k = A, R, N, 

D, ...,V, i =1, 2, ..., 10. 

2.2. Network analysis 

2.2.1. Relationship analysis 

For a class of N protein sequences, when pile up all features, we can get an N × 

90 matrix whose rows are feature vectors 𝑣 = (𝑣𝑁 , 𝑣𝜇 , 𝑣𝐷 , 𝑣𝐴𝑃𝐹 , 𝑣𝐹) and columns are 

feature series. In this matrix, all feature series are aligned in the same protein order 

(elements in the same positions correspond to the features extracted from the same 

protein). Use 𝑋1, 𝑋2, . . . , 𝑋90  to denote the 90-channel features, we compute the 

absolute correlation (CR): 

𝑅(𝑖, 𝑗) = |
Cov(𝑋𝑖 , 𝑋𝑗)

√var(𝑋𝑖)var(𝑋𝑗)
| (1) 

and the normalized mutual information rates (nMIR) [22]: 

𝐼(𝑖, 𝑗) = {
𝐼(𝑋𝑖; 𝑋𝑗)/𝐻max, if 𝑖 ≠ 𝑗

𝐻(𝑋𝑖)/𝐻max, if 𝑖 = 𝑗
 (2) 

between the feature series 𝑋𝑖 and 𝑋𝑗 (i, j = 1, 2, …, 90), here 𝐻max = max
𝑖

𝐻(𝑋𝑖) 

is the largest Shannon entropy for all series. The relations are all symmetric and scaled 

in [0,1], where CR measures the linear relations, while nMIR detects the mutual 

relations regardless of whether it is linear or not [22,38].  

Since the order of the proteins is in consistent with the order of rows in the feature 

matrix, we can eliminate the protein order effect in the relationship analysis by 

performing random shuffles on feature series. We can shuffle the rows of the feature 

matrix, and compute CR and nMIR relations on every shuffled feature matrix. Since 

larger shuffle numbers may exhibit more robust results at the expense of longer 

computation times, we perform a standard deviation test on shuffle numbers as shown 

in Supplementary Table S1, where we use: 
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𝜎𝑅̅̅ ̅ =
1

902
∑ 𝜎𝑅(𝑖, 𝑗)

90

𝑖,𝑗=1

 (3) 

and: 

𝜎𝐼̅ =
1

902
∑ 𝜎𝐼(𝑖, 𝑗)

90

𝑖,𝑗=1

 (4) 

to measure the average standard deviations for CR and nMIR, and 𝜎𝑅(𝑖, 𝑗) =

𝜎(𝑅(𝑖, 𝑗)) and 𝜎𝐼(𝑖, 𝑗) = 𝜎(𝐼(𝑖, 𝑗)) are standard deviations for CR and nMIR between 

𝑋𝑖  and 𝑋𝑗 . Results show that all shuffle numbers present tiny standard deviations 

compared to the overall relationship magnitudes, therefore we choose a moderate and 

balanced choice of 100 shuffles to perform our analysis. 

2.2.2. Thresholds and significant relations 

Since the relationship value ranges may vary between feature types, we define 

the adjusted scalar thresholds 𝜃 ∗ 𝑀 (𝜃 ∈  [0, 1]) to filter the significant relations, 

where 𝑀 = (
𝑀11 ⋯ 𝑀15

⋮ ⋱ ⋮
𝑀51 ⋯ 𝑀55

) is the 5 × 5  block partition for the 90 × 90  matrix, 

where each block Mij  is a constant matrix with all elements identical to the local 

maximum relationship value between feature types i and j, subscripts i, j=1, 2, ... , 5 

denote the five feature types: N, µ, D, F, P, respectively. In the threshold filtering, 

relations above or equal to the threshold are set to 1, others are set to 0. This results in 

a binary adjacency matrix for unweighted networks. 

The variation of the networks against the varying threshold can be observed from 

the spectral radius 𝜌(𝐴) = max
𝑖

|𝜆𝑖| (leading eigenvalue) for the adjacency matrix A, 

in which 𝜆𝑖  is the diagonal entry in the Jordan normal form J (a matrix uniquely 

characterizing each network) [39]. The dependency between the θ values and the 

number of significant relations is shown in Figure 3. In this figure, larger θ values 

may allow less significant relations, while smaller θ values may generate significant 

relations in massive amounts. 

Figure 3 depicts the numbers of significant feature relations and network spectral 

radius against different θ values in [0.90, 0.99] for the different structural classes in 

CATH, SCOP and IDPs. The horizontal axis stands for θ values (scalar multiplicity 

of the thresholds), while the vertical axis represents the numbers of significant 

relations and the spectral radii. 
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Figure 3. Threshold analysis of significant relations and spectral radius. 

In testing the impact of thresholds on the relationship filtering, a medium value θ 

= 0.95 is found to be a proper choice for the filtering for the structural class data. As 

to the structural motifs in PROSITE, due to the sensitivity of the data on the thresholds, 

a lower value 𝜃 = 0.8 is used as the most appropriate choice for all nine types of the 

structural motifs. Worth noting, in all the filtering, the weak relations below (1 −

𝜃) × 𝑀  are massive in amount, which are less identifiable in characterizing the 

structures. Therefore, only significant relations above 𝜃 × 𝑀 are used in our analysis. 

2.2.3. Construction of unweighted networks 

The binary adjacency matrices 𝐴 = (𝑎𝑖𝑗)90×90  obtained by the threshold 

filtering (𝜃 × 𝑀, 𝜃 = 0.95) are used to construct unweighted feature networks. To 

avoid self-edges in the networks, the diagonal elements 𝑎𝑖𝑖 (𝑖 = 1,2, . . . ,90) of the 

binary matrices are set to 0. The 90 vertices of the networks correspond to the 90 

channel of feature series, the edges joining these vertices indicate the significant 

relations identified above the threshold 𝜃 × 𝑀. The networks globally contain both 

intra-type and cross-type relations. The networks are constructed for all 100 random 

shuffles of the feature series. 

2.2.4. Centrality analysis 

Centrality is a metric that associates every vertex a non-negative value estimating 

the importance of the vertices, where higher centrality values indicate higher level of 

importance of the vertices, which implicate more intensive feature interactions of the 

corresponding features. Here, we use the betweenness and closeness centrality, which 

address path connections, to analyse the importance of the vertices. 

In a network of N vertices, the betweenness centrality is calculated as the ratio 

between the number of geodesic paths via i and the number of all geodesic paths as 

follows [39]: 
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𝑐𝑖 =
1

𝑁2
∑

𝑛𝑝𝑞
𝑖

𝑔𝑝𝑞
𝑝,𝑞

 (5) 

where 𝑛𝑝𝑞
𝑖  is the number of geodesic paths between vertices 𝑝 and 𝑞 via the vertex i, 

𝑔𝑝𝑞  is the total geodesic path number from p to q, and the geodesic paths can be 

computed by specifying the powers of the binary adjacency matrices. The summation 

runs over all vertices p and q, and the centrality value is normalized by the N square 

to scale between [0,1]. 

The closeness centrality [39], also relying on geodesic paths, accounts for the 

mean inverse distances from each vertex to all the other vertices and is defined as 

follows [39]: 

𝑐𝑖 =
1

𝑁 − 1
∑

1

𝑑𝑖𝑗
𝑗(≠𝑖)

 (6) 

where 𝑑𝑖𝑗 is the geodesic distance between vertex i and j. The summation rules out the 

term when j = i, in that 𝑑𝑖𝑖 = 0 may obtain an infinite value for the centrality, which 

is unreasonable. This definition has a natural meaning that it assigns closer vertices 

with higher weights but farther vertices with lower weights, which also rules out the 

term 
1

𝑑𝑖𝑗
 for vertices i and j in different connected components [39]. 

2.3. Statistical comparison between feature series 

To compare feature value distributions of different structures, pairwise T tests are 

performed among the feature series. Since different types of features may have 

different distributions, which may lead to the non-homogeneity of the variance for the 

feature series. Welch T tests is kind of commonly used statistical tests that are widely 

used in biological data analysis [40], with the advantage that it is free from the 

homogeneity of variance for the datasets. Therefore, we choose to use the pairwise 

Welch T test in the feature comparison analysis. 

2.3.1. Ranking of feature series 

For each structural class, the 90 channel feature series correspond to the 90-

dimensional features. The lengths of all series are consistent with the number of 

protein sequences in this class. Since different feature types may attain different value 

ranges, we first perform a standard Levene F test [41] between the feature series to 

check the homogeneity of the variances. All significance levels in Δ =

{0.25, 0.1, 0.05, 0.025, 0.01, 0.005} suggest that the variances of the feature series are 

non-homogeneous. This may be due to the existence of both significant and non-

significant feature relations. This does not disturb our study, we choose to perform 

pairwise Welch T tests [41], which do not rely on the homogeneity of variance for the 

feature series, to compare the feature series within each feature type. 

