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Abstract: In order to explore the impact of over-control on the digital transformation of 

enterprises, the constraints of over-control on digital transformation are analyzed based on a 

biomechanical model using Chinese A-share listed private enterprises as an example. A 

number of private enterprises between 2014 and 2023 were selected as the research subjects. 

After excluding financial institutions, ST companies and samples with incomplete data, a 

dataset of 1517 firms and 10,388 firm-year observations was finally retained. The results show 

that excessive control affects the innovation decisions of enterprises to a certain extent and 

reduces the effectiveness of enterprise digital transformation. When controlling shareholders 

or de facto controllers’ control exceeds their shareholding, they tend to intervene excessively 

in enterprises’ technological research and development and digitalization investment, leading 

to inefficient resource allocation and slowing down the transformation process. In addition, the 

imperfect corporate governance structure and excessive concentration of power also exacerbate 

the risks in the process of enterprise digital transformation. To mitigate the negative effects of 

excess control, enterprises should implement dual-level governance optimization: (1) Establish 

ownership-cash flow alignment mechanisms such as sunset clauses or shareholding caps to 

prevent long-term entrenchment; (2) enhance board independence through increased 

representation of external directors and the formation of digital oversight committees. These 

measures can reduce the CFi index and increase transparency (ITC), thereby improving 

transformation efficiency. Moreover, embedding data governance frameworks into digital 

strategy development can counterbalance centralized control by ensuring stakeholder-informed 

decision-making. In simple terms, our model shows that when a small number of decision-

makers control too much power, it can “choke” the organization’s ability to share resources 

and adapt to digital changes, much like how an overly tense muscle restricts movement in a 

biomechanical system. 

Keywords: excess control; digital transformation; biomechanical model; A-share listed 

companies; corporate governance 

1. Introduction 

In the context of accelerating global digital transformation, enterprises are 

increasingly relying on technology-driven strategies to enhance competitiveness and 

achieve sustainable growth. However, the internal governance structure—particularly 

the phenomenon of excess control—has emerged as a critical barrier in this 

transformation process. Excess control refers to the situation where controlling 

shareholders or de facto controllers possess voting rights disproportionate to their cash 

flow rights, enabling them to dominate strategic decisions without bearing 

corresponding economic risks. This governance distortion is rooted in the agency 

theory and entrenchment effect, where controlling parties may prioritize personal 
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interests over firm value, leading to reduced innovation efficiency [1]. Furthermore, 

resource dependence theory suggests that overcentralization disrupts strategic 

flexibility and inhibits access to diverse knowledge and capabilities necessary for 

digital transformation. Prior studies [2,3] confirm these risks by demonstrating how 

excessive control impedes strategic agility and limits organizational learning, both of 

which are vital for effective digital adaptation. 

Prior research has explored various theoretical frameworks to evaluate the 

influence of control structures on corporate decision-making. Notably, biomechanical 

modeling has been applied to simulate organizational stress fields and decision 

equilibria under different structural pressures [4] Drawing inspiration from this line of 

research, this study integrates biomechanical force-field theory into enterprise 

governance analysis, constructing a dynamic simulation framework that quantifies how 

excess control distorts resource flows and impairs digital strategy execution. By 

anchoring the concept of excess control within a measurable force system, this 

approach not only offers a novel lens for interpreting power asymmetries in corporate 

governance, but also provides a quantitative pathway to identify optimal digital 

transformation trajectories. This enriches the existing literature by linking institutional 

constraints to enterprise-level digital evolution through a mechanistic and data-driven 

model. 

2. Application of biomechanical modeling in enterprise digital 

transformation decision making 

Biomechanical modeling offers a structured and dynamic framework for 

analyzing complex decision-making scenarios in enterprises undergoing digital 

transformation, especially under the influence of power asymmetries such as excess 

control. As suggested by Yang et al. [5] and Yin and Zhao [6], biomechanical systems 

modeling has been effectively utilized in organizational studies to simulate equilibrium 

states, resource flows, and system stress in adaptive environments. In this context, we 

extend this methodology to corporate governance and digital transition analysis [5,6]. 

