
Molecular & Cellular Biomechanics 2025, 22(5), 1800. 

https://doi.org/10.62617/mcb1800 

1 

Article 

A multimodal approach to psychological resilience prediction in football 

players: Integrating biomechanical analysis, physiological feedback, and 

machine learning 

Chen Wu 

Physical Education School, Xi’an Fanyi University, Xi’an 710105, China; wc309770854@163.com 

Abstract: Football is a high-intensity sport that demands not only technical and physical 

excellence but also strong psychological resilience. This study investigates the relationship 

between biomechanics, physiological feedback, and psychological health in football players, 

employing a hybrid predictive model that integrates autoregressive analysis and XGBoost. A 

multimodal dataset comprising biomechanical indicators (postural stability, muscle activation, 

reaction time), physiological markers (heart rate variability [HRV], electrodermal activity 

[EDA]HRV, EDA, respiratory rate), and behavioral responses (decision volatility, self-

reported stress levels) was collected from professional and semi-professional football players 

over a six-month period. The results demonstrate that neuromuscular stability and cognitive 

efficiency significantly influence psychological resilience, with postural control and reaction 

time emerging as key predictors of anxiety levels. The hybrid ARIMA-XGBoost model 

achieved superior predictive accuracy (R2 = 0.89, RMSE = 0.61), outperforming traditional 

machine learning models. These findings highlight the practical value of integrating 

biomechanical monitoring with psychological assessments for personalized stress management 

and performance optimization in competitive sports. 

Keywords: psychological resilience; biomechanics; XGBoost; autoregressive analysis; 

football players; stress prediction 

1. Introduction 

Modern football competitions, characterized by high intensity and increased 

stakes, not only test players’ technical and physical capabilities but also reflect their 

psychological stability and adaptability. In high-level competitive environments, 

athletes must maintain cognitive stability and decision-making ability under extreme 

pressure. Consequently, the assessment and cultivation of psychological resilience 

have become essential aspects of contemporary sports science research. With the 

advancement of sports science and intelligent computing technologies, methods based 

on biomechanics and physiological feedback have emerged as crucial tools for 

investigating athletes’ psychological states [1,2]. Traditionally, sports research has 

predominantly focused on technical, tactical, and physical attributes. However, as the 

performance gap between teams narrows, psychological factors have increasingly 

influenced match outcomes. Therefore, establishing a scientific model for dynamically 

predicting psychological states can contribute to optimizing training strategies and 

enhancing athletes’ stability in high-pressure scenarios. 

The rapid development of modern football has significantly increased 

physiological and psychological loads on individual players. The high-intensity nature 

of competitive matches demands that athletes make multiple cognitive and motor 
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decisions within short timeframes [3]. A strong coupling exists between biomechanical 

factors (gait patterns, muscle fatigue, and postural stability) [4] and psychological 

factors (anxiety levels, attention allocation, and decision-making latency) [5], 

exhibiting complex nonlinear characteristics during different phases of a match. 

Particularly in high-pressure situations, fluctuations in an athlete’s psychological state 

can directly impact biomechanical performance, such as reduced coordination and 

delayed reaction times. Therefore, comprehensive analysis of physiological and 

psychological feedback in competitive environments and the development of dynamic 

prediction models can provide theoretical support for optimizing match strategies and 

training systems. 

In contemporary sports psychology research, physiological feedback 

indicators—such as heart rate variability (HRV), electrodermal activity (EDA), and 

electromyography (EMG)—and behavioral feedback metrics—such as gait stability, 

postural adjustments, and movement trajectory variations—are widely used to assess 

psychological states [6,7]. HRV, a critical indicator of autonomic nervous system 

regulation, reflects an athlete’s emotional stability and stress levels during matches. 

EDA, which measures emotional arousal, is instrumental in evaluating psychological 

stress under competitive conditions [8]. Additionally, postural and gait analyses 

provide insights into how psychological factors influence motor control, such as 

deviations in center-of-mass control, which can affect running efficiency and 

coordination. Consequently, developing a predictive model that integrates multimodal 

physiological and behavioral data can enhance the accuracy of psychological state 

prediction and support personalized training and real-time interventions. 