For a specific structural class and feature type, let K denotes the number of feature 

series, the following T statistic is defined as: 
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𝑇 =
𝑋𝑖̅ − 𝑋𝑗̅

√
𝑆𝑖

2

𝑛𝑖
+

𝑆𝑗
2

𝑛𝑗

~𝑇(𝜈) 
(7) 

with 𝜈 =
(𝑆𝑖

2/𝑛𝑖+𝑆𝑗
2/𝑛𝑗)

2

(𝑆𝑖
2/𝑛𝑖)

2

𝑛𝑖−1
+

(𝑆𝑗
2/𝑛𝑗)

2

𝑛𝑗−1

 degrees of freedom, where 𝑛𝑖 = 𝑛𝑗  are sample sizes (the 

length of feature series), 𝑋̅𝑖 , 𝑋̅𝑗  and 𝑆𝑖,𝑘
2 , 𝑆𝑗,𝑘

2  are respectively the sample mean and 

sample variances for feature series 𝑋𝑖 and 𝑋𝑗 (𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, . . . , 𝐾). The following 

two sets of unilateral hypotheses are defined to compare the feature series: 

(I)  

𝐻0: 𝜇𝑖 ≤ 𝜇𝑗 , 𝐻1: 𝜇𝑖 > 𝜇𝑗 , (8) 

(II) 

𝐻0
′ : 𝜇𝑖 ≥ 𝜇𝑗 , 𝐻2: 𝜇𝑖 < 𝜇𝑗 (9) 

For a certain significance level 𝛿 , if 𝑇 ≥ 𝑇𝛿(𝜈) , then H1: 𝜇𝑖 > 𝜇𝑗  holds, the 

feature values of 𝑋𝑖 are significantly larger than those of Xj; otherwise, H0: 𝜇𝑖 ≤ 𝜇𝑗 

holds, we need to further check (II) to judge the magnitudes. When checking 

hypothesis (II), if 𝑇 ≤ −𝑇𝛿(𝜈) , then H2: 𝜇𝑖 < 𝜇𝑗  establishes, the values of 𝑋𝑗  are 

deemed significantly larger than 𝑋𝑖; otherwise, H0
′ : 𝜇𝑖 ≥ 𝜇𝑗 holds and both hypotheses 

H0: 𝜇𝑖,𝑘 ≤ 𝜇𝑗,𝑘  and H0
′ : 𝜇𝑖,𝑘 ≥ 𝜇𝑗,𝑘  establish, which implicates that no significant 

differences are found between 𝑋𝑖 and 𝑋𝑗. 

As 𝛿 alters in Δ = {0.25, 0.1, 0.05, 0.025, 0.01, 0.005} , similar results are 

obtained. When 𝛿 decreases, the rejection regions become narrower, fewer differences 

are identified; larger 𝛿 values e.g., 0.25 and 0.1, may generate wider rejection regions, 

thus more differences can be identified. Since we put more focus on the sequential 

differences rather than their equality, wider rejection regions with larger 𝛿 such as 𝛿 =

0.25 are required. The pairwise T tests are performed for each type of the features and 

the structural classes. 

For a feature type of K series, 𝐶𝐾
2 pairwise T tests are performed (hypotheses (I) 

and (II) together account for one test), and we use a ranking score RK =

(𝑠1, 𝑠2, . . . , 𝑠𝐾) to visualize the comparison results. The rank score is initiated with a 

zero vector. If a feature series 𝑋𝑖 is deemed to have significantly larger values in one 

round of the T test, a score of 1 is added to 𝑠𝑖, and zero sores are added to the other 

features. If both features are equivalent, then both scores are unchanged. After 𝐶𝐾
2 

rounds of pairwise T tests, the final score RK = (𝑠1, 𝑠2, . . . , 𝑠𝐾), denoting the total 

number of tests that each feature is judged with significantly higher values, defines a 

rank for the feature values. Higher RK scores imply larger magnitudes of the features. 

If two features get identical scores, the two features have deemed to attain equivalent 

magnitudes. 

2.3.2. Feature comparison between different structural classes 

Fixing a specific kind of feature 𝑋𝑘 (one of the 90 feature series), we compare 
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the values of 𝑋𝑘  between different structural classes. For two arbitrary structural 

classes i and j, containing 𝑛𝑖 and 𝑛𝑗 number of protein sequences, the following two 

unilateral hypotheses: 

(I)  

H0: 𝜇𝑖,𝑘 ≤ 𝜇𝑗,𝑘 , 𝐻1: 𝜇𝑖,𝑘 > 𝜇𝑗,𝑘 (10) 

(II)  

H0
′ : μi,k ≥ μj,k, H2: μi,k < μj,k (11) 

along with the T statistics: 

𝑇 =
𝑋𝑖,𝑘
̅̅ ̅̅ ̅ − 𝑋𝑗,𝑘

̅̅ ̅̅ ̅

√
𝑆𝑖,𝑘

2

𝑛𝑖,𝑘
+

𝑆𝑗,𝑘
2

𝑛𝑗,𝑘

~𝑇(𝜀) 
(12) 

are defined to compare the values of 𝑋𝑘 between structural classes i and j. Here, 

𝜀 =
(𝑆𝑖,𝑘

2 /𝑛𝑖,𝑘+𝑆𝑗,𝑘
2 /𝑛𝑗,𝑘)

2

(𝑆𝑖,𝑘
2 /𝑛𝑖,𝑘)

2

𝑛𝑖,𝑘−1
+

(𝑆𝑗,𝑘
2 /𝑛𝑗,𝑘)

2

𝑛𝑗,𝑘−1

) is the degree of freedom for T, k = 1, 2, ..., 90 is the feature 

index, 𝑖 ≠ 𝑗 are indices for structural classes, and 𝑋𝑖,𝑘
̅̅ ̅̅ ̅, 𝑋𝑗,𝑘

̅̅ ̅̅ ̅ and 𝑆𝑖,𝑘
2 ,𝑆𝑗,𝑘

2  are the sample 

mean and sample variances for 𝑋𝑘 in structural classes i and j. The sample sizes 𝑛𝑖, 𝑛𝑗 

denote the numbers of the protein sequences in classes i and j. The pairwise Welch T 

tests are performed for 𝑋𝑘 (k = 1, 2, ..., 90) between the different structural classes. A 

ranking score RKCATH = (𝑠𝛼 , 𝑠𝛽 , 𝑠𝑚, 𝑠IDPs) (m represents the mixed 𝛼 and 𝛽 class) is 

defined for CATH and IDPs, and RKSCOP = (𝑠𝛼 , 𝑠𝛽 , 𝑠𝛼/𝛽 , 𝑠𝛼+𝛽 , 𝑠IDPs) is defined for 

SCOP and IDPs, to account for the total number of tests that each structural class is 

judged to attain significantly larger feature values in the 𝐶𝑁
2 rounds of pairwise T tests 

(N = 4 for CATH and IDPs, and N = 5 for SCOP and IDPs). Similar results with slight 

variations are obtained as 𝛿 varies in Δ = {0.25, 0.1, 0.05, 0.025, 0.01, 0.005}. Here, 

the largest value 𝛿 = 0.25 is implemented by our analysis to obtain more dissection 

results. 

2.4. Kmer analysis 

For the 20 types of amino acids, although there may exit 20𝐾 number of possible 

Kmer combinations in total, however not all of them may occur in reality. The 

combination number 20𝐾 grows exponentially as K increases. To balance for both 

Kmer combinations and the frequency of appearance, smaller values such as K = 3 and 

5 are fund as the proper choices for the Kmer analysis. Here, we count the number of 

appearances for the K-mers, and examine the most frequent K-mers appeared in each 

of the different structural types. 

3. Results 

In this study, network and statistical methods are employed to analyze the feature 

interaction and feature value distribution for different protein structural classes and 

motifs. 
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3.1. Analysis of protein feature networks 

3.1.1. Network analysis for protein structural classes 

All protein sequence data (no greater than 30% similarity) in the CATH and 

SCOP databases as well as intrinsically structural disordered proteins (IDP) (no less 

than 80% content of disorder) in DisProt database are analyzed [16]. All CATH and 

SCOP data can be downloaded from Protein Data Bank (PDB, https://www.rcsb.org) 

using the PDB IDs listed in Supplementary Dataset S1. The intrinsically disordered 

proteins (IDPs) can be downloaded from DisProt database (https://www.disprot.org) 

by using the accession numbers provided in Supplementary Dataset S2. The CATH 

data contains three structural classes, i.e., the mainly 𝛼  (1673 protein sequences), 

mainly β (1772 protein sequences) and the mixed α and β (4876 protein sequences) 

classes. The SCOP data contains 4 structural classes, i.e., the all-α (960 protein 

sequences), all-β (1030 protein sequences), α/β (1490 protein sequences) and α + β 

(1356 protein sequences) classes. The IDPs data contains 3625 non-redundant 

structurally disordered region sequences. We extract the natural vector, averaged 

property factors and occurrence frequency features for these sequences, where each 

structural class corresponds to a 90-channel feature matrix, in which the row entries 

are the feature vectors and the column entries are the feature series aligned in the same 

protein order. The feature matrix results are provided in Supplementary Dataset S3. 

One hundred random shuffles are performed on the feature series to eliminate 

protein order effects, where the CR and nMIR relations are computed between the 

shuffled feature series. Standard deviations for the relationship value are averaged to 

verify the robustness of the relations, the data are presented in Table 1. In this table, 

the average standard deviations are significantly lower than the mean relationship 

results, which indicates the relationship results are reliable and robust in our analysis. 

Table 1 presents the averaged standard deviations 𝜎𝑅̅̅ ̅ and 𝜎𝐼̅  for the CR and 

nMIR relations, where 𝜎𝑅̅̅ ̅ =
1

902
∑ 𝜎𝑅(𝑖, 𝑗)90

𝑖,𝑗=1  and 𝜎𝐼̅ =
1

902
∑ 𝜎𝐼(𝑖, 𝑗)90

𝑖,𝑗=1 , 𝜎𝑅(𝑖, 𝑗) =

𝜎(𝑅(𝑖, 𝑗)) and 𝜎𝐼(𝑖, 𝑗) = 𝜎(𝐼(𝑖, 𝑗)) are the standard deviations of the CR and nMIR 

relations between features 𝑋𝑖 and 𝑋𝑗, i, j = 1,2,...,90. The last row shows the mean 

relationship results. 

Table 1. The average standard deviations of the relationship results. 