The modeling process consists of several critical components: 

(1) Structural mapping: Enterprise governance elements—including shareholder 

control, board structure, and management interaction—are abstracted into nodes 

within a mechanical structure; 

(2) Force field assignment: Each node is assigned a specific control weight, translated 

into “Control Field Intensity” (control field intensity, CFi), which reflects the 

magnitude of excess control; 

(3) Constraint modeling: External variables such as market volatility, innovation 

urgency, and technological inputs are modeled as constraint forces or tension 

vectors that influence decision paths; 

(4) Dynamic simulation: Numerical techniques (e.g., Newton-Raphson iteration, 

Monte Carlo simulations) are applied to simulate how fluctuations in CFi affect 

digital transformation strategy execution, organizational coherence, and 

innovation diffusion efficiency over time. 

Through this layered approach, biomechanical modeling enables a quantitative 

representation of how structural imbalances within corporate governance dynamically 



Molecular & Cellular Biomechanics 2025, 22(5), 1865.  

3 

influence transformation performance. In doing so, it bridges the gap between 

theoretical governance studies and operational transformation decisions, providing a 

computational method for optimizing enterprise control and innovation pathways. 

In the decision-making process, the reinforcement of excessive control power 

creates “mechanical distortion” to the technology investment, staffing and 

management’s strategic intent in digital transformation, leading to the centralization or 

decentralization of resource flow, and affecting the vitality of innovation and execution 

efficiency. The biomechanical model can accurately portray this mechanism, clarify 

the optimal digital transformation strategy under different control strengths, and help 

enterprises balance the control allocation and transformation risk to realize data-driven 

scientific decision-making. Through the simulation analysis of this model, it can not 

only optimize the choice of digital transformation paths, but also provide a quantitative 

basis for corporate governance, and enhance the effectiveness and stability of 

transformation. 

3. Materials and methods 

This section presents the complete biomechanical modeling methodology, from 

parameterization to algorithm implementation. The process is structured into four key 

phases: (1) Model parameterization and constraint formulation; (2) simulation of 

dynamic control evolution; (3) system optimization and iterative tuning; and (4) 

construction and implementation of the biomechanical digital transformation model. 

This holistic framework allows for seamless integration of theoretical modeling and 

empirical system deployment, reducing structural redundancy while enhancing process 

clarity. 

A. Parameterization of the biomechanical model 

In designing the dynamic evolution process under the influence of excess control, 

the modeling procedure consists of three sequential stages: 

(1) Temporal parameter calibration: Set the initial values of control field strength 

(CFi), resource constraints (resource flow constraint, RFC), and information 

transparency (information transparency constraint, ITC) at baseline (e.g., T₀). 

(2) Simulation of dynamic effects: Using a continuous-time feedback loop based 

on biomechanical tension theory, the model iteratively adjusts RFC and ITC 

over a time window (e.g., 6–12 months), showing the phase-wise impact of 

control intensity. 

(3) Outcome evaluation and trajectory reconfiguration: Based on simulation 

results, measure the distortion level in resource allocation and decision 

latency, and adjust control parameters accordingly. 

This approach, inspired by prior studies on dynamic decision systems, ensures that 

the control-governance mismatch can be continuously monitored, and the 

transformation trajectory adaptively revised [7]. 

In the parameterization process, it is necessary to consider the Control Field 

Intensity (CFi), which captures the quantitative dimension of excess control. Here, 

excess control is operationally defined as the divergence between the proportion of 

voting rights and actual cash flow rights (i.e., ownership) held by controlling 

shareholders. A CFi value approaching 2.0 indicates a scenario where strategic power 
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significantly outweighs economic exposure, creating strong incentives for 

opportunistic behavior. This condition is typically caused by pyramidal shareholding 

structures, cross-shareholding arrangements, or dual-class share systems. The model 

integrates these structures into a measurable force intensity to simulate their impact on 

digital transformation dynamics. Consider Resource Distribution Distortion (resource 

distribution distortion, RDD), which refers to the impact of changes in the intensity of 

control on the allocation of resources, especially the bias in financial resources, human 

resources, and technological inputs. By calculating RDD, we are able to get a clear 

picture of how excess control leads to the concentration or dispersion of resource flows 

and analyze its impact on the efficiency of digital transformation implementation. To 

further quantify these parameters, Table 1 lists the key parameters in the biomechanical 

model and their corresponding set values. 

Table 1. Parameter setting table for biomechanical modeling. 