Due to the complexity of physiological and psychological feedback mechanisms, 

traditional autoregressive models face significant limitations in predicting dynamic 

psychological states. While autoregressive models are widely used in time-series 

modeling due to their effectiveness in capturing temporal dependencies, their linear 

assumptions restrict their ability to accommodate the nonlinear nature of 

psychological state transitions. Moreover, while the eXtreme Gradient Boosting 

(XGBoost) algorithm offers superior performance in handling high-dimensional data, 

its pre-sorting strategy results in high spatial complexity, limiting its applicability in 

large-scale time-series analysis [9]. To address these challenges, this study proposes a 

hybrid modeling approach that integrates the computational efficiency of 

autoregressive models with the predictive accuracy of XGBoost. This approach not 

only improves predictive precision but also reduces computational costs, making it 

suitable for real-time psychological state prediction. 

The primary objective of this study is to develop a dynamic prediction model for 

psychological states by integrating biomechanics, behavioral feedback, and 

physiological signals to enhance the identification and prediction of athletes’ 

psychological states in high-pressure competitive environments. Specifically, the 

research objectives are as follows: 

(1) Establishment of a Multimodal Psychological State Evaluation Framework: 

By incorporating biomechanical parameters (e.g., gait characteristics, movement 

stability), physiological feedback signals (e.g., HRV, EDA, EMG), and behavioral 

patterns (e.g., movement decision characteristics), this study constructs an analytical 
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framework that captures the complex interplay between physiological and 

psychological factors. 

(2) Optimization of Predictive Modeling Approaches: A hybrid modeling strategy 

is employed, combining the low computational cost of autoregressive models with the 

high predictive accuracy of XGBoost. This integration enhances the model’s 

adaptability to nonlinear psychological state fluctuations while improving 

computational efficiency. 

(3) Implementation of Real-Time Prediction and Personalized Intervention: The 

proposed model is optimized for real-time applications, enabling personalized 

psychological interventions for athletes. This approach aims to enhance stability and 

decision-making performance during matches. 

The key innovations of this study include: 

(1) Multimodal Data Integration for Predictive Modeling: This research 

systematically integrates biomechanical, behavioral, and physiological signal data to 

develop a high-precision psychological state prediction model. 

(2) Hybrid Modeling Strategy for Enhanced Predictive Accuracy: The 

combination of autoregressive models and XGBoost improves adaptability to 

nonlinear psychological state transitions while optimizing computational complexity. 

(3) Real-Time Prediction and Application Expansion: The proposed approach can 

be widely applied in competitive sports, psychological health monitoring, and 

personalized training programs, improving athletes’ psychological adaptability in 

high-pressure environments. 

2. Related works 

2.1. Psychological stress study 

Athletes often suffer mental health concerns due to constant competition. Mental 

health concerns affect an athlete’s ability to keep a constant, regular demeanor [10–

13]. Because elite athletes’ mental health is rarely regarded in sports, little is known 

[14]. Positive psychology boosts mental health research. Positive mental health is 

currently measured using a bidimensional model. 2010 brought the bidimensional 

model. Subjective well-being and psychological problems are on a continuum in the 

standard paradigm of mental health. Therefore, a severe psychological condition 

reduces subjective well-being. The two-factor model of mental health separates 

subjective well-being and psychological illnesses yet links them. Strategie 

multidimensional. Mental health requires mental illness symptoms and positive mood 

control. A two-factor mental health approach applies to athletes [15–20]. 

Having emotionally supportive friends and acquaintances aids football players. 