Standard deviations 

CATH SCOP IDPs 

Classes 𝝈𝑹̅̅̅̅  𝝈𝑰̅̅ ̅ Classes 𝝈𝑹̅̅̅̅  𝝈𝑰̅̅ ̅ 𝝈𝑹̅̅ ̅̅  𝝈𝑰̅̅ ̅ 

Mainly α 5.558× 10−16 7.691× 10−17 All-α 5.025× 10−16 9.288× 10−17 

1.837× 10−15 1.37× 10−16 

Mainly β 5.817× 10−16 8.740× 10−17 All-β 5.005× 10−16 8.423× 10−17 

Mixed α and β 7.929× 10−16 6.000× 10−17 
α/β 5.103× 10−16 7.463× 10−17 

α + β 4.967× 10−16 6.491× 10−17 

Average σ 6.435× 10−16 7.477× 10−17 Average σ 5.025× 10−16 7.916× 10−17 

Mean relations 0.366 0.0729 Mean relations 0.3590 0.0765 0.3544 0.1156 

Take CATH data as an example, the intra-type feature relations for the three 

structural classes are shown in Figures 4–6 (the heatmaps for the other datasets are 

https://www.rcsb.org)/
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shown in Supplementary Figures S1–S25). In these figures, the composition and 

arrangement features are represented by amino acid abbreviations, the APF features 

are represented by their property indices. The colors indicate the magnitudes of the 

relations, and the blue bars indicate weak relations between the features. 

 

Figure 4. Heatmaps for the intra-type relations between composition features (CATH). 

Figure 4 shows the mean (intra-type) relationship matrices between the 

composition features of CATH. The colors represent the magnitudes of the relations 

indicated in the color bar. In the color bars, the colder the colors indicate the lower the 

relationship values, while the warmer the colors interpret the higher the relationship 

values. In each subplot, the dark blue color represents the lowest relationship value, 

while the dark red color represents the highest relationship value. To better display the 

feature interactions, the colors are upper-truncated by the maximum off-diagonal 

elements of the matrices. The row and column labels represent the composition 

features. 
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Figure 5. Heatmaps for the intra-type relations between arrangement features (CATH). 

Figure 5 depicts the mean (intra-type) relationship matrices between amino acid 

arrangement features of CATH. The colors represent the magnitudes of the relations 

indicated in the color bar. In the color bars, the colder the colors indicate the lower the 

relationship values, while the warmer the colors interpret the higher the relationship 

values. In each subplot, the dark blue color represents the lowest relationship value, 

while the dark red color represents the highest relationship value. The colors are upper-

truncated by the maximum off-diagonal elements in the matrices, and the row and 

column indices represent the arrangement features. 
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Figure 6. Heatmaps for the intra-type relations between physical property features (CATH). 

Figure 6 depicts the mean (intra-type) relationship matrices between physical 

property features of CATH. The colors represent the magnitudes of the relations 

indicated in the color bar. In the color bars, the colder the colors indicate the lower the 

relationship values, while the warmer the colors interpret the higher the relationship 

values. In each subplot, the dark blue color represents the lowest relationship value, 

while the dark red color represents the highest relationship value. The colors are upper-

truncated by the maximum off-diagonal elements in the matrices. The integer channel 

indices denote the ten physical properties of the APF features: 𝑃1 (the α-helix and bend 

preference, 𝑃2 (side-chain size), 𝑃3 (extended structural preference), 

𝑃4 (hydrophobicity), 𝑃5 (double-bend preference), 𝑃6 (amino acid composition), 𝑃7 

(flat extended preference), 𝑃8  (occurrence in α region), 𝑃9  (pK-C value), 𝑃10  (the 

surrounding hydrophobicity indices for β-structures). 

In both CATH and SCOP datasets, common characters are identified between the 

different structural classes, e.g., the Asp, Leu, and Val present as common sources of 

significant intra-type feature relations, whereas His, Cys, Met, and Trp present weak 

intra-type relations with other features. 

3.1.2. Significant feature relations by threshold filtering 

We use the mean relationship matrices to perform the threshold analysis. An 

example of the significant intra-type CR relations for CATH is shown in Figure 7. In 

this figure, the relations below the thresholds 𝜃 × 𝑀  ( 𝜃 = 0.95 ) are set to 0 

(background blue), where the yellow lattices indicate the significant CR relations 

above the thresholds. The plots of other datasets are shown in Supplementary Figures 

S26–S38, where typical significant relations are summarized in Supplementary Tables 

S2–S3. An example of the network structure constructed from the significant CR 

relations for the all α class of CATH is shown in Figure 8. 
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Figure 7. Significant intra-type CR relations between protein sequence features (CATH). 

Figure 7 plots the significant intra-type CR relations above the thresholds 𝜃 × 𝑀 

(𝜃 = 0.95) for CATH. The five column panels indicate the significant feature relations 

for different types of features, while the three row panels indicate the significant 

relations for different structural classes. The yellow color indicates significant feature 

relations, while the background blue indicates non-significant relations. The diagonal 

elements of the self-relations are set off in our analysis. 

 

Figure 8. A network example of the CR relations for the all α class of CATH. 

Figure 8 shows an example of the unweighted undirected networks constructed 

by the significant CR relations for the all α class of CATH. The red vertex labels 

denote the different features, while the purple edges represent the interactions 

(significant relations) between the vertices. The fill color and the size of the vertices 
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reflects the degrees of the vertices, the darker green colors and the larger point radius 

indicate higher degrees, while the lighter green colors and the smaller point radius 

indicate smaller degrees. 

Results show that the Asp, Leu, and Val act as the main sources of strong feature 

relations, while Cys, His, Trp, Met played as the sources of weak intra-type relations. 

Significant feature interactions are also identified between the compositions of Ala 

and side-chain size, between the numbers of Gly and Ala, Val, as well as between the 

composition features and the α-helix and bend preference property, and the sequence 

arrangements of Ala also acted as a key source of the feature interactions. 

In the α structural analysis, the Glu features act as the main sources of feature 

interactions, while significant interactions are found between Pro and hydrophobicity, 

and between the frequencies of Arg and Lys. The mainly α class (CATH) exhibits 

significant connections between the arrangements of Leu and Ala and between the 

compositions of Ser and Leu, while all α class (SCOP) also shows significant relations 

between the arrangements of Trp and hydrophobicity, and between the arrangements 

of Met and double-bend preference. 

However, in 𝛽 structural analysis, the Gly features are found as the main sources 

of features interactions, where interactions are also identified between side-chain size 

and pK-C values and between the arrangements of Thr with other amino acids. The 𝛽 

structures also present intensive interactions for Thr, Phe, Tyr, side-chain size, pK-C 

value, extended structural preference, and surrounding hydrophobicity for β structures 

properties. The mainly 𝛽  class structures (CATH) also show strong connections 

between the extended structural preference, surrounding hydrophobicity for β 

structures and sequence arrangement features, and between the arrangements of Ser, 

Thr, Ile with other amino acids. The all 𝛽  class structures (SCOP) also show 

interactions between the composition of Lys and surrounding hydrophobicity for β 

structures property, between the compositions of Ser and Thr, and between the 

composition of Gly and pK-C value, as well as between 𝛼-helix and bend preference 

and the arrangements of Tyr. 

Moreover, both the 𝛼 and 𝛽 structures are found to admit intensive interactions 

between the arrangements of Ser and other amino acids. The mainly α and mainly 𝛽 

classes also present intensive interactions between the compositions of Cys and Arg, 

while the all 𝛼  and all 𝛽  classes also present strong connections between 

hydrophobicity and amino acid arrangement features. 

The mixed structures share common characteristics with the 𝛼 and 𝛽 structures. 

For instance, the mix type of structures show similarity with the α structures in terms 

of the intensive interaction for Glu, between hydrophobicity and amino acid 

arrangements, between the compositions of Lys and Arg, and between the composition 

of Ala and side-chain size. The mixed structures also show similarity with 𝛽 structures 

regarding the significant feature interactions for Gly, between side-chain size and pK-

C value, between the arrangements of Trp, Tyr and α-helix and bend preference, and 

between the arrangements of Cys and amino acid composition features. 

The mixed structures also contain special characters in terms of the interactions 

between Met, Lys and double-bend preference, between the arrangements of Cys, His, 

Met, Tyr and amino acid composition features, and between the arrangements of Gly 
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and Glu, as well as between the arrangements of Ala, Gly, Glu, Ile with other amino 

acids. The mixed structures also show strong connections between double-bend 

preference, flat extended preference and surrounding hydrophobicity for 𝛽-structure 

properties and between the arrangement of Cys and the composition of Arg. 

The IDPs show different characteristics apart from typical structural classes. It 

presents intensive feature interactions among the composition numbers of Glu, Val, 

Lys, among the arrangement features of Ala, Arg, Asp, Gln, Glu, Gly, Ile, Leu, and 

Val, between the numbers of Leu and Ile as well as Ser and Thr, and between the 

composition number of Glu and sequence arrangements of Gly. 

3.1.3. Centrality analysis 

Global feature networks are constructed by the significant relations, where 

betweenness and closeness centrality is computed for all vertices (features) in the 

networks. The centrality values are normalized in [0,1] by the maximum centrality in 

the same network. Higher centrality values implicate higher importance of the vertices. 

The normalized centrality values are plotted in Figures 9 and 10 (CATH and IDPs) 

and Figures 11 and 12 (SCOP and IDPs). In these figures, the centrality results are 

presented by colors, where the rows represent the feature, while the columns stand for 

the structural classes. Both centrality measures present similar results, where the 

(model-free) nMIR networks show more dissection results than the (linear) CR 

networks, therefore we mainly discuss the nMIR results. 