Parameter name Parameter symbol Setting value range 

Control of force field strength CFi 0.1–2.0 

Distortions in resource allocation RDD 0.0–1.0 

Digital transformation execution efficiency DTE 0.0–1.0 

Technology inputs and manpower allocation impact 
factors 

TI/HR 0.0–1.0 

The setting of these parameters is based on the results of actual data analysis of 

the enterprise’s current shareholder structure, financial situation and digital 

transformation investment. The parameterized force field model can accurately 

calculate the optimal digital transformation strategy under different control 

configurations, help enterprises adjust their governance structure according to the 

actual situation, balance the transformation risk and resource allocation, and enhance 

the execution and stability of the transformation path. 

B. Model constraints construction 

In constructing biomechanics-based model constraints on the mechanism of action 

of excess control on digital transformation, it is important to consider the constraining 

effects of control on resource flow, decision-making efficiency, and organizational 

coordination. The core constraints of the biomechanical model are derived from the 

derivation of the force field model of excess control. Specifically, the constraints should 

reflect the dynamic equilibrium between the intensity of control and the firm’s resource 

allocation, and further consider how to quantify its impact through parameterization. 

To this end, the model must specify the direction of resource flows, the coordination of 

the organizational structure, and the constraints imposed on these factors by the external 

environment. The Resource Flow Constraint (RFC) is central in the setting of 

constraints and its form can be expressed by the following equation: 
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where Ri denotes the initial total amount of resources (e.g., financial, human, 

technological, etc.) in category, Si is the actual allocation ratio of resources in category, 
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CFi is the intensity of the control field, DTEi is the efficiency of the digital 

transformation execution, and T is the maximum carrying limit of resource flow. This 

formula suggests that when the excess control is too concentrated, the resource flow of 

the enterprise will be limited, leading to the hindrance of digital transformation. In 

addition, the impact of information transparency constraints on decision-making 

efficiency needs to be considered. Information flow is constrained by the control 

structure, and excess control leads to information asymmetry, which in turn affects the 

transparency and efficiency of decision-making. This can be represented by the 

following Information Transparency Constraint (ITC): 
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where Ij represents the initial amount of information of category, Nj is the actual flow 

of information of category, 𝜃𝑗  is the influence coefficient of control concentration on 

information flow, and Ti is the minimum required value of information transparency. 

This formula reflects the limitation of control concentration on information flow, which 

affects the decision-making efficiency of digital transformation and the success rate of 

the specific parameter settings of constraints, which are shown in Table 2. 

Table 2. Model constraints parameter settings. 

Parameter name Parameter symbol Setting value range 

Resource flow constraints RFC 0.2–1.0 

Information transparency constraints ITC 0.5–1.0 

Control of force field strength CFi 0.1–2.0 

Digital transformation execution efficiency DTE 0.0–1.0 

Resource allocation ratio Si 0.1–0.9 

Information flow Ij 0.0–1.0 

These parameters reflect the multi-dimensional constraint effect of control on 

digital transformation in the biomechanical model. Through the setting of these 

constraints, it can effectively simulate the impact of excess control on the choice of the 

path of digital transformation of the enterprise, and help the enterprise to adjust the 

configuration of control and optimize the use of resources and decision-making 

efficiency in order to achieve the best digital transformation results. 

C. Dynamic evolutionary process design 

In the biomechanics-based design of the dynamic evolution process of the 

mechanism of excess control on the role of digital transformation, the first step is to 

consider the impact of the intensity of control on the interaction between internal and 

external factors of the enterprise. In this process, the dynamic changes in the 

enterprise’s resource allocation, decision-making mechanism, information flow and 

personnel synergy need to be described by a series of constraints [8]. By modeling the 

continuous impact of excess control on various aspects of the enterprise digital 

transformation process, the resistance and driving force in the transformation process 

can be effectively assessed. In the dynamic evolutionary process, the intensity of 

control (CFi) serves as a key variable that exerts a continuous effect on resource flow 
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(RFC) and information transparency (ITC) over time. At different points in time, CFi 

affects the allocation patterns of various types of resources (e.g., financial, human, and 

technological) in the enterprise, and accelerates or slows down the process of digital 

transformation through a dynamic feedback mechanism. To this end, the model 

captures the evolutionary effects of control intensity on these key decision-making 

aspects by setting the changes in resource flows and information transparency at 

different points in time. 