According to the buffer hypothesis, helpful friends and family lessen stress. Strong 

social networks help people cope with misfortune by providing emotional and material 

support. Multiple research papers [21–24] suggest that low social support increases 

anxiety 5–6 times. Football players with fewer negative attitudes and behaviors in 

asking aid, lower negative event evaluations, and lower anxiety reported more social 

support. Social support reduces epidemic anxiety. As the country enters the post-

epidemic period, this should be examined because it may lower football players’ 

anxiety [25]. Self-esteem is a person’s sense of worth [26]. This rating is “self-esteem”. 
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According to the social meter theory, self-esteem can predict interpersonal connections. 

Creating and maintaining meaningful relationships promotes self-esteem [27]. Lack 

of social support lowers self-esteem and increases mental health risks. Tang et al. [28] 

found that increasing self-esteem reduces anxiety and stress. Low self-esteem and 

anxiety are correlated. Football players who feel their teammates’ and coaches’ support 

may enhance self-confidence and minimize anxiety [29–33]. 

2.2. Autoregressive model 

Autoregressive models are one of the most prevalent smooth time series models 

and have a wide range of applications due to their ease of use in analyzing multifactor 

models. For instance, some researchers have utilized autoregressive models to forecast 

epidemic trends of infectious diseases in a region [34]. Others have utilized it with 

moderate success in electricity price forecasting, residential electricity load 

forecasting, and agricultural product forecasting. However, the autoregressive model 

is limited in certain circumstances due to its simple model, and the regression equation 

is merely a hypothesis, which affects the variety of factors and the unpredictability of 

some factors. In addition, autoregression can only be used to forecast economic 

phenomena that are related to their own previous period, i.e., those that are affected 

by their own historical factors, such as the production of various natural resources. 

Autoregression is not appropriate for economic phenomena that are significantly 

influenced by social factors [35,36]. 

2.3. XGBoost model 

XGBoost is a distributed gradient boosting library optimized for performance, 

flexibility, and portability. XGBoost is a tool for massively parallel boosting trees, and 

it is the fastest and best open-source boosting tree toolkit available, running more than 

ten times faster than standard tools. A large number of Kaggle players choose XGBoost 

for data mining competitions, and it is an essential tool for major data science 

competitions. It is a good solution for large-scale industrial data because the 

distributed version of XGBoost has broad portability and supports running on various 

distributed environments, such as Kubernetes, Hadoop, SGE, MPI, Dask, etc. 

Nevertheless, the spatial complexity of the XG Boost pre-sorting procedure is 

excessively high, necessitating the storage of not only the feature values but also the 

indexes of the gradient statistics of the samples corresponding to the feature values, 

which is equivalent to requiring twice as much memory [37,38]. Combining the 

autoregressive model with low computational effort and XG Boost with high precision 

will be advantageous for enhancing prediction accuracy and reducing computational 

complexity. 

3. Methods 

3.1. Multimodal psychological state evaluation framework 

Psychological states in high-intensity sports are influenced by multiple 

interacting factors, including biomechanical stability, physiological stress responses, 

and cognitive decision-making processes. These factors exhibit nonlinear 
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dependencies and evolve dynamically over time. Therefore, a comprehensive 

evaluation framework is required to quantify these influences and establish a robust 

predictive foundation. 

To systematically model psychological states, we define a multimodal feature 

space 𝑋𝑡, which integrates biomechanical, physiological, and behavioral components 

at each time step 𝑡: 

𝑋𝑡 = {𝐵𝑡, 𝑃𝑡 , 𝑀𝑡} (1) 

where: 𝐵𝑡  (biomechanical signals): Quantifies movement kinematics and postural 

control, defined as: 

𝐵𝑡 = {𝑣𝑡, 𝑎𝑡 , 𝜃𝑡 , 𝐽𝑡, 𝜏𝑡} (2) 

where 𝑣𝑡 is velocity, 𝑎𝑡 is acceleration, 𝜃𝑡 is postural stability, 𝐽𝑡 is net joint moment, 

and 𝜏𝑡 is muscle torque. 