 
Figure 9. Centrality plots for the natural vector features (CATH and IDPs). 

Figure 9 shows the normalized betweenness and closeness centrality outcomes 

for the natural vector features of the CATH and IDPs data. Among the four panel plots, 

the left two panels are respectively the normalized centrality results for the CR 

networks, while the right two panels present the normalized centrality results for the 

nMIR networks. The rows are the natural vector features labeled by amino acid 

abbreviations (the top 20 rows are for N features, the middle 20 rows are for 𝜇 features, 

and the bottom 20 rows are for D features), and the columns represent the different 

structural classes. The colors indicate the magnitudes of the normalized centrality 
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values as presented in the color bar. In the color bars, the colder the colors indicate the 

lower the normalized centrality values, while the warmer the colors interpret the higher 

the normalized centrality values. In each subplot, the dark blue color represents the 

lowest normalized centrality value, while the dark red color represents the highest 

normalized centrality value. 

 
Figure 10. Centrality plots for the APF and F features (CATH and IDPs). 

Figure 10 shows the normalized betweenness and closeness centrality outcomes 

for the APF and F features of the CATH and IDPs data. Among the four panel plots, 

the left two panels are respectively the normalized centrality results for the CR 

networks, while the right two panels present the normalized centrality results for the 

nMIR networks. The rows stand for the ten physical properties and amino acid 

frequency features, while the columns represent the different structural classes. The 

colors of the lattices indicate the normalized centrality values as presented in the color 

bar. In the color bars, the colder the colors indicate the lower the normalized centrality 

values, while the warmer the colors interpret the higher the normalized centrality 

values. In each subplot, the dark blue color represents the lowest normalized centrality 

value, while the dark red color represents the highest normalized centrality value. 
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Figure 11. Centrality plots for the natural vector features (SCOP and IDPs). 

Figure 11 shows the normalized betweenness and closeness centrality outcomes 

for the natural vector features of the SCOP and IDPs data. Among the four panel plots, 

the left two panels are respectively the normalized centrality results for the CR 

networks, while the right two panels present the normalized centrality results for the 

nMIR networks. The rows are the natural vector features labeled by amino acid 

abbreviations; the columns are for the different structural classes. The colors of the 

lattices indicate the normalized centrality values as presented in the color bar. In the 

color bars, the colder the colors indicate the lower the normalized centrality values, 

while the warmer the colors interpret the higher the normalized centrality values. In 

each subplot, the dark blue color represents the lowest normalized centrality value, 

while the dark red color represents the highest normalized centrality value. 

 
Figure 12. Centrality plots for the APF and F features (SCOP and IDPs). 

Figure 12 shows the normalized betweenness and closeness centrality outcomes 
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for the APF and F features of the SCOP and IDPs data. Among the four panel plots, 

the left two panels are respectively the normalized centrality results for the CR 

networks, while the right two panels present the normalized centrality results for the 

nMIR networks. The rows stand for the ten physical properties and amino acid 

frequency features, the columns are for the different structural classes. The colors of 

the lattices indicate the normalized centrality values as presented in the color bar. In 

the color bars, the colder the colors indicate the lower the normalized centrality values, 

while the warmer the colors interpret the higher the normalized centrality values. In 

each subplot, the dark blue color represents the lowest normalized centrality value, 

while the dark red color represents the highest normalized centrality value. 

In Figures 9 and 10, all structural classes show high centralities for the 

arrangements of Leu. The mainly 𝛼 class presents low centrality results for Gly and 

Val, but strong centrality results for Glu, Pro, Met, and for the compositions of Ala, 

Ser, side-chain size and hydrophobicity properties. The mainly 𝛽 class shows low 

centrality results for Glu but strong centrality results for Gly, Thr, Ser, Asp, Tyr, Val, 

and for the 𝛼-helix and bend preference property. The mixed 𝛼 and 𝛽 structures attain 

high centrality results for Asp, Val, Glu, Gly, and for the compositions of Ala, Arg, 

Lys, side-chain size and pK-C values. The mixed structural class shows similar trends 

with the mainly 𝛼 class in terms of the strong centrality for Glu, side-chain size and 

the composition of Ala, while the mixed structural class also shows similarities with 

the mainly 𝛽 class structures in terms of the strong centrality for Gly. 

The SCOP results are similar to the CATH results with slight differences. The all 

𝛼 class also obtains high centrality for double-bend preference, while the all 𝛽 class 

structures also attain strong centrality for the arrangements of Phe, Pro, Ile. The 𝛼/𝛽 

class shows high centrality values for Ala and Lys, while the 𝛼 + 𝛽 class structures 

show strong centrality results for Trp and for the compositions of Trp, Glu, Leu, Pro, 

and Cys, as well as 𝛼-helix and bend preference, hydrophobicity, and amino acid 

composition properties. The features of Leu are important in nearly all structural 

classes, while Glu, Pro, and hydrophobicity are important for α structures, and Gly, 

Ser, Thr, 𝛼 -helix and bend preference are important for 𝛽  structures. The mixed 

structures contain similarities with the 𝛼  and 𝛽  structures but also peculiar 

characteristics in terms of the composition of His, side-chain size, pK-C values, and 

amino acid composition. 

The IDPs present similar centrality distributions with the mixed structures in 

terms of the high centrality values for side-chain size and pK-C. It also shows special 

characteristics such as high centrality for the composition and arrangements of Leu, 

Ser, Thr, Val, Ile, and Asn; for the composition of Gly and Pro; for the arrangements 

of Ala; and for physical properties such as side-chain size, amino acid composition, 

occurrence in the α region and pK-C value. 

3.1.4. Network Analysis for structural motifs 

In this section, we analyse the networks for the typical structural motifs in 

PROSITE database (https://prosite.expasy.org/). In the PROSITE database, nine 

typical types of structural motifs are found with sufficient pattern data to perform our 

analysis, they are namely, the 𝛼 type motifs, 𝛽 type motifs, 𝛼 and 𝛽 type motifs, 𝛽 

harping rings, EF-hands, βαβ motifs, αβα motifs, motifs with only loop structures, 
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and αββ motifs. The accession numbers of these data can be found in Supplementary 

Dataset S7. 

In this analysis, we consider the composition and physical property characters for 

the fixed patterns in the PROSITE database. The arrangement features of amino acids 

are later analyzed by K-mers. We extract the pseudo compositional features (F 

features) and the average property factor (APF features) for the fixed patterns and 

compute the CR and nMIR relations between these features. Heatmaps for the 

relationship matrices and significant feature relations are shown in Figures 13–16. In 

these figures, the different structural motifs obtain different distributions for their 

significant feature relations. 

 
Figure 13. Heatmaps for the feature relations of 𝛼, 𝛽 and 𝛼𝛽 motifs. 

Figure 13 presents the heatmaps for the mean relationship matrices and 

significant feature relations (filtered by thresholds) for 𝛼, 𝛽 and 𝛼𝛽 motifs. The colors 

indicate the magnitudes of the relations, as shown in the color bar. The left two panels 

stand for CR relations, while the right two panels stand for nMIR relations. The 

different row panels represent the different structural motifs. The diagonal elements 

are self-relations, which are not concerned in our analysis, therefore, the colors of the 

relationship matrices are upper truncated by the maximum off-diagonal elements for 

better visualization. In the plots of the significant relationship matrices (the 2nd and 

4th column panels), the diagonal elements are set to 0 in the process of threshold 

filtering to avoid self-loops in networks. 
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Figure 14. Heatmaps for the feature relations of 𝛽 harping rings, EF-hands, and 𝛽𝛼𝛽 motifs. 

Figure 14 presents the heatmaps for the mean relationship matrices and 

significant feature relations (filtered by thresholds) for 𝛽 harping rings, EF-hands, and 

𝛽𝛼𝛽 motifs. The colors indicate the magnitudes of the relations, as shown in the color 

bar. The left two panels stand for CR relations, while the right two panels stand for 

nMIR relations. The different row panels represent the different structural motifs. The 

colors of the relationship matrices are upper truncated by the maximum off-diagonal 

elements, and in the plots of the significant relationship matrices (the 2nd and 4th 

column panels), the diagonal elements are set to 0 after threshold filtering.  

 
Figure 15. Heatmaps for the feature relations of 𝛼𝛽𝛼 motifs, motifs with mainly loop structures, and 𝛼𝛽𝛽 motifs. 

Figure 15 presents the heatmaps for the mean relationship matrices and 

significant feature relations (filtered by thresholds) for 𝛼𝛽𝛼  motifs, motifs with 

mainly loop structures, and 𝛼𝛽𝛽 motifs. The colors indicate the magnitudes of the 
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relations, as shown in the color bar. The left two panels stand for CR relations, while 

the right two panels stand for nMIR relations. The different row panels represent 

different structural motifs. The colors of the relationship matrices are upper truncated 

by the maximum off-diagonal elements, and in the plots of the significant relationship 

matrices (the 2nd and 4th column panels), the diagonal elements are set to 0 after 

threshold filtering. 

The unweighted networks are constructed from significant relationship matrices, 

where the betweenness and closeness centralities are also computed for the different 

structural motifs. Since the networks are sparse, a lower threshold 𝜃 = 0.8 is used to 

filter the significant relations. The betweenness and closeness centrality results are 

presented in Figure 16. In this figure, the amino acids Cys, Gly, Ile, Leu, and Val 

attain high centrality in the networks.  

 
Figure 16. Centrality plots for the different structural motifs. 

Figure 16 presents the heatmaps for the betweenness and closeness centrality 

results for the different structural motifs. Among the four panel plots, the left two 

panels respectively show the normalized centrality results for the CR networks, while 

the right two panels present the normalized centrality results for the nMIR networks. 