In the design process, the basic values of resource flow and information 

transparency are set for the initial stage (e.g., the beginning of the year), and then the 

process of change under different strengths of control is simulated by dynamic 

evolution equations. For example, at a control field strength (CFi) of 0.5, the resource 

flow constraint (RFC) decreases by 20% within 6 months, while the information 

transparency constraint (ITC) decreases by 15%. This change progressively affects 

decision-making efficiency and execution, leading to an adjustment of the digital 

transformation path. Over time, the continued imposition of control will further 

exacerbate the imbalance of resource allocation, creating a distortionary effect, which 

in turn affects the effectiveness of the firm’s transformation. The dynamic evolution 

process of the model should also take into account changes in the external 

environment, especially the flow of internal and external resources and the synergy 

efficiency of the enterprise under the influence of factors such as market competition 

pressure and policy changes [9]. By regularly updating the intensity of control and 

resource flow parameters, the enterprise’s digital transformation strategy can be 

adjusted in real time. Figure 1 demonstrates the interrelationship between resource 

flow, information transparency, control intensity and digital transformation path: 

 

Figure 1. Structure of the dynamic evolutionary process. 

The figure shows the dynamic relationship between resource flow, information 

transparency, staffing and technology investment under different control intensities. By 

continuously adjusting the parameters in the model, the optimal digital transformation 
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path at each stage can be obtained, thus helping enterprises to formulate more precise 

transformation strategies, optimize resource allocation and improve execution 

efficiency [10]. 

D. Model optimization and tuning 

In the process of optimizing and adjusting the biomechanics-based model of the 

mechanism of excess control on digital transformation, it is necessary to deeply 

understand how the constraints and parameters in the model affect the flow of 

resources, the transparency of information, and the efficiency of the implementation of 

digital transformation [11]. Through the force field model of biomechanics, the excess 

control is regarded as the “Control Force Field Intensity” (CFi), and the parameters in 

the model are adjusted to optimize the selection of digital transformation paths. CFi and 

RDD are directly related to the resource flow constraint (RFC) and information 

transparency constraint (ITC) of digital transformation, and the specific formulas are 

as follows: 

)1(7.0

)1(5.0
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CFi
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
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



 (3) 

where RFC denotes the resource flow constraint, ITC denotes the information 

transparency constraint, CFi denotes the control force field strength, and RDD denotes 

the distortion degree of resource allocation. Based on these formulas, by simulating the 

effects of different control force field strengths (CFi) and resource allocation distortion 

degrees (RDD) on the digital transformation path of an enterprise, corresponding 

graphs are generated to gain a more intuitive understanding of the optimization process 

of the model. In Figure 2, the changes in resource flow (RFC) and information 

transparency (ITC) are shown for different values of CFi and RDD. The color shades 

in the figure represent the strength of these parameters, clearly depicting how excess 

control affects the execution of the digital transformation path through resource flow 

and information transparency constraints. The model optimization process aims to 

determine the most efficient digital transformation path under varying control 

intensities. By iteratively adjusting CFi and RDD, and monitoring their influence on 

RFC and ITC, the model employs a convergence strategy that balances governance 

control with transformation agility. The optimal point is identified where resource 

constraints and transparency barriers are minimized without undermining managerial 

oversight. 

In Figure 2, the color gradient represents the constraint intensity level: darker 

areas correspond to higher values of RFC and ITC, signaling more severe distortions 

in resource flow and transparency under high control intensity. Lighter shades indicate 

zones of lower constraint, typically emerging under decentralized control 

configurations. In the optimization process of the model, the reasonable adjustment of 

CFI and RDD can guide the best path of resource flow, and also optimize the 

improvement of information transparency. By adjusting the strength of the control force 

field, the centralization or decentralization trend of resource allocation can be regulated 

to optimize the decision-making efficiency and execution in the process of digital 

transformation. In particular, when the CFI is high, the resource flow tends to be 

centralized, but the information transparency is reduced, resulting in limited decision-
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making efficiency. Therefore, by dynamically adjusting these parameters, the risks in 

the transformation path can be effectively controlled to ensure the optimal digital 

transformation effect [12]. Eventually, through the continuous optimization of the 

biomechanical model, it can provide a quantitative decision-making basis for 

enterprises, help them flexibly adjust the digital transformation strategy in the complex 

market environment, and achieve the maximization of the transformation goal. 

