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Abstract: In order to investigate the effectiveness of the PINNs algorithm in the application 

of three-dimensional biomechanical heat transfer problems, the study uses the PINNs 

algorithm to construct a coupled heat-force model to simulate the temperature field and stress 

field distribution of different biological tissues. The experimental results show that the 

prediction error of PINNs is controlled within MSE 1.25 × 10−3 K and the maximum stress 

error is 6.9 Pa under the complex scenarios with a temperature gradient as high as 800 K/m, a 

heat flux as high as 6000 W/m², and a stress gradient of more than 10⁵ Pa/m. For the three 

different materials, namely, natural rubber, polymer, and cellular ceramics, the prediction 

errors are controlled within MSE 1.25 × 10−3 K. The prediction errors are controlled within 

MSE 1.25 × 10−3 K, and the maximum stress error is 6.9 Pa. The simulations for natural 

rubber, polymer, and honeycomb ceramics show that the maximum temperature of 

honeycomb ceramics reaches 350 K, and the thermal stress gradient is as high as 50 MPa/m, 

while the thermal stress gradient of natural rubber and polymer is only 5 MPa/m and 7 

MPa/m, respectively. strong computational efficiency and numerical stability. 

Keywords: pinns algorithm; three-dimensional biomechanics; heat transfer problem; 

temperature gradient; stress distribution 

1. Introduction 

Biomechanical heat transfer problems have important research value in the 

fields of medical engineering, tissue repair, and thermotherapy technology. Due to 

the non-uniformity, anisotropy, and complex heat-force coupling characteristics of 

the internal structure of biological tissues, traditional numerical methods face greater 

challenges in the solution process. Physics-informed neural networks (PINNs), as an 

emerging deep learning algorithm, provide new ideas for solving such complex 

problems. The method achieves high-precision prediction of temperature and stress 

fields of biological tissues with strong generalization ability and numerical stability 

by embedding the physics control equations into the loss function of the neural 

network [1]. Compared with traditional methods, PINNs show significant advantages 

in dealing with complex boundary conditions, unsteady conduction, and nonlinear 

heat sources, especially in the biomechanical environment of multi-scale and multi-

parameter, which is more adaptable. 

In recent years, in order to improve the performance of the original PINNs in 

terms of convergence speed, accuracy control, and physical consistency, researchers 

have proposed various optimization variants, such as APINNs based on adversarial 

training, bPINNs with boundary encoders, Transfer-PINNs integrating migration 

learning, and multi-strategy fusion methods such as ADMM-PINNs [2]. These 
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methods significantly improve the training stability and physical consistency in high-

dimensional complex fields by introducing techniques such as boundary processing 

mechanisms, adaptive residual weighting, gradient regularization, and variational 

inference, expanding the depth of application of PINNs in the direction of 

engineering and biomechanics. 

2. Applicability of PINNs algorithm to 3D biomechanical heat 

transfer problems 

In three-dimensional biomechanical heat transfer problems, the heat transfer 

process involves complex biological tissue structures and their internal physical 

properties. Since biological tissues are usually anisotropic and non-homogeneous, 

their heat transfer mechanisms are far more complex than those of conventional 

homogeneous materials. Physical Information Neural Networks (PINNs) have a 

significant advantage in solving such problems. By embedding the physical 

constraints directly into the loss function, PINNs allow the model to be not only 

data-driven in the learning process but also improve the accuracy by leveraging the 

physical mechanism of biological heat transfer. Compared with traditional numerical 

methods, PINNs are more advantageous in dealing with complex geometries, non-

uniform heat conduction properties within biological tissues, and boundary condition 

complexity and especially excel in dealing with non-stationary conduction, non-

linear heat sources, or complex coupling scenarios. Combined with 3D 

biomechanical scenarios, the adaptive sampling strategy of PINNs can further 

optimize the computational efficiency by focusing on high-temperature gradient 

regions in biological tissues to improve the prediction accuracy of the model in 

critical regions. 

3. Modeling of a three-dimensional biomechanical heat transfer 

problem 

a) Basic Theory of Biological Tissue Thermodynamics 

A primary understanding of the fundamental theory of thermodynamics of 

biological tissues is essential in the construction of models for three-dimensional 

biomechanical heat transfer problems. The heat transfer behavior of biological 

tissues is influenced by the complexity of their internal structure, including the 

anisotropic and non-uniform characteristics of cellular organization. These 

characteristics result in the process of heat transfer in tissues being not only 

dependent on temperature gradients but also controlled by tissue-specific physical 

and chemical properties. Understanding this helps to establish more accurate heat 

transfer equations, which must take into account the thermal conductivity and 

thermal diffusivity specific to biological tissues. On this basis, when applying the 

PINNs algorithm for simulation, it is able to effectively capture the thermal behavior 

of key regions through the algorithm’s adaptive sampling strategy, ensuring that the 

model can accurately reflect the thermal response of biological tissues under 

different conditions and thus improve the model’s prediction accuracy and 

application value [3]. 
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b) Three-dimensional biomechanical heat transfer coupling modeling 

When constructing a three-dimensional biomechanical heat transfer coupling 

model, the interaction between the heat transfer properties and mechanical properties 

of biological tissues needs to be considered comprehensively [4]. As biological 

tissues deform under thermal action, their mechanical behavior will directly affect 

the heat diffusion process and thus change the temperature distribution. Therefore, it 

is crucial to construct a reasonable mathematical model, which can be used to 

describe this complex multi-field coupling problem by partial differential equations 

(PDEs). The heat transfer equation for 3D biological tissues can be expressed as: 

𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
= 𝛻 ⋅ (𝑘𝛻𝑇) + 𝑄 (1) 

where 𝑇(𝑥, 𝑦, 𝑧, 𝑡)  is the temperature field, 𝜌  is the tissue density, 𝑐𝑝  is the 

specific heat capacity, 𝑘 is the thermal conductivity, and 𝑄 is the internal heat 

source term. Biological tissues are usually anisotropic, and their thermal conductivity 

k can be expressed as a tensor: 

𝑘 = [

𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝑧

𝑘𝑦𝑥 𝑘𝑦𝑦 𝑘𝑦𝑧

𝑘𝑧𝑥 𝑘𝑧𝑦 𝑘𝑧𝑧

] (2) 

where 𝑘𝑥𝑥, 𝑘𝑦𝑦, 𝑘𝑧𝑧 represents the thermal conductivity in the dominant thermal 

direction, while  𝑘𝑥𝑦, 𝑘𝑦𝑧, 𝑘𝑥𝑧  reflects the thermal coupling effect in different 

directions. Such anisotropic properties need to be modeled by PINNs to improve the 

simulation of complex tissue structures. In terms of the coupled mechanical field, the 

heating of the tissue leads to thermal expansion, which in turn affects the mechanical 

stress field. This process can be described by the thermal stress equation: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙 − 𝛼𝑘𝑙𝑇) (3) 

where 𝜎𝑖𝑗 is the stress tensor, 𝐶𝑖𝑗𝑘𝑙 is the elastic stiffness tensor, 𝜀𝑘𝑙 is the strain 

tensor (dimensionless), and 𝛼𝑘𝑙 is the coefficient of thermal expansion tensor. This 

equation shows that the change of temperature gradient will directly affect the stress 

distribution of the tissue, and the coupling effect is especially significant in the 

region of high temperature gradient [5]. In order to visualize the relationship 

between the temperature field and the stress distribution of the 3D biomechanical 

heat transfer model (Figure 1). The left figure shows the temperature field 

distribution, showing the gradient change of temperature inside the biological tissue. 

The right figure shows the thermal stress distribution, and since the stress is affected 

by the temperature gradient, its distribution pattern shows a strong coupling property 

with the temperature field, and the stress concentration phenomenon in the local area 

can be observed. 
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Figure 1. 3D biomechanical heat transfer and stress distribution. 

PINNs can be enhanced with an adaptive sampling strategy to focus on critical 

regions when solving 3D biomechanical heat transfer coupling problems. The loss 

function needs to be constructed by considering both the heat conduction equations 

and the mechanical equations to ensure physical consistency: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑇 ⋅ 𝐿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝑤𝜎 ⋅ 𝐿𝑠𝑡𝑟𝑒𝑠𝑠 + 𝑤𝑏 ⋅ 𝐿𝐵𝐶 + 𝑤𝑖 ⋅ 𝐿𝐼𝐶 (4) 

where 𝐿𝑡ℎ𝑒𝑟𝑚𝑎𝑙  consists of the residual term of the partial differential equation for 

heat transfer, 𝐿𝑠𝑡𝑟𝑒𝑠𝑠 is the residual of the stress-strain mechanics control equation 

𝐿𝐵𝐶、𝐿𝐼𝐶  denotes the boundary condition and initial condition terms, respectively, 

and𝑤 is the weight factor of each term, which is used to balance the multi-objective 

optimization [6]. In the computational process, the neural network structure of 

PINNs is used for training so that the changes of temperature and stress field in the 

spatio-temporal domain conform to the thermodynamic and mechanical constraints. 

Combined with GPU-accelerated optimization, the computational efficiency can be 

improved and adapted to large-scale 3D biological tissue models. 

c) Model Mathematical Representation and Control Equations 

In the mathematical expression of the three-dimensional biomechanical heat 

conduction model, the coupling relationship between the heat conduction equations 

and the mechanical equations must be considered comprehensively to ensure that the 

model can accurately describe the heat-force interactions inside biological tissues 

[7]. The basic governing equations of heat conduction have been established, and in 

order to further extend the model, it is necessary to introduce the energy 

conservation equation of biological tissues, and combined with the deformation 

characteristics inside the tissues, the energy conservation of biological tissues can be 

expressed as: 

𝛻 ⋅ (𝑘𝛻𝑇) + 𝑄 = 𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
+ 𝐹bio (5) 

where 𝑘 represents the anisotropic thermal conductivity tensor, 𝑄 is the internal 

heat source,  𝜌  is the tissue density,  𝑐𝑝  is the specific heat capacity, and  𝐹𝑏𝑖𝑜 

denotes the effect of heat due to physiological activities, such as metabolic heat or 

heat of blood perfusion. In addition, considering the effect of thermal expansion of 

the tissue on the stress field, the thermal stress field can be described by the 

following equation: 

𝛻 ⋅ 𝜎 + 𝐹ext = 𝜌
𝜕2𝑢

𝜕𝑡2
 (6) 
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where 𝜎 is the stress tensor, 𝐹ext represents the external force,𝑢 is the displacement 

vector, and 𝜌 is the biological tissue density. This equation describes the stress 

distribution due to thermal action and its propagation characteristics within the 

tissue. The above governing equations form the core constraints of the PINNs 

algorithm for solving the 3D biomechanical heat transfer problem, enabling the 

model to effectively predict the thermodynamic behavior in complex biological 

tissue environments. 

d) Boundary and Initial Condition Setting 

When constructing a three-dimensional biomechanical heat transfer model, the 

reasonable setting of boundary conditions and initial conditions has a decisive 

influence on the computational accuracy and numerical stability [8]. The types of 

boundaries involved in heat transfer problems usually include the Delicacy 

boundary, the Newman boundary, and the Robin boundary, while the biomechanical 

coupling problem requires the definition of mechanical boundaries at the same time 

to ensure that the model can accurately describe the interaction of heat and stress. In 

heat transfer calculations, common types of boundary conditions and their typical 

parameters are shown below (Table 1). Different boundary types can directly affect 

the temperature distribution and its rate of change, especially in the complex 

environment of biological tissues, where the choice of boundary conditions needs to 

take into account the anisotropic thermal conductivity properties as well as the 

influence of local heat sources. 