The rows stand for the amino acid features, while the columns represent the different 

structural motifs. The colors of the lattices indicate the magnitudes of the normalized 

centralities as represents by the color bar. In the color bars, the colder the colors 

indicate the lower the normalized centrality values, while the warmer the colors 

interpret the higher the normalized centrality values. In each subplot, the dark blue 

color represents the lowest normalized centrality value, while the dark red color 

represents the highest normalized centrality value. 

The 𝛼 type motifs show high centrality (strong amino acid interactions) for Arg 

and Met, while the 𝛽  type motifs show high centralities for Cys and Gly. The 𝛽 

harping rings, 𝛽𝛼𝛽 motifs, loop structures and 𝛼𝛽𝛽 motifs also attain high centrality 

for Cys. The 𝛽 harping rings and loop structures show lower centralities for Ile and 

Leu than other structures. The EF-hands tend to present high centralities for Met and 
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Phe, while the 𝛼𝛽𝛼 motifs show high centralities for Ala and Ser. The loop structures 

also attain high centrality for the frequency of Ala. The 𝛽 harping rings, EF-hands, 

𝛽𝛼𝛽 motifs, 𝛼𝛽𝛼 motifs, and 𝛼𝛽𝛽 motifs together show low centralities for double-

bend preference, while the 𝛼 and 𝛽 motifs, EF-hands, and 𝛼𝛽𝛼 motifs present low 

centrality values for the amino acid composition and flat extended preference 

properties. The 𝛼𝛽𝛽 motifs show low centralities for the double-bend preference and 

the occurrence in the α region properties. 

3.2. Statistical analysis of feature series 

3.2.1. Comparison between different features 

We first compare the values of different features using pairwise T tests (𝛿 =

0.25) within each structural class. The feature value ranks are shown in column-wise 

in Figure 17. In this figure, the colors indicate the magnitudes of the ranks indicated 

by the color bar. We find the features of Glu, Leu, the compositions of Ala, Asp, Val, 

and physical properties such as hydrophobicity, surrounding hydrophobicity for 𝛽-

structure properties, achieve higher ranks than other features, whereas Cys, His, Met, 

Trp, and double-bend preference, amino acid composition properties show lower 

ranks. The values of the physical property features are determined by the amino acid 

compositions. Large compositions of amino acids with high values in this property 

may lead to a high feature value of this property. The value ranks for the twenty amino 

acids in the ten physical properties are presented in Supplementary Table S4. The Cys, 

His, Met, and Trp attain high values in amino acid composition properties, while His, 

Met, and Lys obtain high values in double-bend preference properties. However, Ala, 

Val, and Leu have low values for amino acid composition, and Ala, Asp, and Leu also 

show low values for double-bend preference. Therefore, the small compositions of 

Cys, His, Met, and Trp and the large compositions of Ala, Asp, Val, and Leu together 

lead to the low values for these two properties. Similarly, the large compositions of 

Glu and Asp may lead to high values of hydrophobicity, and the large compositions 

of Leu, Asp, Val and low composition of Trp together contribute to the high values of 

the surrounding hydrophobicity for 𝛽-structures. 
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Figure 17. Statistical comparison between feature series. 

Figure 17 shows the feature value ranks for the different structural classes of 

CATH (top panel) and SCOP (bottom panel). These ranks are obtained by comparing 

different features using pairwise T tests ( 𝛿 = 0.25 ). The colors indicate the 

magnitudes of the ranks as presented in the color bar. In the color bars, the colder the 

colors indicate the lower the ranking values, while the warmer the colors interpret the 

higher the ranking values. The ranking values range from 0 to 19 (for the twenty types 

of amino acids), the dark blue color indicates zero ranking value, while the dark red 

color indicates the highest-ranking value. The labels A, B, and M separately denote 

the 𝛼, 𝛽 and mixed structural classes. 

The compositions of Ala, Glu, and Leu show higher ranks in 𝛼  than in 𝛽 

structures. The 𝛼 structures attain large compositions for Ala, Asp, Glu, Leu, Lys, Val, 

and high value of arrangement features for Glu, Leu, as well as high property values 

for hydrophobicity, flat extended preference, pK-C values, but low values for 𝛼-helix 

and bend preference property. Since Ala, Glu, and Leu attain low values in 𝛼-helix 

and bend preference, while Leu attains certain high values in flat extended preference 

and pK-C, the large compositions of Ala, Glu, and Leu together contribute to the low 

values of α-helix and bend preference and high values of flat extended preference and 

pK-C. 

The compositions of Gly, Ser, Thr, and Val and the arrangements of Val and Ser, 

as well as the extended structural preference property, show higher ranks in 𝛽 

structures than in other structures. The mainly β class also attains high values for 𝛼-

helix and bend preference, extended structural preference, and hydrophobicity. The 

mixed structures attain high rankings for the features of Glu, the compositions of Ala, 

Gly, Ile, and Val, the arrangements of Arg, and the extended structural preference, 

hydrophobicity, occurrence in the 𝛼 region, and surrounding hydrophobicity for 𝛽-

structure properties. 

The IDPs show high rankings for the composition and arrangement of Ala, Glu, 
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Gly, and Ser and for the physical properties: 𝛼 -helix and bend preference, 

hydrophobicity, and flat extended preference. These types of structures not only show 

similarity with the other structural classes in terms of the high rankings for the 

composition of Glu and Gly and hydrophobicity, but present special characteristics in 

terms of the high rankings for the arrangements of Ala and Ser and the α-helix and 

bend preference property. 

3.2.2. Comparison between structural classes 

The comparison results for each type of feature across different structural classes 

are shown in Figure 18 and Figure 19. In these figures, the ranks are plotted row-wise 

for each structural class, along with plots for the sample mean and standard deviations. 

The colors indicate the values of the ranks as shown in the color bar. The sequential 

differences can be observed by comparing the rows of ranks. We can see apparent 

differences between the different structural classes. The mixed structural classes show 

overall higher ranks for all amino acid arrangements than other structural classes, 

which is followed by 𝛽  and 𝛼  structures, and the IDPs structures show the lowest 

ranks for the arrangement features. The mixed structures, containing both 𝛼, 𝛽 and 

loop structures, may be more complicated and require more amino acid arrangements 

to encode the structures. The 𝛽 structures rank the second highest in the arrangement 

features, which may imply that the bend and junction of parallel and anti-parallel 𝛽 

sheets may need more comprehensive amino acid arrangements than α structures. The 

low ranking for the arrangement features of IDPs may be caused by the repetition of 

certain types of amino acid, as found in the Kmer analysis. The red bars for Ala, and 

Leu, hydrophobicity in the sample mean plots indicate larger values of these features. 

The dark blue bars for Cys, His, Met, and Trp indicate small values of these features. 

 
Figure 18. Feature comparison between structural classes (CATH and IDPs). 

Figure 18 shows the feature value ranks (top panel), sample means (middle 

panel) and standard deviations (bottom panel) for CATH and IDPs. The feature ranks 

are obtained by comparing the same feature between different structural classes using 

pairwise T tests (𝛿 = 0.25). The sample means and standard deviations are the 
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common sense mean and standard deviations for the feature series. The colors of the 

lattices indicate the values of the ranks as presented in the color bar. In the color bars, 

the colder the colors indicate the lower the ranking values, while the warmer the colors 

interpret the higher the ranking values. In each subplot, the dark blue color means the 

lowest ranking value, while the dark red color means the highest-ranking value. The 

row label ‘Mixed” stands for the mixed 𝛼 and 𝛽 class. 

 
Figure 19. Feature comparison between structural classes (SCOP and IDPs). 

Figure 19 shows the feature value ranks (top panel), sample means (middle 

panel) and standard deviations (bottom panel) for SCOP and IDPs. The feature ranks 

are obtained by comparing the same feature between different structural classes using 

pairwise T tests (𝛿 = 0.25). The sample means and standard deviations are the 

common sense mean and standard deviations for the feature series. The colors of the 

lattices indicate the values of the ranks, as shown in the color bar. In the color bars, 

the colder the colors indicate the lower the ranking values, while the warmer the colors 

interpret the higher the ranking values. In each subplot, the dark blue color means the 

lowest ranking value, while the dark red color means the highest-ranking value. The 

row labels A, B denote the 𝛼 and 𝛽 classes, respectively. 

We can see sharp discrepancy between the 𝛼  and 𝛽  structures. In the 𝛼 

structures, there sequences contain large compositions for Ala, Arg, Gln, Glu, Leu, 

and Met and high values for side-chain size, flat extended preference, and pK-C 

values, while the 𝛽 structures show large compositions for Asn, Cys, Gly, Ser, Thr, 

Trp, Tyr, and Val and high values for extended structural preference properties. The 

large compositions of Glu, Lys, and Gln together lead to the high values of side-chain 

size and flat extended preference in α  structure properties, while the large 

compositions of Cys, Ser, Thr, and Tyr result in the high values of extended structural 

preference. The mixed structures show high values for surrounding hydrophobicity for 

𝛽-structures, and large compositions of Ala, Arg, His, Ile, Leu, etc. The IDPs show 

large compositions of Asp, Gln, Glu, Lys, Met, Pro, and Ser and high values for the 

α-helix and bend preference properties. 
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3.2.3. Feature comparison for structural motifs 

We compute the feature value rankings for each type of the motifs, which are 

presented in Figure 20. In this figure, the composition of Gly, Ile, Leu, and Val attain 

general higher rankings than that of other amino acids. In addition, the extended 

structure preference, occurrence in the α region and surrounding hydrophobicity attain 

higher ranking than those of the other properties, whereas the side-chain size attains 

low ranking in nearly all structural motifs. Except for the general high rankings of Ile, 

Leu and Val, the α motifs also show high rankings for Ala, Lys, while the 𝛽 motifs 

show high rankings for Gly, the 𝛽 harping rings show high ranking for Cys, while the 

motifs of loop structures show high rankings for Cys, Gly, Ser, and the 𝛼𝛽𝛽 motifs 

also present high ranking for Cys. 