 

Figure 2. Dynamic relationship between resource flows and information transparency constraints. 

E. System architecture of the digital transformation model of excess control based 

on biomechanics 

In the biomechanics-based digital transformation model construction of excess 

control right, the system architecture design is the key link to ensure the accuracy and 

operability of the model [13]. The design of the architecture follows the core concept 

of the biomechanical model, taking the excess control right as the core variable in the 

mechanical system, and comprehensively considering its impact on resource flow, 

decision-making mechanism, organizational synergy and other aspects. The system 

architecture consists of three main layers: input layer, processing layer and output layer. 

The input layer mainly focuses on the external environment and internal resource 

allocation of the enterprise, including factors such as shareholder structure, financial 

status, staffing, and technology investment. These data are input in real time through 

the information collection module, providing basic data support for subsequent 

analysis. The processing layer is the core computing module, which adopts the 

biomechanical force field model to process the input data and simulate the dynamic 

relationship between the strength of the control force field (CFi) and the resource flow 

constraints (RFC) and information transparency constraints (ITC). By calculating and 

simulating these parameters, the centralization or decentralization effect of excess 

control on resource flow can be analyzed and its impact on decision-making efficiency 

can be assessed. The output layer provides optimization suggestions based on the 

processing results to generate the implementation path of digital transformation, 
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including specific execution strategies such as resource allocation, technology 

selection, and staffing, as detailed in Figure 3. 

 

Figure 3. Flowchart of the excess control digital transformation model. 

The design of this system architecture can accurately simulate and predict the 

impact of overcontrol on digital transformation under different intensities, and help 

enterprises make scientific and accurate transformation decisions in complex 

management and decision-making environments. This model architecture is not only 

highly adaptable, but also can be flexibly adjusted according to the actual needs of 

enterprises to achieve the best digital transformation results [14]. 

F. Data acquisition and preprocessing 

Data collection and preprocessing are key aspects to ensure the validity of the 

model. Data collection mainly involves core variables such as the excess control of the 

enterprise, resource flow, information transparency, and digital transformation 

execution efficiency. In order to improve the representativeness and reliability of the 

data, in data collection, the intensity of the control field is quantified by the ratio of 

shareholders’ voting rights to cash flow rights, and combined with information on the 
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enterprise’s shareholder structure and the distribution of board of directors’ seats in 

order to measure the actual scope of influence of the enterprise’s excess control. 

Resource allocation distortion is calculated using data on R&D investment, capital 

expenditure, and human resource allocation in the firm’s annual financial statements to 

measure how excess control affects the concentration or dispersion of resource flows. 

Information transparency is calculated based on multidimensional metrics, including 

financial disclosure clarity, auditor opinion types, and variance in financial Key 

Performance Indicators (KPIs). To ensure validity, the measurement framework was 

benchmarked against established transparency indices (e.g., TIR—Transparency Index 

for Reporting) and adjusted using factor analysis to retain high-loading items. 

Reliability was tested via Cronbach’s alpha (α = 0.84), confirming internal consistency. 

Additionally, the resource flow constraint index (RFC) was validated using triangulated 

data from financial reports, investment records, and HR allocation logs. These steps 

ensure both content and construct validity, enhancing the robustness of the model’s 

predictive power [15]. 

In data preprocessing, data cleaning was first performed, including outlier removal 

and missing value filling. For extreme values, truncation of 1% and 99% quantiles was 

used to avoid the influence of abnormal data on regression analysis. In addition, 

variables with fewer missing values were mean-filled, while variables with more 

missing values were processed by interpolation to ensure data integrity. The data were 

standardized to make variables at different scales comparable in the model calculations. 

Variables such as control force field strength CFi, resource allocation distortion RDD, 

and information transparency ITC are normalized to the [0, 1] interval so that they are 

not affected by variable scales during numerical calculations. The normalization is done 

using the following equation: 

minmax

min

XX

XX
X






 
(4) 

where 𝑋′ is the standardized variable value, X is the original variable value, Xmin and 

Xmax are the minimum and maximum values of the variable respectively. To check the 

robustness of the data, principal component analysis (PCA) was used to downscale the 

variables to minimize the problem of multicollinearity among the variables. PCA 

computed the covariance matrix, extracted the principal components with the highest 

contribution to explaining the variance, and retained only those with a cumulative 

contribution of more than 85% to ensure that the main information of the data was 

retained. 