Table 1. Parameter settings for each type of boundary condition. 

Boundary condition 

type 
Setting method 

Temperature gradient 

(K/m) 

Heat flux 

(W/m2) 
Applicable Scenarios 

Delicree Border fixed temperature 310.15 not have Heat source stabilization zone 

Newman’s Boundary Insulation/heat flux Variation range 103–105 500–3000 Insulation/external heat exchange 

Robin’s Border 
convective heat 

transfer 
Variation range 102–104 1000–5000 

convective-dominated environment 

(geology) 

For the mechanical coupling part, the external load and stress boundaries need 

to be set equally tightly. Typically, the pressure gradient at the structural boundary is 

set between 103 − 106 Pa/m and the strain rate ranges between 10−3 − 10−1𝑠−1 

depending on the elastic modulus and coefficient of thermal expansion of the 

material. PINNs need to focus on sampling the boundary region during the solution 

process to improve the computational efficiency and to ensure that the model can 

accurately fit the evolution of the thermal stress field [9]. 

4. Implementation of PINNs algorithm in 3D biomechanical heat 

transfer problems 

a) Neural Network Architecture Design 

The design of the neural network architecture of PINNs determines the 

computational accuracy and generalization ability of the model. For complex 

biological tissue heat conduction characteristics, the network architecture needs to 

contain multiple hidden layers to ensure adequate learning of the heat-force coupling 
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relationship in high-dimensional space. To adapt to the high-dimensional nonlinear 

characteristics of the heat-force coupling field of 3D biological tissues, the 

underlying architecture of the neural network adopts a Deep Fully-Connected 

Network (D-FCN), with the depth of the network set to 12 to 24 layers and each 

layer containing 128 to 1024 neurons. The structure shows strong expressive ability 

and generalization performance in dealing with multi-scale temperature gradient and 

stress field variations. The activation function, Swish, is chosen to balance the 

smoothness of gradients with the convergence speed and has good response 

performance, especially in high-temperature gradients (> 500 K/m) or high-stress 

regions (> 105 Pa/m). The structure is used as a master model throughout all 

experiments. In addition, the input layer needs to accept three-dimensional spatial 

coordinates (x, y, z), time variable t, and material parameters (e.g., thermal 

conductivity in the range of 0.1–10 W/m-K, density in the range of 500–1500 kg/m3, 

and specific heat capacity in the range of 1000–4000 J/kg-K, etc.), and the output 

layer predicts the temperature field and the stress distribution at the same time, in 

which the temperature range is set in the range of 280–350 K and the stress 

distribution range is 103 − 107pa. 

In order to optimize the computational efficiency, the network adopts an 

adaptive sampling strategy by focusing the training in the region where the 

temperature gradient varies 103 − 105 K/m and increasing the sampling density in 

the region where the mechanical field varies drastically (stress gradient greater 

than 104 Pa/m) [10]. The loss function is constrained by the heat transfer control 

equations and the mechanical control equations, and the convergence speed is 

enhanced by a hybrid L-BFGS and Adam optimization method to reduce the error to 

below 104. The following figure illustrates the design of the neural network 

architecture for PINNs (Figure 2), where the physical constraint term acts directly 

on the loss function, allowing the network to learn the heat transfer behavior inside 

3D biological tissues more efficiently. 

 

Figure 2. Schematic of PINNs neural network architecture. 

This architecture is capable of optimizing computations over  106 − 108 

training points and utilizing GPU parallel computing acceleration to complete large-

scale 3D biomechanical heat transfer simulations at the hour level. The 

generalization ability of the model relies on the network’s regularization methods, 

including L2 regularization (𝜆 = 10−3 − 10−5) and a gradient penalty strategy to 
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prevent overfitting and ensure model adaptation under complex geometric boundary 

conditions [11]. 

b) Loss function construction 

In the 3D biomechanical heat transfer problem, the design of the loss function 

for PINNs needs to take into account the physical constraint term, the data error 

term, and the penalty term of the boundary conditions to ensure that the model can 

accurately learn the heat-force coupling behavior inside biological tissues [12]. 

When constructing the loss function, the residuals of the heat conduction control 

equation, the deviation of the mechanical stress balance equation, and the matching 

error of the experimental or simulated data need to be covered. During the network 

training process, focused optimization of the high gradient region is needed to reduce 

the error and enhance the generalization ability of the model. The overall expression 

of the loss function is given below: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑓 ⋅ 𝐿𝑝ℎ𝑦𝑠 + 𝑤𝑑 ⋅ 𝐿𝑑𝑎𝑡𝑎 + 𝑤𝑏 ⋅ 𝐿𝐵𝐶 + 𝑤𝑖 ⋅ 𝐿𝐼𝐶 (7) 

where 𝐿𝑝ℎ𝑦𝑠 = 𝐿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝐿𝑠𝑡𝑟𝑒𝑠𝑠 represents the overall residual of the physical 

control equation and 𝐿𝑑𝑎𝑡𝑎denotes the mean square error term between the predicted 