 
Figure 20. Statistical comparison between different feature series of the structural motifs. 

Figure 20 shows the feature value ranks for the different structural motifs. The 

ranks are obtained by comparing the same feature between different structures using 

pairwise T tests (𝛿 = 0.25). The colors indicate the magnitudes of the ranks as 

indicated in the color bar. In the color bars, the colder the colors indicate the lower the 

ranking values, while the warmer the colors interpret the higher the ranking values. In 

each subplot, the dark blue color means the lowest ranking value, while the dark red 

color means the highest-ranking value. 

The same features among different structural motifs are compared, and the results 

are shown in Figure 21. The α motifs attain a high ranking for Ala, Glu, and Thr, 

while the 𝛽 motifs attain a high ranking for His. The 𝛽 harping rings present high 

ranking for Phe and Trp, the 𝛽𝛼𝛽 motifs show a high ranking for Trp and Val, and the 

𝛼𝛽𝛼 motifs attain high ranking for Ile, Leu, and Met. The loop structures attain high 

ranking for Arg, Asn, Glu, Gly, Lys, Pro, Ser and physical properties such as 𝛼-helix 

and bend preference, hydrophobicity, amino acid composition, flat extended 

preference, and surrounding hydrophobicity. In the second panel of Figure 19, the 

sample mean plots show generally high values for the composition of Ile, Leu, Met, 
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and Val and for physical properties such as extended structure preference, occurrence 

in the 𝛼 region, and surrounding hydrophobicity. 

 

Figure 21. Feature comparison between the different structural motifs. 

Figure 21 shows the feature value ranks (top panel), sample mean (middle panel) 

and standard deviations (bottom panel) for the different structural motifs. The feature 

ranks are obtained by comparing the same features between the different structural 

motifs using pairwise T tests (𝛿 = 0.25). The sample mean and standard deviations 

are the common sense means and standard deviations for the feature series. The colors 

indicate the values of the ranks as presented in the color bar. In the color bars, the 

colder the colors indicate the lower the ranking values, while the warmer the colors 

interpret the higher the ranking values. In each subplot, the dark blue color means the 

lowest ranking value, while the dark red color means the highest-ranking value. 

3.3. K-mer analysis 

K-mers are the strings of consequent amino acids in protein sequences, which are 

basic units that reflect the local arrangement of amino acids in given protein sequences. 

We count the statistics of K-mers for the CATH, SCOP and IDPs datasets with K = 3 

and 5. The most frequent 3-mers for the different structural classes are listed in 

descending order of their occurrence as presented in Tables 2 and 3. In the CATH 

data, the mainly 𝛼 class admits 236,405 different 5-mers and 7954 different 3-mers, 

majority of these 5-mers appear only once, in which the most frequent 5-mer appears 

18 times in the mainly 𝛼 class, and the most frequent 3-mer appears 389 times. Among 

these K-mers, the most frequently appeared amino acids in 𝛼-helix structures are such 

as Ala, Leu, Glu, Asp, Val, Tyr. 

Table 2 lists the most frequent 3-mers for the different structural classes in 

descending order of their appearance. 
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Table 2. The most frequent 3-mers for the different structural types. 

Classes The most frequent 3-mers in descending order of their appearance 

Mainly α 

ALA, ELL, LLE, AAA, LAA, AAL, LLA, EAL, ALL, EEL, LLL, LAE, LAL, 

ELA, LEE, LLD, LLK, LAR, LEA, LLS, KLL, AEL, AEA, LKE, LLR, ALE, 

LEL, KEL, DLL.  

Mainly β 
DGT, DGK, LTV, GTV, SGS, TVT, VTL, DGS, GSG, VTV, SGG, GGV, GKV, 

LTL, VSG  

Mixed α and β 
ALA, LAA, AAA, AAL, EAL, LLA, ALL, LLE, LAE, ELL, AAG, AGL, EEL, 

LAL, LKE, AVA, ALE, LAG, ELA, VAA, LEE  

All-α 
LLE, ALA, AAA, EAL, EEL, AAL, ALL, ELL, LAE, LEE, LLA, LLD, LAA, 

ELA, LLL, LLK, LEA, LKE, KEL, LAL, KAL, AEL, LEK, EAA, LEL  

All-β 

GSG, SGS, DGS, VTV, DGT, TVT, GTV, VTL, LTL, DGK, SGT, TLT, GSV, 

TGT, VGG, VKV, SGG, PDG, AGT, GGV, GKL, GVL, LLA, LTV, GSS, ADG, 

ATG   

α/β 
ALA, AAA, LAA, AAL, EAL, LLA, LLE, LAE, ALL, LAL, LAG, EEL, ALE, 

ALK, AVA, LKE, ELL, ELA, ALR, AGL, VLA 

α + β 

ALA, ELL, LAA, EAL, LLE, LLA, ALL, LGL, AAL, LKE, LAL, LAE, EEL, 

LEE, LLG, EKL, ALG, LLK, LEK, LLS, LEA, AAA, DLL, KAL, AEL, EVL, 

LLL 

IDPs 

EEE, SSS, AAA, GGG, PPP, EED, DDD, SPS, KKK, DEE, EDE, EEK, SDS, 

APA, SGS, EKK, TSP, GSS, PAA, DED, AEE, SSG, QQQ, KEK, PSS, SPT, PAP, 

PTS, EDD, EQE, AAP, ELE, LEE, DDE, EEA, KEE, GGS, GSG, SSE, SAS, 

SGG, SEE, STS, EEL, PSP, SSP, DSD, EAE, PEE, AAS, KKE, EAA, ASS 

The mainly 𝛽 class contains 286,063 different 5-mers and 7986 different 3-mers. 

The most frequent 5-mer appears 15 times, while the most frequent 3-mer appears 18 

times. The frequent appearance of Gly, Val, Leu, Asp, Thr, Lys in K-mers is a special 

characteristic for the 𝛽 structures. 

The mixed 𝛼 and 𝛽 class includes 722,430 different 5-mers and 7997 different 3-

mers. The most frequent 5-mer appears 40 times, while the most frequent 3-mer 

appears 1183 times. The frequent appearance of Ala, Val, Leu, Gly, Glu, Lys is a 

critical characteristic for the mixed α and 𝛽 structures. 

Table 3 lists the most frequent 5-mers for the different structural classes in 

descending order of their appearance. 

Table 3. The most frequent 5-mers for the different structural types. 

Classes The most frequent 5-mers in descending order of their appearance 

Mainly α 

ALELD, LELDP, VKLLL, NLGNA, AAALA, DEAIE, LEAGA, LGNAY, LLEAG, 

TPLHL, YDEAI, QKALE, EYYQK, IEYYQ, GNAYY, LHLAA, LLLEA, KALEL, 

PLHLA, VVKLL 

Mainly β 

GDSGG, DSGGP, PDGTV, STDGG, GDVVL, SDPYV, SGGPL, RIAQL, RSGLA, 

RSTDG, DAGIY, DGALT, DGSSS, DPYVK, GGVPI, NDGKL, KLGLT, KLKLG, 

FTYTG, SPDGK, TLTVT  

Mixed α and β 
AAAAA, AALAA, AAVAA, EELKK, NLYFQ, ALAAL, GSGKS, ALAAA, 

ENLYF, ALLAA, ALLEA, GSGKT, LAAAA, AARAL, LAALA, VAALA  

All-α 

AALAA, KKLEE, AAALA, EELEE, LAALL, LLDEL, LKALG, LTEKG, KRLEA, 

SEDYG, VSELL, AALLE, ARRLL, AERLL, AILAT, ALAAA, REALE, REAVE, 

RLEEA, RVMES, QLTEE, EAALK, EAELA, EALLA, EELLR, EEVKK, ELEEL, 

ELLAR, EVEAL, IRRLE, LEKAL, LLERL, LTEEE, LVKVL, KELGT, KLIEK, 

KKLLE, MILNS  
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Table 3. (Continued). 