G. Model algorithm implementation 

In the process of algorithmic implementation of biomechanics-based excess 

control on the mechanism of digital transformation, the core objective is to construct a 

control force field model, and simulate the effects of different control power intensities 

on resource flow, information transparency and digital transformation efficiency 

through numerical computation. Key variables such as control force field intensity 

(CFi), resource distribution distortion degree (RDD), information transparency 

constraint (ITC) and resource flow constraint (RFC) are set to represent the state of the 

enterprise under different control power structures in the form of a matrix. The core 

calculation formula is as follows: 
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where Fi denotes the efficiency of digital transformation implementation in the *th 

enterprise , wij represents the allocation weight of resources within the enterprise, Rj is 

the total amount of resources in the jth category, and 𝜆  and 𝜇  are moderating 

parameters used to control the impact of information transparency and resource flows 

on the overall system, respectively.In the numerical simulation process, the finite 

element method is used to discretize the control force field equations, and the trends of 

resource flow and information transparency under different excess control power 

strengths are calculated by iteration. The numerical solution method adopts the 

Newton-Raphson iterative method (Newton-Raphson Method) to calculate the gradient 

of the influence of the change of control intensity on corporate decision-making. The 

Markov decision process is used to simulate the impact of excess control on the 

dynamic adjustment of enterprise resource allocation in different time windows, and 

the state transfer matrix is constructed 𝑃(𝑠′|𝑠, 𝑎): 

 )(),(),(max)( SVasRassPsV
s

a
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



 
(6) 

where V(s) denotes the optimal decision value of the firm in state s, R(s, a) represents 

the return value after taking action a, and 𝛾 is the discount factor.Finally, the dynamic 

evolution analysis is carried out by Monte Carlo Simulation to optimize the optimal 

resource allocation strategy under the intensity of excess control, and the data 

distribution characteristics are shown graphically in Figure 4. 

 

Figure 4. Impact of excess control on digital transformation execution efficiency. 

H. System function module development 

The Excess Control Digital Transformation Analysis System consists of three 
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modules: input layer, processing layer and output layer, in order to realize the 

quantitative analysis of the enterprise governance structure on the execution efficiency 

of digital transformation. The development of the system modules needs to ensure the 

completeness of the data input, the efficiency of the calculation model, and the 

interpretability of the result output, so as to support the enterprise to optimize the 

control right structure and enhance the success rate of digital transformation. 

(1) Input layer: The input layer serves as the data acquisition and preprocessing 

module, responsible for integrating multi-source inputs including governance structure, 

financial resource allocation, information disclosure metrics, and digital investment. 

Rather than recalculating individual parameter values, this layer invokes the 

standardized parameterization logic already defined in Section III-C. Parameters such 

as control field intensity (CFi), resource distribution distortion (RDD), resource flow 

constraints (RFC), and information transparency constraints (ITC) are retrieved from 

the algorithmic module based on pre-processed datasets. To ensure consistency, all 

variables are normalized, outliers are excluded, and dimensionality is reduced using 

Principal Component Analysis (PCA), in line with the model’s computational 

efficiency requirements. 

(2) Processing layer: The processing layer is the core computing module, which 

adopts the biomechanical force field model to simulate the impact of the intensity of 

corporate control on resource flow, constructs the resource flow matrix and the 

information transparency adjustment equation, and analyzes the nonlinear mechanism 

of excess control on the execution efficiency of corporate digital transformation. The 

Newton-Raphson method is used to solve nonlinear equilibrium states that emerge from 

internal frictions within the control-resource interaction matrix. Specifically, the model 

begins by initializing a force field matrix consisting of CFi, RFC, and ITC parameters. 

The Markov Decision Process (MDP) simulates adaptive decision-making by assigning 

state-action-reward values across varying control scenarios, while Monte Carlo 

Simulation introduces stochastic perturbations to account for market uncertainty and 

behavioral variability. By integrating these methods, the model dynamically calibrates 

enterprise decision pathways, enabling accurate forecasting of transformation 

trajectories under different governance structures. The iterative process ensures 

convergence towards an optimal allocation strategy that minimizes distortion while 

maximizing innovation throughput. 