and measured values. Compared with Equation (4), Equation (7) further adds a data-

supervised term based on the physical loss for calibrating the bias in the high-

temperature gradient region, which is suitable for semi-supervised scenarios 

containing labeled data. During the optimization of PINNs, in order to improve the 

computational stability, a multi-layer weight adaptive adjustment strategy is used, in 

which the gradient variation of the loss is controlled between 10−6 − 10−3 and 

optimized by the Adam optimizer (with the initial learning rate set to 10−3 in 

combination with the L-BFGS optimization in order to improve the convergence 

speed. For the data term error, 5 × 105 − 107 training points are set to ensure an 

accurate fit of the model in the spatial domain. Figure 3 demonstrates the 

optimization flow of the loss function and the contribution ratio of different loss 

terms, which shows that the model’s learning ability is strengthened in the region of 

high temperature gradient and high stress gradient. 

 

Figure 3. Schematic diagram of PINNs loss function optimization process. 

During the training process, the decreasing trend of the total loss of the model is 

affected by the data density, so the adaptive sampling mechanism needs to 
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dynamically adjust the density of the sampling points according to the range of 

temperature gradient changes (102 − 106 K/m) and the range of stress field changes 

(104 − 108 Pa/m). With this approach, the computational error can be significantly 

reduced and ensure the high accuracy of PINNs prediction even in complex 

biomechanical heat transfer environments [13]. 

In summary, the loss function used is a composite constraint structure 

constructed based on a set of physical control equations. Specifically, the loss 

function is jointly defined by the heat transfer control equation, the mechanical stress 

balance equation, and the energy conservation equation, and all partial differential 

control equations are incorporated into the network optimization objective in the 

form of residuals. The heat conduction term characterizes the variation of 

temperature over space and time, the mechanical stress term describes the 

temperature-induced stress response, and the energy conservation equation is used to 

link the temperature with the internal physical processes of the material. The final 

loss function used for training does not contain any explicitly supervised data terms 

and relies solely on the constraints of the above physical field equations, boundary 

conditions, and initial conditions to ensure the accuracy and stability of the model in 

high-temperature gradient, multiphysics coupled fields. This physics-driven 

optimization strategy ensures that the model has a strong generalization ability in 3D 

biological tissue heat transfer problems and can effectively deal with practical 

difficulties such as anisotropy, non-uniform structures, and complex boundaries. 

c) Automatic Differentiation and Physical Constraint Embedding 

Automatic Differentiation (AD) realizes automatic computation of complex 

partial differential equations (PDEs) through chain rule, avoiding the truncation error 

in traditional numerical differentiation and effectively improving the accuracy of 

gradient computation. The method utilizes the forward propagation and back 

propagation mechanisms of the network to embed the PDE constraints directly into 

the loss function, thus enhancing the model’s accurate capture of the heat-force 

coupling characteristics [14]. 

In the process of model implementation, in order to improve the adaptability to 

the complex biological tissue environment, the model is set with different scales of 

sampling density. In regions with large temperature gradients, the sample point 

density is increased to 2000/m2; in regions with significant changes in the thermal 

stress field, the sample point density is increased to 5000/m2 to ensure numerical 

stability in regions with high gradients. Combined with GPU-accelerated parallel 

computing, the computational efficiency of the model is increased to 106 gradient 

operations per second, enabling the completion of complex 3D biological tissue 

simulations containing more than 1 million sample points within 10 h. 

The introduction of automatic differentiation can accurately calculate the 

various derivatives of the PDE, such as temperature gradient and stress gradient. In 

order to further optimize the computational efficiency, the model introduces an 

adaptive weight assignment strategy, which dynamically adjusts the weights of the 

PDE residual term, data error term, and boundary condition term in the loss function. 

The specific form is: 
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𝑤𝑘
(𝑡+1)

= 𝑤𝑘
(𝑡)

⋅ (1 + 𝛽 ⋅
𝜕𝐿𝑘

𝜕𝑡
) (8) 

where 𝑤𝑘 ∈ {𝑤𝑇 , 𝑤𝜎 , 𝑤𝑏 , 𝑤𝑖} denotes the adaptive weight of each sub-loss term and 

𝛽 is the adjustment factor. The method adjusts the training attention in real time 

based on the residual growth trend so that the model obtains higher fitting accuracy 

in critical regions (e.g., localized hot spots, stress concentrations). The strategy is a 

dynamic optimization implementation of Equation (7) with a non-independent loss 

function structure. In addition, the model is computed using the L-BFGS optimizer 

with its learning rate set to and combined with the Adam optimizer to enhance the 

convergence speed of the nonlinear equation solution. Figure 4 demonstrates the 

distribution characteristics of the temperature field and thermal stress field in 

complex organizational structures based on the PINNs algorithm. 

 

Figure 4. Temperature field and thermal stress field distribution under PINNs 

modeling. 