Classes The most frequent 5-mers in descending order of their appearance 

All-β 

DGKLK, GDSGG, STDGG, WYVDG, GTYRC, NDGKL, KLGLT, FFTYT, 

FTYTG, TGIVS, YVDGV, ADLSG, ANPLY, ATANI, RKDHS, DGRVF, DGKRP, 

DGSSS, DLRGA, DSGGP, DWVKY, QDGKR, EYDWV, HTATA, IGDVV, IVSSF, 

GANPL, GGALV, GGSGG, GKLKL, GFDAS, GSYNG, GTVAS, GYSNG, 

NQDGK, NPLYA, NTGIV, LDTGA, LETGA, LKKGD, LTSSA, KLKLG, PAHGT, 

SGTAL, SNGGV, SNGNL, SVNLL, TIRVT, TNKYT, TLVGH, TPGKI, YTGPA, 

VDAAF, VDGVL, VKYTS, VTLTC  

α/β 

AAAAA, GSGKS, ALAAL, GKTTL, GSGKT, SGKST, EELKK, TGSGK, AALAA, 

ALEGA, LAAAA, LLAEA, AAAAL, AAEAL, ADVVL, AGLLA, ALREA, 

EELRK, ELAKR, GVDVV, LEALG, VIGGG 

α + β 

DFGLA, AVLRA, RDLKP, EALEA, EEIKK, AAEKL, AKEIA, DILKE, DLIKK, 

EELLK, EKEKE, EKEFL, GLRRL, LAELL, LKEKL, KALGL, KEKLL, FAEAF, 

TPDGR 

IDPs 

EEEEE, SPTSP, YSPTS, GGGGG, PSYSP, SPSYS, SDSDS, PTSPS, SYSPT, 

TSPSY, DDDDD, AAAAA, DSDSD, PPPPP, SSSSS, QQQQQ, EEQEQ, QELEE, 

EQEQE, EQELE, DEEEE, EEDEE, EDEEE, EEDDE, QEQEL, EEEED, ELEEQ, 

LEEQE, RDRDR, EDDEE, EEEDE, DDEED, DEEDD, APAPA, EEEEG, 

EDDDD,'DDDDE, DEEED, KKKKK, PAPAP, AFSFG, DEDDD, DEEDE, EDEDE, 

EDEED, SSGSS, AAAKA, RSRSR, DRDRD, QQDEQ, QEGQL, EKLPG, GGGWG, 

PAFSF, TPTP 

In the SCOP data, the all 𝛼 class includes 149,854 different 5-mers and 7884 

different 3-mers. The most frequent 5-mer appears 9 times, while the most frequent 3-

mer appears 213 times. The frequent appearance of Ala, Leu, Glu, Arg, Lys is a key 

characteristic for the all 𝛼 class. 

The all 𝛽 class includes 331,815 different 5-mers and 7924 different 3-mers. The 

most frequent 5-mer appears 9 times, while the most frequent 3-mer appears 136 times. 

The frequent appearance of Gly, Phe, Tyr, Val, Leu, Thr is a key characteristic for the 

all 𝛽 class. 

The 𝛼/𝛽 class includes 236,405 different 5-mers and 7970 different 3-mers. The 

most frequent 5-mers appears 23 times, while the most frequent 3-mer appears 458 

times. The frequent appearance of Ala, Leu, Glu, Gly, Ser, Lys is a main characteristic 

for the 𝛼/𝛽 class. 

The 𝛼 + 𝛽 class includes 215,314 different 5-mers and 7942 different 3-mers. 

The most frequent 5-mer appears 8 times, while the most frequent 3-mer appears 223 

times. The frequent appearance of Ala, Leu, Glu, Asp, Arg, Lys is a key characteristic 

for the 𝛼 + 𝛽 class. 

The IDPs include 184,749 different 5-mers and 7785 different 3-mers. The most 

frequent 5-mer appears 137 times, while the most frequent 3-mer appears 801 times. 

The large repetition of Glu, Ser, Pro, Gly, Gln, Ala, Asp is a key characteristic for the 

IDPs, which may be one of the reasons for the structural disorder of these proteins. 

For the different types of structural motifs in PROSITE, the K-mers results are 

summarized in Supplementary Dataset S8. The α type motifs contain frequent Kmer 

patterns involve Leu, Ile, Val, and Met, and the 𝛽 type motifs admit frequent patterns, 

including Gly, Cys, Phe, and Tyr. The 𝛼  and 𝛽  type motifs get frequent patterns 

include Val, His, Tyr, Ile, Phe, Ser, Glu, Ala, and Leu, while the 𝛽 harping rings 

contain frequent patterns involve Cys, Arg, Met, Leu, Ile, and Val. The EF-hands show 

frequent patterns involve Leu, Phe, Tyr, His, Ile, and Val. The βαβ motifs show 
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frequent patterns involve Val, Leu, Ala, and Ile. The αβα  motifs attain frequent 

patterns involve Leu, Met, and Val. The motifs of the loop structures admit frequent 

patterns involve Ala, Asp, Met, Cys, Asn, and Gly. The αββ motifs contain frequent 

patterns involve Cys, His, Ile, Leu, and Gly. 

Since K-mers represent local units of the sequence, it is a more delicate units of 

the protein sequence, which decides the local structures of the proteins and acts a 

crucial role in the sequential analysis of protein structures. The high frequency K-mers 

patterns identified in our analysis reveal the sequential nature for the different protein 

structures. From the above analysis, we can see that the different types of structures 

present special K-mer combinations and amino acid compositions. Particularly for the 

intrinsically structural disordered proteins, the highly repeated occurrence for a same 

of kind of amino acid may lead to the structural disorders of these proteins. The 

statistical analysis of K-mers reveals critical impact of such local amino combination 

and arrangement patterns on the formation of the different types of protein structures. 

The K-mers results can be implemented to develop new features or classifiers to 

improve the efficiency in future protein structural classifications. Since K-mers 

characterize the local situation of proteins, and the 3-mers and 5-mers are already 

enough to characterize such local structures, the amino acid combination preferences 

in high frequency K-mers can also be employed for future protein molecular design 

especially protein-based drug or vaccine developments. 

4. Discussion 

Traditional protein structural studies take uses of the sequence homology to 

develop new sequence features or classifiers for the structural classifications or 

predictions [1–18]. However, all these studies ignore the rich information hidden 

behind the amino acid combinations and the feature interactions. In complexity and 

network analysis, the behaviour of a system can usually be modeled by the interactions 

o its components [39]. Eng lightened by this complex network analysis; the behaviour 

of how amino acid sequence encode their structures can be modeled by the interactions 

between the various protein sequence features. To make up the deficiency of previous 

studies and also uncover the dynamic nature between the interaction features, we use 

network and statistical tools [19] to identify the sequential differences between the 

different types of structures at both structural class level and motifs level. In this 

research, we extract the standard protein sequence features, include the amino acid 

composition, arrangement [3,24] and their physical properties [20], and model the 

sequential influences to the structures using networks. We implement centrality 

metrics [39] and statistical tests [40,41] to identify the sequential discrepancy between 

the different types of structures, where interesting results are found in respect of amino 

acid feature interactions and feature value distributions. The analysis covers not only 

macro levels of the top structural classes of CATH, SCOP and IDPs (in the DisProt 

database), but also micro levels of the structural motifs (in the PROSITE database) 

and K-mers, where both common and special characteristics are identified for the 

different protein structural types. 

For the sequential similarities between different protein structures, we find that 

the all-structural classes show strong connections between Asp, Leu, and Val with 
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other amino acids, but weak intra-type connections for Cys, His, Trp, and Met. These 

results are robust and are in consistent with early findings in single type feature 

analysis [19], which implicate that the Asp, Leu, and Val are very important and are 

actively involved in coding of the different types of structures. When taking the cross-

type features into account, the all-structural classes also attain significant interactions 

between the compositions of Gly and Ala, between the composition of Ala and side-

chain size, between side-chain size and hydrophobicity properties, and between 𝛼-

helix and bend preference and amino acid composition properties. These significant 

interactions imply that the features of Gly and Ala have intensive coupling in forming 

the sequences and structures, while the Ala is largely related with the side-chain size 

of the peptides, and these significant feature connections are general sequential 

characters for all types of structures. These outcomes are consistent with early findings 

of amino acid physical properties [31]. For instance, the occurrence of significant 

interaction between the side-chain size and hydrophobicity properties are sensible, 

because early statistical findings convince that the bulkiness of side chains (containing 

polar groups) may have a significant effect on the hydrophobicity property [31], these 

perhaps lead to the significant connections between these two properties. The 

significant connection of other feature pairs may also due to the polarity and the 

charged groups of the amino acid residues [2]. These common characters for all 

structural types may be caused by the integration of the comprehensive interactions 

between the amino acid composition, arrangement and physical properties. 

In the statistical analysis of feature series, pairwise Welch T tests are used for 

feature comparisons. The Welch T test is free from the homogeneity of the data 

variance [40]; hence it is an ideal test in real-world data analysis, particularly for 

biological data analysis. In our analysis, the all-structural classes admit large 

compositions of Glu, Leu, Ala, Asp, and Val and high values for hydrophobicity 

property, but small compositions of Cys, His, Met, and Trp. These implicate that the 

Glu, Leu, Ala, Asp, and Val are intensively involved in the formation and coding of 

the protein structures, while Cys, His, Met, and Trp are less involved in the structural 

coding. 

When focusing on specific types of structures, the 𝛼 and 𝛽 structures exhibit both 

similarities and differences in their feature interactions. The α structures show special 

preference and high importance (intensive feature interactions) for Glu, along with 

significant connections between the arrangements of Pro and hydrophobicity, and 

between the compositions of Arg and Lys. The α structures are largely composed of 

Ala, Arg, Gln, Glu, Leu, and Met in their sequence, which also attain high property 

values in the side-chain size and pK-C properties. These imply that the negatively 

charged Glu [2] are important in encoding the α structures, this outcome agrees with 

early findings in single type feature analysis [19]. We also find the hydrophobicity 

property attains intensive relations with the positively charged Arg and Lys [2], this 

may suggest that the positive charge of these amino acids may affect the exposure of 

the residues to the protein molecule surface [31] in 𝛼 structures. 

The 𝛽 structures show preferences for Gly and high importance for Thr, Phe, Tyr 

and pK-C values, extended structural preference, and surrounding hydrophobicity for 

β structures. The 𝛽  structures exhibit larger arrangement features than those of 𝛼 
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structures, large compositions of Asn, Cys, Gly, Ser, Thr, Trp, Tyr, and Val, and high 

values for the extended structural preference property. These imply that the uncharged 

polar amino acid Gly [2] is important in encoding of the 𝛽 type structures, and other 

uncharged polar amino acids such as Thr, Tyr Asn, Cys, Ser [2] along with physical 

properties such as extended structural preference [31], pK-C values [36] and 

surrounding hydrophobicity for β structures [37] are also important in coding the 𝛽 

structures. 