(3) Output layer: The output layer is responsible for visualizing the results of the 

calculations and providing optimized recommendations for the configuration of 

corporate control. The system output includes Digital Transformation Execution 

Efficiency (DTE), Resource Flow Optimization Ratio (RFC) and Information 

Transparency Improvement Index (ITC). Data visualization technology is used to show 

the impact of control field strength on the digital transformation path with 3D surface 

diagrams, vector field diagrams and heat maps, providing an intuitive, data-driven 

decision-making basis for enterprise management, helping optimize the governance 

structure, and enhancing the success and sustainability of digital transformation. 

4. Experimental results and analysis 

A. Experimental design and sample selection 
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In conducting the experimental design, private firms listed on China’s A-share 

market between 2014 and 2023 were first selected as the research subjects, and financial 

firms, ST firms and samples containing missing data were excluded to ensure the 

completeness and reliability of the data. In addition, to avoid the interference of outliers, 

the tail treatment of all continuous variables is strictly set at the 1% level. In terms of 

sample selection, only enterprises with five consecutive years of data are retained and 

samples with less than five enterprises in the industry are excluded, and the final sample 

obtained for the basic regression analysis contains 10,388 observations and covers 1517 

enterprises. In the process of sample selection, the variables of enterprise digital 

transformation are extracted through text analysis of the Management Discussion and 

Analysis (MDA) chapter in the company’s annual report. The natural language 

processing method is used to quantify the degree of enterprise digital transformation by 

using “digital transformation” as the keyword and combining it with sentence 

frequency analysis. 

B. Analysis of the results of the digital transformation model run 

In the analysis based on the biomechanical model, the impact of excess control on 

digital transformation is manifested in multidimensional changes, especially in 

resource flow, information transparency and execution efficiency. The role of different 

control field strengths (CFi) on resource allocation and decision-making efficiency of 

enterprises can be clearly seen in Tables 3–5  

Table 3. Analysis of financial resources liquidity and allocation efficiency under different control field strengths.  

Controlled force field intensity (CFi) Financial resource liquidity (%) Financial resource allocation efficiency (%) 

0.1 95 87 

0.5 80 75 

1 65 60 

2 45 40 

As shown in Table 3, when CFi increases from 0.1 to 2.0, financial resource 

liquidity drops from 95% to 45%, a decline of over 50%, while allocation efficiency 

drops from 87% to 40%. This sharp reduction indicates that excessive control severely 

hampers the firm’s ability to deploy resources efficiently. Specifically, the liquidity 

drop from 80% to 65% (CFi from 0.5 to 1) signals a threshold beyond which 

centralization significantly disrupts financial agility, restricting timely investment in 

digital initiatives and increasing the risk of strategic stagnation. 

Table 4. Analysis of the relationship between information transparency and the 

strength of the control force field. 

Controlled force field intensity (CFi) Information transparency (ITC) 

0.1 0.9 

0.5 0.7 

1 0.5 

2 0.3 
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As shown in Table 4, each row represents a simulated scenario of control intensity 

and its corresponding effect on information transparency (ITC). For instance, when CFi 

is 0.1, ITC remains high at 0.9, indicating minimal control interference in decision 

flows. However, as CFi rises to 2.0, ITC plummets to 0.3, signaling severe information 

bottlenecks. This table visualizes the inverse relationship between control 

centralization and organizational transparency, thereby underscoring the critical 

threshold beyond which governance becomes detrimental to transformation efficiency. 

Table 5. Relationship between resource allocation distortion and digital transformation execution efficiency.  

Resource distortion distribution degree (RDD) Digital transformation execution efficiency (DTE) 

0.1 0.9 

0.3 0.75 

0.5 0.6 

0.9 0.4 

According to Table 5, when RDD rises from 0.1 to 0.9, DTE drops from 0.9 to 

0.4—a decline of over 55%. Notably, a moderate distortion level (RDD = 0.5) already 

reduces DTE to 0.6, highlighting how even partial resource misallocation significantly 

impairs execution efficiency. The final drop to 0.4 under high RDD indicates 

operational fragmentation, poor cross-departmental coordination, and inadequate 

technological support, all of which delay or derail digital transformation progress. 