The left panel shows the temperature field distribution; the color gradient 

reflects the non-uniform distribution of temperature inside the tissue, and the 

maximum temperature gradient reaches 800 K/m. The right panel shows the thermal 

stress field distribution, and the obvious stress concentration region indicates that the 

thermal expansion has a significant effect on the tissue structure, and the maximum 

stress value reaches 2 × 105 Pa, which demonstrates the significant advantage of the 

PINNs in capturing the characteristics of the complex coupling field. Significant 

Advantages. The combination of automatic differentiation and physical constraint 

embedding significantly enhances the numerical stability and prediction accuracy of 

PINNs in complex biological tissue heat transfer problems, especially in the 

scenarios of high temperature gradient, non-uniform tissue structure, and complex 

boundary conditions. 

d) Numerical Solution Algorithm 

Numerical solution algorithms are crucial in PINNs modeling, and their 

computational efficiency and accuracy directly determine the simulation capability 

of 3D biomechanical heat transfer problems. For the heat-force coupling field of 

complex biological tissues, the solution process of PINNs involves the optimization 
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of a nonlinear system of partial differential equations, with the goal of minimizing 

the loss function and ensuring that the temperature and stress distributions satisfy the 

physical constraints. The loss function consists of a weighted combination of the 

residuals of the heat conduction equation𝐿ℎ𝑒𝑎𝑡 and the residuals of the mechanics 

equation 𝐿𝑠𝑡𝑟𝑒𝑠𝑠, which is expressed as: 

𝐿𝑙𝑜𝑐𝑎𝑙 = 𝜆𝑇 ⋅ ‖𝑅𝑇‖2 + 𝜆𝜎 ⋅ ‖𝑅𝜎‖2 (9) 

where 𝑅𝑇、𝑅𝜎 is the local residual of the heat transfer and stress balance control 

equations, respectively, and 𝜆𝑇、𝜆𝜎 is the local tuning weight. This expression is 

used for micro-scale optimization steps or local fitting in specific regions and is a 

local decomposition form of Equations (4) and (7) that does not constitute an 

independent total loss structure. The Adam optimizer (learning rate  𝜂 = 10−3 ) 

combined with the L-BFGS algorithm is used to ensure stable convergence of the 

gradient descent. In order to optimize the computational efficiency, the model uses 

adaptive sampling to encrypt data points in the region of temperature gradient 500–

1000 K/m and increases the sampling density for the stress-concentrated region 

(gradient 105~106 Pa/m) to improve the numerical stability in the critical region. 

Combined with GPU parallel computing, the computation volume of a single 

iteration reaches the 106  level, which can effectively improve the solution 

efficiency of complex biomechanical heat conduction simulation. 

5. Experiments and results of PINNs algorithm for 3D 

biomechanical heat transfer problems 

a) Experimental Program Design 

Experiments are conducted to solve the 3D biomechanical heat transfer problem 

using PINNs neural network architecture and optimize the training process using 

high-performance computing resources. In order to verify the effect of the depth of 

network structure on the model prediction performance, this paper initially uses a 

shallow network architecture (4-layer fully connected with 100 neurons per layer) 

with Tanh as the activation function for the comparison experiments. This structure 

is used to compare the performance with the main model (12-24-layer deep network) 

in a low-complexity scenario. Although the shallow structure is computationally less 

expensive, it is significantly lower than the deep model in terms of prediction 

accuracy and convergence speed in high gradient regions. The D-FCN main network 

architecture is used for all subsequent experiments to ensure higher prediction 

accuracy and numerical stability in complex organizational environments. The 

optimizer is chosen to be Adam, the learning rate is set to 0.001, and during the 

training process, 1000 training points are randomly sampled in each iteration, and 

5000 physically impaired points are generated individually to improve the prediction 

accuracy of the model in the high gradient region. A total of 20,000 iterations were 

performed to ensure the numerical stability and generalization ability of the model in 

complex biological tissues. 

The computing platform is equipped with an 86 × 64 architecture CPU with 8 

physical cores, 16 logical cores, and a main frequency range of 800.00 MHz to 

4800.00 MHz. The experiments are accelerated using NVIDIA GeForce RTX 3090 
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GPUs with a total of 24 GB of graphics memory to support large-scale data parallel 

computing. The experimental environment is based on Linux (Ubuntu 22.04.3 LTS) 

to provide a stable computing environment and efficient hardware resource 

management. The specific parameters involved in the experiment are shown in 

Table 2. 

Table 2. Experimental computing environment and parameter settings. 

parameter category concrete content note 

network infrastructure 4-layer fully connected network with 100 neurons per layer Activation with Tanh 

optimizer Adam Learning rate: 0.001 

training ground 1000 random sampling points Each iteration generates 

point of physical damage 5000 For high-gradient region optimization 

training wheels 20,000 times guarantee convergence 

CPU architecture 86 × 64, 8 cores, and 16 threads Frequency: 800–4800 MHz 

GPU Model NVIDIA GeForce RTX 3090 Graphics memory: 24 GB 

operating system Linux Ubuntu 22.04.3 LTS High-stability environment 

b) Algorithm Performance and Accuracy Analysis 

The experiments are conducted to evaluate the performance and accuracy of 

PINNs for solving the 3D biomechanical heat transfer problem and analyze the 

computational efficiency and prediction accuracy of the model. In terms of 

computational performance, the experiments are accelerated by NVIDIA GeForce 

RTX 3090 GPUs, which utilize 24 GB of video memory to support large-scale data 

processing. During the training process, convergence was accelerated by the Adam 

optimizer combined with the L-BFGS method, enabling the model to reach a stable 

state within 20,000 iterations. The computation time, GPU occupancy, and error 

convergence at different iterations were monitored to evaluate the applicability of the 

algorithm in complex biological tissue heat transfer scenarios. The computational 

efficiency parameters are summarized in Table 3. 

Table 3. Evaluation of computational efficiency of PINNs. 

Calculation 

parameters 

training 

step 

GPU Memory Usage 

(GB) 

Single iteration computation time 

(ms) 

Total training time 

(h) 

GPU utilization 

(%) 

5000 3.5 45 1.2 0.8 78 

10,000 6.8 60 2.1 1.3 85 

15,000 12.4 80 3.8 2.5 92 

20,000 24 90 5.2 3.9 98 

The experimental results show that in terms of computational efficiency, by 

evaluating the computational performance at different training steps, it can be seen 

that the occupancy of GPU graphics memory, computation time, and GPU utilization 

show a gradual upward trend with the increase in the number of training iterations. 