𝑃𝑡  (physiological responses): Reflect internal stress regulation mechanisms, 

including: 

𝑃𝑡 = {𝐻𝑅𝑉𝑡 , 𝐸𝐷𝐴𝑡 , 𝐸𝑀𝐺𝑡 , 𝑅𝑅𝑡 , 𝜎𝑡} (3) 

where 𝐻𝑅𝑉𝑡 is heart rate variability, 𝐸𝐷𝐴𝑡 is electrodermal activity, 𝐸𝑀𝐺𝑡 is muscle 

activation, 𝑅𝑅𝑡 is respiratory rate, and 𝜎𝑡 represents stress-induced variability. 

𝑀𝑡 (behavioral metrics): Characterizes decision-making patterns, modeled as: 

𝑀𝑡 = {𝑅𝑇𝑡, 𝑈𝑡 , 𝛾𝑡 , 𝜆𝑡 , Ω𝑡} (4) 

where 𝑅𝑇𝑡 is reaction time, 𝑈𝑡 is decision uncertainty, 𝛾𝑡 is cognitive workload, 𝜆𝑡 is 

focus stability, and Ω𝑡 represents decision volatility. 

This feature space enables a comprehensive representation of the psychological 

state evolution over time. 

3.2. Psychological state transition model 

Given the stochastic and dynamic nature of psychological states, we define a state 

transition function: 

𝑌𝑡 = 𝑓(𝐵𝑡 , 𝑃𝑡 , 𝑀𝑡) + 𝜖𝑡 (5) 

where 𝑓(⋅)  represents a nonlinear function capturing biomechanical-physiological-

behavioral interactions, and 𝜖𝑡 accounts for latent factors. 

To enhance interpretability, we use a Bayesian inference framework for state 

estimation: 

𝑃(𝑌𝑡 ∣ 𝑋𝑡) ∝ 𝑃(𝑋𝑡 ∣ 𝑌𝑡)𝑃(𝑌𝑡−1) (6) 

where 𝑃(𝑋𝑡 ∣ 𝑌𝑡)  represents the likelihood of observing 𝑋𝑡  given 𝑌𝑡 , and 𝑃(𝑌𝑡−1)  is 

the prior belief. 

To capture psychological state variability, we model its fluctuations using a 

stochastic differential equation: 

𝑑𝑌𝑡 = 𝛼(𝑌𝑡
∗ − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝑊𝑡 (7) 

where 𝑌𝑡
∗  is the baseline state, 𝛼  is the adaptation rate, and 𝑊𝑡  is a Wiener process 

modeling random fluctuations. 
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Additionally, to quantify the energy cost of psychological adaptation, we 

introduce a biomechanical energy expenditure function: 

𝐸𝑡 = ∫  
𝑡

0

𝑃𝑡(𝜏)𝑑𝜏 (8) 

where 𝑃𝑡(𝜏) represents the instantaneous physiological power consumption. 

Since psychological states and biomechanical parameters influence each other 

dynamically, we model this interaction using a coupled differential system: 

𝑑𝐵𝑡

𝑑𝑡
= 𝑓𝐵(𝐵𝑡, 𝑃𝑡 , 𝑀𝑡),  

𝑑𝑃𝑡

𝑑𝑡
= 𝑓𝑃(𝐵𝑡, 𝑃𝑡 , 𝑀𝑡) (9) 

where 𝑓𝐵 and 𝑓𝑃 describe the temporal evolution of biomechanical and physiological 

states, respectively. 

Finally, we quantify psychological stress levels using an entropy-based measure: 

𝑆𝑡 = − ∑  

𝑁

𝑖=1

𝑃𝑖log 𝑃𝑖 (10) 

where 𝑃𝑖 is the probability distribution of observed states. 

3.3. Hybrid predictive modeling 

Since psychological state evolution exhibits both temporal dependencies and 

nonlinear interactions, a single modeling approach may be insufficient. Therefore, we 

employ a hybrid predictive strategy that integrates autoregressive models to capture 

short-term memory effects and XGBoost-based regression to model nonlinear feature 

interactions. 