The 𝛼 and 𝛽 structures also present similarities in terms of feature interactions. 

For instance, both the 𝛼  and 𝛽  structures present strong connections between the 

arrangements of Ser and other amino acids, between the compositions of Cys and Arg, 

and between hydrophobicity and amino acid arrangements. These imply that the amino 

acids arrangement property has great influence to hydrophobicity of amino acids [31], 

and the uncharged polar amino acid Ser attains strong connections with other amino 

acids in terms of their sequence arrangements in both the 𝛼 and 𝛽 types of structures. 

The mixed structures exhibit larger composition and arrangement features than 

those of the other structures. The mixed structures include large compositions of Ala, 

Gly, Arg, His, Ile, Leu, Phe, and high values for hydrophobicity, occurrence in α 

region, surrounding hydrophobicity for 𝛽-structures properties, and high importance 

for Ala, Asp, Val, Leu, Glu, Gly, and side-chain size, pK-C value properties. The 

mixed structures not only contain similarities with both α and 𝛽 structures but also 

special characters in terms of the significant connections between Met, Arg, Lys and 

double-bend preference, between the arrangements of Cys, His, Met, Tyr and amino 

acid compositions, and between the arrangements of Gly and Glu, and between the 

arrangements of Ala, Gly, Glu, Ile with other amino acids. These imply that except for 

the common characters, the non-polar amino acids Ala, Ile and Phe, the negatively 

charged amino acid Asp, the positively charged amino acids Arg and His [2], along 

with the side-chain size [31] and pK-C value [36] properties are crucial in forming the 

mixed type of structures. Moreover, the features of the non-polar amino acid Met and 

the positively charged amino acids Arg, Lys admit strong relations with the double-

bend structures [32], and the Cys, His, Met, Tyr are strong related with the general 

amino acid compositions [31] property. 

In the intrinsically structural disordered proteins (IDPs), there found intensive 

interactions for the compositions of Glu, Ser, Gln, Leu, Val, Ile, and the arrangements 

of Ala, Arg, Asp, Gln, Glu, Gly, Ile, Leu, Val, and between the side-chain and pK-C 

properties. The IDPs show high importance for Thr, Asn, Gly, Pro, and amino acid 

composition, occurrence in the α region, and pK-C value properties, which contain 

large similarity with the mixed structures. The sequences of IDPs contain large 

compositions of Ala, Glu, Gly, and Ser, which also admit high values for the α-helix 

and bend preference, hydrophobicity, and flat extended preference properties. These 

further convince that the above similar characters identified in both the intrinsically 

disordered structures and the mixed structures, such as Ile, the side-chain and pK-C 

properties, may influence the coding of the loops or junction structures, which are less 

ordering in spatial structures. 

When specifying the local sequential characters in K-mers, special characters are 

found in terms of the K-mer combinations and high frequency K-mers. According to 
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the data statistics, longer K-mers may receive low frequency of appearances, early 

studies on K-mers found that the 5-mers are long enough to characterize the local 

protein structures [42], therefore we choose the analyze the 3-mers and 5-mers to 

guarantee sufficient statistics of the data. Analysis shows that the different types of 

structures exhibit different high frequency K-mers. In α structures, the high frequency 

K-mers contain large combinations of Ala, Leu, Glu, Asp, Val, Tyr, Arg, and Lys, 

whereas the Gly, Thr, Val, Leu, Asp, Lys, Phe, and Tyr are frequently appeared in the 

high frequency K-mers in 𝛽  structures. The mixed structures possess large 

combinations of Ala, Val, Leu, Gly, Glu, Lys, Ser, Asp, Arg in their high frequency 

K-mers. The IDPs show large amount of repetition strings for Glu, Ser, Pro, Gly, Gln, 

Ala, and Asp, from which we can suggests that if the regular structures are encoded 

by special K-mers combinations containing different kinds of amino acid, then the 

highly repetition pattern for a same type of amino acids may break this code and hence 

lead to the intrinsically disorder of the structures. The K-mers analysis convince the 

critical impact of special amino combination in K-mers on the formation of different 

types of protein structures. The K-mers results can be further implemented in new 

feature development for protein structural classifications. 

For the structural motifs analysis, the results suggest that the Cys, Gly, Ile, Leu, 

and Val are important in nearly all typical types of structural motifs, and the 

compositions of Gly, Ile, Leu, and Val are comparatively large than other amino acids. 

The α type motifs show high importance (intensive feature interactions) for Arg and 

Met, large compositions of Ala, Glu, Thr, and Lys, and high frequency K-mers 

involving Leu, Ile, Val, and Met. The 𝛽 motifs show high importance for Cys and Gly, 

a large composition of Gly and His, along with high frequency K-mers containing Gly, 

Cys, Phe, Tyr, and His. The α and β motifs contain high frequency K-mers involving 

Val, His, Tyr, Ile, Phe, Ser, Glu, Ala, and Leu, which are analogous as found in the 

mixed 𝛼 and 𝛽 structures. The 𝛽 harping rings show high importance for Cys, and 

large compositions of Cys, Phe, and Trp, as well as high frequency K-mers involving 

Cys, Arg, Met, Leu, Ile, and Val. The EF-hands show high importance for Met, Phe, 

and high frequency K-mers involving Leu, Phe, Tyr, His, Ile, and Val. The 𝛽𝛼𝛽 motifs 

show high importance for Cys, large compositions of Trp, and Val, and high frequency 

K-mers containing Val, Leu, Ala, and Ile. The αβα motifs show high importance for 

Ala and Ser, large compositions of Ile, Leu, Met, along with high frequency K-mers 

involving Leu, Met, and Val. The αββ motifs show both high importance and large 

compositions of Cys and high frequency K-mers involving Cys, His, Ile, Leu, and Gly. 

The loop structures show high importance for Al, Cys, and large compositions of Arg, 

Asn, Glu, Cys, Gly, Lys, Pro, Ser, along with high frequency K-mers involving Ala, 

Asp, Met, Cys, Asn, Gly. 

In this paper, we find special amino acid feature interactions and feature value 

distributions that characterize the different types of protein structures, where both 

common and special characteristics are found between the structures at both the class 

level and motifs level. The outcomes regarding the significant features interactions, 

feature value distributions and K-mer patterns help illuminate the dynamic nature 

between the various amino acid features. The results can be future used for developing 

new feature, or enhancing protein molecular design specially in protein-based drug 
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and vaccine development. Since the networks constructed from the mutual relations 

are undirected, and feature methods and network tools are standard, future research 

can be improved by employing causal measures e.g. deep learning causal frames to 

measure the directed influences between the features, and also use more advanced 

complex network tools such as information-based complexity measures e.g., group 

entropy to analyze the local and global structures of the networks, from which more 

evidences can be dug out from the system behaviour. Additionally, we can also delve 

further into deeper level structural categories such as folds and super families, and 

capture the geometrical features of the protein structures by performing simplicial 

complex modeling and persistent homology analysis, from which more interesting 

dynamics can be revealed from the sequence and structural feature interactions. 

5. Conclusions 

In this network and statistical analysis of protein sequence features, both common 

and special sequential characters are specified for the various types of structures. The 

significant interactions between the features of Ala and α-helix and bend preference 

property, between Ala and side-chain size, Ala and Gly, and between Met and Leu, as 

well as the weak intra-type interactions between features of Cys, His, Trp, and Met, 

are the common characters for all protein structural types, where the feature for Leu, 

Val, and Asn are acted as the critical sources of the feature interactions. For the 𝛼 

structures, it presents high importance for features of Glu, Pro and side-chain size, 

hydrophobicity properties, whereas the 𝛽 structures present high importance for the 

features of Gly, Thr and physical properties such as α-helix and bend preference, 

extended structural preference, pK-C value and surrounding hydrophobicity for 𝛽 

structures. Except for these special preferences, the 𝛼 and 𝛽 type structures also show 

common characters that Ser is served as the common sources of feature interactions. 

The mixed α and β structures not only show common characters with the 𝛼 and 𝛽 

structures, but also preferred interactions between Met, Lys and double-bend 

preference property, and between the sequence arrangements of Cys, His, Met, Tyr 

and amino acid composition features, which are suggested to have strong relations 

with loops and junction structures. Owning certain similarity with the mixed types of 

structures, the intrinsically disordered proteins (IDPs) also admit high repetitive 

patterns for certain kinds of amino acids in their local K-mer strings, which are 

suggested to the causation for the structural disorders. In the micro level, the different 

structural motifs not only show common characters in terms of the high importance 

for Cys, Gly, Ile, Leu, and Val, but also special characters. Further sequential 

differences can be discovered by K-mers and feature series analysis. From the network 

and statistical analysis, strong couplings are found between certain amino acids and 

physical properties. The outcomes of this study reveal the dynamic nature of amino 

acid feature interactions, which can be future used for protein molecular design or new 

feature development for protein structural classifications. 

Supplementary materials: All data of this article is fully available in Supplementary 

Files. All CATH and SCOP sequence data in this analysis are downloaded from 

Protein Data Bank (PDB) database (https://www.rcsb.org) by using the PDB IDs in 
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the Supplementary Dataset S1. The IDPs and structural motifs data are respectively 

downloaded from DisProt (https://www.disprot.org/) and PROSITE 

(https://prosite.expasy.org/) database. The accession numbers of the IDPs are stored 

in Supplementary Dataset S2, and the accession numbers for pattern data of the 

structural motifs are stored in Supplementary Dataset S6. The feature matrices, 

adjacency matrices for unweighted networks, centrality results, and ranks obtained by 

statistical tests, as well as Kmer statistics are all provided in Supplementary Datasets 

S3–S5 and S7–S8. 
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