Table 3 demonstrates the computational efficiency at different training steps, in 

which the GPU graphics memory occupancy increases from 45 GB to 90 GB with 

the increase in the number of training steps, reflecting the aggravation of 
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computational load caused by the increase in the complexity of the 3D biological 

organization. At 20,000 iterations, GPU utilization reaches 98%, demonstrating 

efficient use of computational resources, while the training time increases from the 

initial 0.8 h to 3.9 h. As the number of training steps increases, the model’s demand 

for computational resources gradually increases, which indicates an exponential 

growth of the computational load in high-resolution heat conduction simulations of 

biological tissues. In terms of prediction accuracy, the experiments use mean square 

error (MSE) to evaluate the error of PINNs in predicting the temperature and stress 

fields. The distribution of errors in different regions is analyzed by comparing the 

real simulation data with the PINNs predictions. The accuracy assessment results are 

shown in Table 4. 

Table 4. PINNs model prediction error analysis. 

Type of error 
High temperature 

gradient region (K) 

Low temperature gradient 

region (K) 

Area of stress 

concentration (Pa) 

Non-stress-

concentrated area (Pa) 

average 

error 

MSE (× 10−3) 1.25 0.74 2.85 1.09 1.48 

maximum error 4.3 2.1 6.9 3.2 - 

smallest error 0.21 0.08 0.52 0.19 - 

In terms of accuracy, the prediction errors of the PINNs model show some 

differences in different regions. Table 4 demonstrates the prediction errors of the 

model in the high-temperature gradient region, the low-temperature gradient region, 

the stress-concentrated region, and the non-stress-concentrated region. According to 

the experimental data, in the high-temperature gradient region, the mean-square error 

(MSE) is 1.25 × 10−3 K, which shows that the model’s error is larger in this region, 

which is closely related to the nonlinear nature of heat transfer in the high-

temperature gradient and the anisotropy and nonuniformity of biological tissues. In 

contrast, the error in the low-temperature gradient region is smaller, only 0.74 × 10−3 

K, indicating that the accuracy of the model is effectively improved under more 

uniform heat conduction conditions. In the stress-concentrated region, on the other 

hand, the error is larger, and the maximum error reaches 6.9 Pa, which is closely 

related to the thermal expansion effect and the stress-concentrated nature of the 

tissue at high temperatures. In the non-stress-concentrated region, the error is 

relatively low, with a maximum error of 3.2 Pa. These analytical results indicate that 

the PINNs model has some challenges in dealing with the biomechanical heat 

transfer problem with respect to the accuracy in the region of large temperature 

gradient and stress concentration, but in the low temperature gradient and non-stress 

region, the model exhibits high accuracy. By further optimizing the sampling 

strategy and loss function, the accuracy of the model in critical regions can be 

effectively improved, which in turn enhances the overall prediction capability. 

c) Simulation of thermodynamic properties of different biological tissues 

The PINNs algorithm is used to simulate the thermodynamic properties of 

different biomaterials, focusing on the thermal conductivity and stress distribution of 

each type of material under different thermal environments. In order to 

comprehensively evaluate the adaptability of the model, three different types of 

materials—natural rubber, polymer, and honeycomb ceramics—were selected, and 
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their temperature distributions, thermal stress responses, and computational 

convergence were compared by numerical calculations. 

Different materials have significantly different thermal conductivity and 

thermal stress distribution characteristics in the same thermal environment. Natural 

rubber, due to its low thermal conductivity, has a slow heat diffusion and a small 

temperature gradient, and the overall warming is more uniform; the thermal 

conductivity of polymers is close to that of natural rubber, but due to its high specific 

heat capacity, it has a strong heat absorption capacity, resulting in a small 

temperature rise; cellular ceramics, on the other hand, show significantly different 

characteristics, with a high thermal conductivity and a fast heat transfer, with the 

maximum temperature significantly higher than that of the previous two materials 

and the temperature gradient is large, indicating that it can quickly reach thermal 

equilibrium in a high-temperature environment. The temperature distribution of 

different materials is shown in Table 5. 

Table 5. Temperature distribution of different materials. 

Material type Initial temperature (K) Maximum temperature (K) Average temperature (K) Temperature gradient (K/m) 

natural rubber 300 320 310 50 

polymer 300 315 308 75 

honeycomb ceramics 300 350 325 200 

The maximum temperature of honeycomb ceramics reaches 350 K with a 

temperature gradient of 200 K/m, which is much higher than that of natural rubber at 

50 K/m and polymer at 75 K/m, indicating that honeycomb ceramics is able to 

conduct heat rapidly in a short period of time, whereas natural rubber and polymer 

have a slower heat conduction rate, which is suitable for thermal cushioning and 

insulation materials. In order to further investigate the thermal stress response of 

different materials under a high-temperature environment, the thermal stress 

distribution under the same thermal load was analyzed, and the results are shown in 

Table 6. 

Table 6. Thermal stress distribution for different materials. 