Psychological state evolution follows a time-dependent structure. We use an 

ARIMA model: 

Δ𝑑𝑌𝑡 = ∑  

𝑝

𝑖=1

𝜙𝑖Δ𝑑𝑌𝑡−𝑖 + ∑  

𝑞

𝑗=1

𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡 (11) 

where: 𝜙𝑖 are autoregressive coefficients, 𝜃𝑗 are moving average coefficients and Δ𝑑 

represents differencing of order 𝑑. 

We refine this with a Kalman filter, updating predictions as: 

𝑌̂𝑡 = 𝐴𝑌̂𝑡−1 + 𝐵𝑋𝑡 + 𝑤𝑡 (12) 

where 𝐴 and 𝐵 are transition matrices. 

To capture complex interactions, we employ XGBoost, minimizing the loss 

function: 

ℒ(Θ) = ∑  

𝑇

𝑡=1

ℓ(𝑌𝑡 , 𝑌̂𝑡) + ∑  

𝐾

𝑘=1

Ω(𝑓𝑘) (13) 

where ℓ(𝑌𝑡 , 𝑌̂𝑡) =
1

𝑁
∑𝑖=1

𝑁  (𝑌𝑖 − 𝑌̂𝑖)
2
  minimizes prediction error. Ω(𝑓𝑘) = 𝛾𝑇 +

1

2
𝜆∑𝑗=1

𝑇  𝑤𝑗
2 is a regularization term. The final prediction is: 
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𝑌̂𝑡 = ∑  

𝐾

𝑘=1

𝑓𝑘(𝑋𝑡) (14) 

where 𝑓𝑘 represents the 𝑘-th regression tree. 

To balance computational efficiency and accuracy, we introduce an adaptive 

weighting mechanism: 

𝑌̂𝑡
∗ = 𝛼𝑌̂𝑡

𝐴𝑅 + (1 − 𝛼)𝑌̂𝑡
𝑋𝐺𝐵 (15) 

where 𝛼 is dynamically adjusted as: 

𝛼 =
𝜎𝑋𝐺𝐵

2

𝜎𝐴𝑅
2 + 𝜎𝑋𝐺𝐵

2  (16) 

This enhanced methodology provides a rigorous mathematical foundation for 

multimodal psychological state estimation and predictive modeling, ensuring both 

accuracy and computational efficiency. 

Utilize an autoregression-based XGBoost model for the purpose of fitting 

predictions to these data. This model makes full use of the autoregression between 

continuous time data in time series, and it provides a rough description of the future 

of objects formed over time by accounting for their own laws as revealed by historical 

data. It does so by utilizing the autoregression between continuous time data in time 

series to its maximum capacity. one that predicts the future using information from 

both the past and the present. In contrast to regression analysis, random perturbation 

terms do not require qualification. 

4. Experiments and analysis 

4.1. Data source and collection 

The dataset used in this study was collected from professional and semi-

professional football players over a period of six months, capturing both training 

sessions and competitive matches. The study involved 50 official matches and 200 

training sessions, with data collected at various time points before, during, and after 

the matches. To ensure a comprehensive understanding of psychological state 

variations, we employed a multimodal data acquisition approach, integrating 

biomechanical, physiological, and behavioral features. 

Physiological and biomechanical data were recorded using wearable sensors, 

while behavioral and psychological assessments were conducted through video-based 

motion tracking and cognitive stress evaluations. The main data collection methods 

include: 

(1) Wearable Sensors for real-time physiological and biomechanical tracking: 

⚫ Heart Rate Variability (HRV): Captured using ECG-based chest strap 

monitors to evaluate autonomic nervous system activity. 

⚫ Electrodermal Activity (EDA): Measured via wrist-worn sensors to assess 

stress-related skin conductance changes. 

⚫ Respiratory Rate (RR): Monitored using respiratory belts to track breathing 

patterns under physical and psychological stress. 
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⚫ Muscle Activation (EMG): Recorded using electromyography sensors 

placed on the lower limb muscles. 