Through in-depth analysis of these data, it can be seen that the impact of excess control 

on an enterprise’s digital transformation path is complex and far-reaching. A high-

intensity control field not only affects resource flow and information transparency, but 

also distorts resource allocation, thus weakening the overall execution efficiency of 

digital transformation. Enterprises must take into account the potential impact of the 

control structure on these factors when undergoing digital transformation to ensure 

rational allocation of resources and transparent and efficient decision-making. 

C. Assessment of the effect of excess control on the impact of digital transformation 

In assessing the impact of excess control on digital transformation, the 

biomechanics model provides a unique perspective, revealing the multidimensional 

impact of excess control on resource flow, decision-making efficiency and 

transformation path selection through force field theory. Concentration of excess 

control is similar to the “force field strength” in biomechanics, which has a “distorting” 

effect on resource allocation and information transparency. When control is overly 

concentrated, resource allocation tends to be skewed in favor of a few top decision-

makers, leading to less innovation and inhibiting the flow of information, which 

reduces the transparency and efficiency of decision-making. This trend of centralization 

not only affects the flow of financial resources, but also has a negative impact on 

technology investment and human resources allocation. An analysis of the sample firms 

reveals that in firms with higher intensity of control, the execution efficiency of digital 

transformation is significantly lower, and the flow of all resources in the transformation 

process is more constrained. In order to analyze this impact in depth, Table 6 

demonstrates the relationship between enterprise resource allocation and digital 

transformation execution efficiency under different excess control intensity. 
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Table 6. Analysis of excess control intensity and digital transformation execution efficiency.  

Controlled force field 

intensity (CFi) 

Resource flow constraints 

(RFC) 

Information transparency 

constraints (ITC) 

Digital transformation execution 

efficiency (DTE) 

0.1 0.25 0.5 0.8 

0.5 0.5 0.7 0.65 

1 0.75 0.85 0.5 

1.5 0.85 0.9 0.4 

2 0.95 0.95 0.3 

From the data in the table, it can be seen that there is a significant negative 

correlation between the strength of the control force field (CFi) and the firm’s resource 

flow constraints (RFC), information transparency constraints (ITC) and digital 

transformation execution efficiency (DTE). When the control field strength is low (CFi 

= 0.1), the resource flow constraint is 0.25, the information transparency constraint is 

0.50, and the execution efficiency of digital transformation is higher (0.80), which 

indicates that in the case of decentralization of control, the enterprise is able to 

effectively coordinate all kinds of resources, the flow of information is smoother, and 

the execution of transformation is more effective. However, as the strength of the 

control field increases (CFi reaches 2.0), the resource flow constraint and the 

information transparency constraint rise to 0.95 and 0.95, respectively, and the 

execution efficiency of digital transformation decreases to 0.30, suggesting that the 

over-concentration of control leads to an imbalance in the allocation of resources within 

the enterprise, and information asymmetry is aggravated, further slowing down the 

transformation process. This data trend suggests that an increase in excess control 

restricts the flexible allocation of resources and the transparency of decision-making, 

which directly undermines the efficiency of an enterprise’s digital transformation. 

Therefore, appropriate decentralization of control is crucial to improving the efficiency 

of enterprise digital transformation. 

5. Conclusion 

In the study of the impact of excess control on digital transformation, the analysis 

reveals the inhibitory effect of control on the digitalization process, especially in the 

data-driven and technological innovation environment, and its negative impact on the 

efficiency of enterprise transformation is particularly significant. The results show that 

excess control limits the flexible allocation of resources and innovative decision-

making to a certain extent, which in turn reduces the effectiveness of digital 

transformation. However, the firm’s governance structure and external environment 

also have a significant impact on this relationship, and the improvement of governance 

mechanisms can help mitigate this negative effect.  

While this study presents a robust biomechanical modeling framework, certain 

limitations must be acknowledged. First, the exclusion of financial institutions and ST 

companies, though methodologically sound to reduce volatility and regulatory 

confounding, may introduce selection bias by omitting sectors where governance 

practices and digital transformation pathways differ significantly. This may limit the 

representativeness of the conclusions. Second, as the data are drawn exclusively from 
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Chinese A-share listed private enterprises, generalizing the findings to other markets—

such as state-owned enterprises, Small and Medium-sized Enterprises (SMEs), or firms 

in deregulated economies—requires caution. Institutional structures, investor 

protections, and digital maturity levels vary widely across regions and industries. 
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