Material type Maximum thermal stress (MPa) Average thermal stress (MPa) Stress gradient (MPa/m) 

natural rubber 1.2 0.6 5 

polymer 1.8 0.9 7 

honeycomb ceramics 15 7.5 50 

The data in Table 7 show that the maximum thermal stress of honeycomb 

ceramics reaches 15 MPa, while that of natural rubber is only 1.2 MPa and that of 

polymer is 1.8 MPa. The thermal stress of honeycomb ceramics mainly originates 

from the concentration of internal stress caused by the temperature gradient due to 

the low coefficient of thermal expansion, while natural rubber and polymers have 

higher coefficients of thermal expansion, which enable them to distribute the thermal 

stresses more uniformly during the heating process, thus reducing the local stress 

peaks. Thermal stress, thereby reducing the local stress peaks. In contrast, the stress 
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gradient of honeycomb ceramics reaches 50 MPa/m, while that of natural rubber and 

polymer is only 5 MPa/m and 7 MPa/m, respectively, indicating that honeycomb 

ceramics are prone to localized stress concentration phenomena under high-

temperature conditions, whereas the rubber-based materials, due to their strong 

flexibility, have uniform overall thermal deformation and less internal stress change. 

In terms of computational efficiency, the experiment monitored the computation 

time and GPU utilization of different materials, and the results are shown in Table 7. 

Table 7. Assessment of computational efficiency of different materials. 

Material type Calculation parameters GPU Memory Usage (GB) Training time (h) GPU utilization (%) 

natural rubber 20,000 60 3.2 85 

polymer 20,000 75 3.8 90 

honeycomb ceramics 20,000 90 4.5 98 

Honeycomb ceramics had the longest computational time with a total training 

time of 4.5 h, compared to only 3.2 h for natural rubber and 3.8 h for polymer. This 

is mainly due to the high thermal conductivity and high-temperature gradient of 

honeycomb ceramics leading to increased computational complexity, which requires 

higher sampling density and computational accuracy during the training process of 

the PINNs model, which in turn increases the computational cost. In addition, the 

GPU memory occupancy of honeycomb ceramics reaches 90 GB, and the GPU 

utilization is as high as 98%, which is much higher than the 60 GB and 85% 

utilization of natural rubber, indicating that the simulation of thermodynamic 

properties of honeycomb ceramics has a higher demand for computational resources. 

The differences in heat conduction, thermal stress, and computational efficiency of 

different materials indicate that the PINNs model can effectively adapt to the thermal 

environment of different biomaterials, and the simulation ability is stronger in the 

region of high temperature gradient and high stress concentration. Cellular ceramics 

are suitable for efficient thermal conductivity applications, but their high-

temperature stress concentration problem requires further optimization of the 

structural design, whereas natural rubber and polymers exhibit better thermal 

buffering properties and are suitable for thermal insulation and thermal stress-

resistant material application scenarios. 

6. Optimization strategies for PINNs algorithm in 3D 

biomechanical heat transfer problems 

a) Model Uncertainty Handling 

In order to improve the predictive robustness of the model under high 

temperature gradient and non-uniform stress field, a Bayesian uncertainty estimation 

method is introduced. Specifically, the Monte Carlo Dropout (MCD) strategy is 

used, where the dropout is kept active during the training phase, and the set of 

outputs {𝑦̂1, 𝑦̂2, … , 𝑦̂𝑇} under the same input x is obtained through multiple forward 

propagations T times, and its mean 𝜇 =
1

𝑇
∑  𝑦̂𝑡

𝑇
𝑡=1  and variance 𝜎2 =

1

𝑇
∑ (𝑦̂𝑡 −𝑇

𝑡=1

𝜇)2 are computed, thus estimating the prediction uncertainty [15]. This method can 
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quantify the sensitivity to input perturbations through the neural network structure 

without explicitly defining the prior distribution. Meanwhile, in order to alleviate the 

problem of excessive error in high temperature gradient or stress concentration 

regions, the Adaptive Weighted Loss (AWL) mechanism is introduced. The overall 

loss function is defined as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑤(𝑥𝑖) ⋅ ‖𝐹(𝑥𝑖; 𝜃) − 𝑦𝑖‖2

𝑁

𝑖=1

 (10) 

where 𝑤(𝑥𝑖) + 1 + 𝛼 ⋅ |𝛻𝑇(𝑥𝑖)|  is the weight factor associated with the local 

temperature gradient and 𝛼 is the tuning hyperparameter. This strategy enables the 

model to automatically give higher attention to high gradient regions during training, 

which helps to alleviate the problem of insufficient local convergence and improve 

the overall prediction accuracy. To enhance the practicality and scalability, a parallel 

GPU-based Monte Carlo Dropout sampling mechanism is incorporated into the 

computational process, and the dynamic adjustment of 𝑤(𝑥) enables intensive 

optimization training in high-temperature/high-stress regions. The method realizes 

the organic integration of uncertainty quantification and accuracy control in high-

dimensional fields. 

In order to optimize the computational stability, Multi-Scale Grid Sampling 

(MSGS) is used to increase the sampling density in the region where the temperature 

change is more than 500 K/m or the stress change is more than105 Pa/m, so as to 

make the computational accuracy in the region where the gradient changes are 

drastic. The loss function optimization adopts an adversarial training strategy to 

optimize the model’s robustness by counteracting noise perturbations and to ensure 

the model’s adaptability in large-scale biological tissues. In order to analyze the 

performance of PINNs in uncertainty optimization more intuitively, Figure 5 shows 

the distribution of uncertainty in different regions, and the uncertainty heatmap on 

the right side shows that the uncertainty of PINNs is significantly reduced in high 

gradient regions. 