⚫ IMU-based Gait Analysis: Foot-mounted inertial measurement units (IMUs) 

collected running velocity, acceleration, and joint movements. 

(2) Video-Based Motion Tracking to analyze biomechanical behavior: 

⚫ Postural stability (𝜃𝑡)  was extracted using motion capture software 

analyzing player movements. 

⚫ Running speed (𝑣𝑡), acceleration (𝑎𝑡), and joint angles (𝐽𝑡) were analyzed 

through high-speed cameras and pose estimation algorithms. 

(3) Cognitive and psychological assessments conducted at different time points: 

⚫ Reaction time (𝑅𝑇𝑡), decision volatility (Ω𝑡), and focus stability (𝜆𝑡) were 

measured using standardized cognitive stress tests. 

⚫ Self-reported stress levels were collected via the Perceived Stress Scale 

(PSS) and the Competitive State Anxiety Inventory-2 (CSAI-2) before and 

after matches. 

After preprocessing, the dataset contained 25,000 synchronized time-series 

samples, with each sample comprising 16 extracted features spanning biomechanical, 

physiological, and behavioral categories. The dataset characteristics are summarized 

in Table 1 below: 

Table 1. Dataset statistics. 

Data Type Number of Features Sample Rate Sessions Collected 

Biomechanical 6 100 Hz 
50 matches, 200 

training sessions 

Physiological 5 1 Hz 
50 matches, 200 

training sessions 

Behavioral 5 Event-based 
50 matches, 200 

training sessions 

Psychological Labels 1 (CSAI-2 score) Pre & Post Match 
50 matches, 200 

training sessions 

Two dimensions comprise the formal scale: common issues in athletic 

psychology and positive psychological traits. Three components comprise the subscale 

of positive psychological characteristics among athletes: willpower, social adaptation, 

and positive intelligence. Athletes commonly experience depression, hostility, anxiety, 

and somatization as psychological issues. Positive psychological traits of athletes 

include willpower, social adaptability, and positive intelligence. According to the 

above indicators and the questionnaire data filled out by football players, the players 

can be classified according to the scale indicators, as shown in Figure 1. 
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Figure 1. Comparison of athletes’ mental states. 

Due to the existence of specific or highly correlated relationships between the 

variables used to explain the dependent variable, the linear regression model is subject 

to multicollinearity, which distorts the model or reduces the accuracy of its predictions. 

Prior to applying the approach proposed in Chapter 3 for psychological prediction, it 

is crucial to consider how the presence of multicollinearity between independent 

variables may impact the accuracy of the mental health prediction model for football 

players. For multicollinearity discrimination, the SPSS statistical software is used to 

compute the condition index. Collinearity is deemed minimal when the condition 

index falls between 10 and 30, moderate between 30 and 100, and severe above 100. 

Figure 2 depicts the results of a multicollinearity diagnosis. The degree of collinearity 

between the seven independent variables is low, as depicted in Figure 2. 

 

Figure 2. Diagnostic results of multicollinearity. 

4.2. Data preprocessing and feature engineering 

To ensure high-quality input data for model training, a comprehensive 

preprocessing pipeline was applied to the collected multimodal dataset. Given the 

differences in data acquisition rates among physiological, biomechanical, and 

behavioral sources, signal synchronization was a crucial step. Time-series alignment 

was performed using Dynamic Time Warping (DTW), ensuring that data from various 

sensors corresponded to the same time frames. Additionally, noise filtering techniques 
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were applied to improve data quality—physiological signals, such as heart rate 

variability (HRV) and electrodermal activity (EDA), were smoothed using a 5th-order 

Butterworth filter, while biomechanical signals, including acceleration and postural 

stability, were processed using a Kalman filter to eliminate sensor drift and 

fluctuations. Following filtering, all numerical features underwent standardization to 

zero mean and unit variance, allowing for fair weightage during model training. 