𝐿 = 𝜆1 ‖
𝜕𝑇

𝜕𝑡
− 𝛻 ⋅ (𝑘𝛻𝑇) −

𝑞

𝜌𝑐
‖ + 𝜆2‖𝛻 ⋅ 𝜎 − 𝑓‖2 + 𝜆3‖IE[𝑇] − 𝑇𝑡𝑟𝑢𝑒‖2 (11) 

where  IE[𝑇]  denotes the expected temperature distribution based on Bayesian 

uncertainty estimation, and 𝜆3 is the uncertainty correction weight, which ensures 

that the deviation between the predicted mean and the real data is minimized. The 

computational efficiency of Monte Carlo Dropout is improved to  106  forward 

propagation calculations per second by GPU parallel computing optimization, which 

improves the computational stability and accuracy of PINNs in complex biological 

tissue heat transfer problems. 
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Figure 5. Heat map of uncertainty distribution. 

b) Optimization of network structure and training strategy 

In order to improve the accuracy and generalization ability of the PINN 

algorithm in 3D biomechanical heat transfer problems, the network structure is a 12- 

to 24-layer deep fully connected network (D-FCN) with 128 to 1024 neurons per 

layer, and the activation function is chosen to be Swish. The input variables include 

the 3D coordinates (x, y, z), the time t, and the material parameters (the thermal 

conductivity k is 0.1–10 W/m-K, density ρ of 500–1500 kg/m3, and specific heat 

capacity c of 1000–4000 J/kg-K), and the outputs are the temperature field T and the 

stress distribution σ. The loss function combines the heat conduction and the 

constraints of the mechanical equations, the optimization method is L-BFGS with 

Adam, and the convergence error is controlled within 10−4. The data sampling 

strategy uses adaptive grid refinement to increase the sampling density when the 

temperature gradient exceeds 500 K/m or the stress gradient exceeds 105 Pa/m; in the 

300–350 K interval, the sampling density is encrypted to 5000/m2. Adversarial 

Perturbation Optimization (APO) is introduced to simulate tissue nonuniformity by 

noise and construct the adversarial loss function Ladv. The nonuniformity of 

biological tissues is simulated by adding random noise to the input data and 

constructing the adversarial loss function 𝐿𝑎𝑑𝜐: 

𝐿𝑎𝑑𝜐 = 𝜆4‖IE[𝑇 + 𝛿] − 𝑇𝑡𝑟𝑢𝑒‖2 (12) 

where 𝛿 denotes the random perturbation term and 𝜆4 is used as the adversarial 

learning weight to enhance the model’s adaptability to the complexity of real 

biological tissues. During the training process, the batch size is set to 4096 in the 

GPU parallel computing environment, and the optimization algorithm adopts a 

hybrid strategy, which first uses Adam for the first 10,000 times of training, with the 

learning rate set to 10−3, and then switches to L-BFGS to enhance the global 

optimization capability. The parameters of the model are updated by gradient 

clipping, which restricts the gradient parameter to within 1.0 to avoid the gradient 

explosion phenomenon and improve the numerical stability of the model. 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛻𝐿(𝜃𝑡), 𝑤ℎ𝑒𝑟𝑒‖𝛻𝐿(𝜃𝑡)‖ < 1.0 (13) 

During the optimization computation, to reduce computational overhead, Mixed 

Precision Training (MPT) is used, which uses FP16 precision for forward 

propagation and backpropagation computations while maintaining FP32 precision 

for gradient updates to reduce storage requirements and increase training speed. The 

computational task is based on NVIDIA RTX 3090 GPUs, and the parallel 

computational throughput is increased to 106 gradient updates per second. In order 

to analyze the effect of the optimization strategy more intuitively, Figure 6 shows 
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the comparison of the loss convergence curves under different training strategies, 

and the right figure shows the data distribution after adaptive mesh optimization, 

which significantly reduces the error accumulation in the high-temperature gradient 

region. 

 

Figure 6. Comparison of loss convergence curves with different training strategies. 

c) Physical constraint enhancement methods 

The enhancement of physical constraints in the PINNs model for the 3D 

biomechanical heat transfer problem is optimized through several aspects. For the 

boundary conditions of the temperature and stress fields, an adaptive boundary 

processing method is used, which makes the model give higher computational 

accuracy in the region of high temperature gradient and stress concentration by 

dynamically adjusting the weights of the boundary terms in the loss function. In 

addition, a local weighting strategy is introduced to increase the density of training 

points in regions with large temperature and stress gradients, thus improving the 

prediction accuracy in these regions. During the training process, a gradient 

weighting technique is used to adjust the learning rate of different physical regions, 

enabling the model to capture changes in heat transfer and stress distribution more 

accurately in complex biomechanical environments. Through these enhancement 

methods, the model is able to effectively improve its adaptability to high-temperature 

regions, non-uniform materials, and complex boundary conditions, thus improving 

the overall prediction performance and numerical stability. 

7. Conclusion 

The application of the PINNs algorithm to 3D biomechanical heat transfer 

problems demonstrates strong numerical stability and prediction accuracy. By 

introducing physical constraints and combining them with the automatic 

differentiation technique, the model shows high accuracy in predicting the 

temperature and stress fields in complex biological tissues, especially in dealing with 

anisotropic, non-uniform, and heat-force coupling problems under complex 

boundary conditions. The experimental results show that the PINNs algorithm is 

effective in improving the numerical stability in high gradient regions, optimizing 

the stress distribution in complex geometric scenarios, and reinforcing the accurate 

fitting of temperature mutation regions. In the future, more complex physiological 

activity models can be further combined to introduce biothermodynamic factors such 

as blood perfusion and metabolic heat in order to enhance the model’s ability to 
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portray the heat transfer behavior of real biological tissues. In addition, the 

combination of multi-scale grid optimization and adaptive sampling strategy will 

help to further improve the computational efficiency and applicability of the 

algorithm in large-scale biomechanical models. 
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