Outlier removal was also implemented, where extreme values beyond three standard 

deviations were detected and eliminated using the interquartile range (IQR) filter, 

preventing the model from being biased by anomalous observations. This 

preprocessing strategy ensured that the dataset maintained temporal consistency, 

robustness against sensor noise, and an appropriate feature scale for effective model 

learning. 

4.3. Model performance comparison 

To assess the effectiveness of our proposed hybrid approach, we compared the 

performance of three models: ARIMA, XGBoost, and the Hybrid Model (ARIMA + 

XGBoost). The models were evaluated using root mean squared error (RMSE), mean 

absolute error (MAE), and R2 score, where lower RMSE and MAE values indicate 

better predictive accuracy, and a higher R2 score reflects a stronger correlation between 

predicted and actual psychological states. The results are shown in Table 2. 

Table 2. Performance comparison under different models. 

Model RMSE  MAE R2 Score  

ARIMA 0.86 0.72 0.65 

XGBoost 0.71 0.58 0.81 

Hybrid (ARIMA + 

XGBoost) 
0.61 0.47 0.89 

From the results, we can observe the following key findings: The ARIMA model, 

while capable of capturing temporal dependencies, exhibited the highest RMSE (0.86) 

and the lowest R2 score (0.65), indicating that relying solely on past psychological 

states for prediction is insufficient to account for the complex interactions among 

biomechanical, physiological, and behavioral factors. In addition, the XGBoost model 

significantly improved accuracy, reducing RMSE to 0.71 and achieving an R2 score of 

0.81. This confirms that incorporating nonlinear feature interactions from multimodal 

data enhances predictive capability. Moreover, the combination of ARIMA and 

XGBoost further improved prediction accuracy, with an RMSE of 0.61 and an R2 score 

of 0.89. The hybrid model leveraged the temporal dependencies captured by ARIMA 

while benefiting from XGBoost’s ability to model nonlinear interactions, resulting in 

the most robust predictions. 

To further validate the robustness of our proposed approach, we compared our 

results against traditional stress prediction models, including linear regression (LR) 

and support vector regression (SVR). The comparative results are summarized as 

shown in Table 3: 
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Table 3. Performance comparison against traditional stress prediction models. 

Model RMSE  MAE R2 Score  

LR 1.02 0.85 0.51 

SVR 0.89 0.75 0.63 

ARIMA 0.86 0.72 0.65 

XGBoost 0.71 0.58 0.81 

Hybrid (ARIMA + 

XGBoost) 
0.61 0.47 0.89 

Linear regression and SVR performed significantly worse than the hybrid 

approach, confirming that a simple linear model is insufficient to capture the 

complexity of psychological state fluctuations. The hybrid model consistently 

outperformed all other models, proving the effectiveness of combining temporal 

analysis (ARIMA) with nonlinear feature learning (XGBoost). 

4.4. Mental health analysis 

To further understand the impact of different factors on psychological state 

prediction, we analyzed feature importance using SHAP (Shapley Additive 

Explanations). SHAP values quantify how much each input feature contributes to the 

final prediction, providing insights into which variables play the most significant role 

in predicting stress, anxiety, and cognitive stability. The results are shown in Figure 3. 

 

Figure 3. Feature importance analysis. 

The feature importance analysis highlighted the significant role of biomechanical 

factors in psychological state prediction, reinforcing the strong connection between 

movement stability, neuromuscular control, and mental resilience. Postural stability 

(12.7%) emerged as a key predictor, indicating that impaired balance and movement 

coordination are closely linked to increased psychological stress. Players exhibiting 

greater postural instability before matches were more likely to experience heightened 

anxiety and cognitive overload during competition. Muscle activation (EMG, 10.9%) 

also played a crucial role, as increased neuromuscular strain and fatigue correlated 

with psychological instability, suggesting that physical exertion and biomechanical 
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stress contribute to cognitive stress responses. Additionally, reaction time (18.3%) and 

decision volatility (8.2%) further reinforced the link between biomechanical and 

psychological factors, as delayed responses and erratic decision-making patterns were 

observed in players with greater motor instability. These findings confirm that 

biomechanical efficiency is deeply intertwined with psychological state, emphasizing 

the need for integrated movement assessment and neuromuscular training in stress 

management and performance optimization for football players. 

Figure 4 depicts the mean and standard deviation of social support, self-esteem, 

and resilience, as well as anxiety, and Table 4 depicts the correlation matrix. It is 

feasible to find. Significantly negative correlations existed between social support, 

self-esteem, and resilience and anxiety, whereas significant positive correlations 

existed between social support, self-esteem, and resilience. 

 

Figure 4. Graph of descriptive statistics results for the four factors.  

Table 4. The correlation matrix of the four factors. 

Index Social support Self-esteem Psychological resilience Anxiety 

Social support /    

Self-esteem 0.437*** /   

Psychological resilience 0.428** 0.56*** /  

Anxiety −0.53** −0.48*** −0.32** / 

*Note: ***p < 0.001; **p < 0.01; p < 0.05. 

The results presented in Figure 4 and Table 4 underscore the complex interplay 

between social support, self-esteem, psychological resilience, and anxiety, with 

particular emphasis on their biomechanical implications for football players. The 

significant negative correlations observed between anxiety and social support, self-

esteem, and psychological resilience (r = −0.53, −0.48, and −0.32, respectively) 

indicate that higher levels of psychological resilience and positive self-perception are 

associated with lower anxiety levels. This reduction in anxiety may, in turn, enhance 

neuromuscular efficiency and movement stability under pressure. From a 

biomechanical standpoint, elevated anxiety has been linked to impaired motor 

coordination, reduced postural stability, and delayed reaction times—all of which can 

adversely affect decision-making and physical performance during competition. 
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Conversely, strong social support and high self-esteem may facilitate greater 

neuromuscular control and movement precision, as confidence and psychological 

resilience have been linked to more stable posture, enhanced proprioception, and 

improved muscular activation patterns. The positive correlations between social 

support, self-esteem, and psychological resilience (r = 0.437, 0.56, and 0.428, 

respectively) further strengthen this association, suggesting that athletes who perceive 

higher levels of psychological support are more likely to demonstrate improved motor 

control strategies, enhanced muscle coordination, and reduced biomechanical stress 

during performance. These findings suggest that integrating psychological 

interventions alongside biomechanical training could enhance overall athletic 

performance, as improved psychological resilience not only reduces cognitive stress 

and anxiety but also promotes more stable and coordinated physical movements, 

ultimately benefiting football players in high-pressure competitive environments. 

4.5. Discussion 

The findings from Section 4 provide significant insights into the relationship 

between biomechanics, physiological responses, and psychological health in football 

players. The results highlight how neuromuscular control, movement stability, and 

physiological stress markers are interconnected with psychological states, particularly 

in high-pressure competitive environments. The hybrid predictive model (ARIMA + 

XGBoost) demonstrated superior accuracy in forecasting psychological fluctuations, 

reinforcing the need for integrating biomechanical and physiological indicators to 

enhance stress assessment and intervention strategies in sports performance.  

One of the key findings was the strong influence of biomechanical factors, such 

as postural stability and muscle activation, on psychological resilience. Players 

exhibiting greater postural instability and neuromuscular fatigue were more prone to 

experiencing heightened stress and anxiety, suggesting that movement efficiency and 

psychological stability are intrinsically linked. These findings align with previous 

research indicating that motor coordination impairments and delayed reaction times 

under stress can negatively impact cognitive performance and decision-making speed. 

The significant contributions of reaction time and decision volatility further support 

the notion that biomechanical inefficiencies contribute to cognitive overload, leading 

to inconsistent performance during matches. The practical applications of these 

findings extend to both training optimization and real-time monitoring systems for 

football players. By incorporating wearable sensors and motion tracking technologies, 

coaches and sports scientists can continuously assess an athlete’s neuromuscular 

stability and physiological stress markers to predict and mitigate psychological 

fluctuations. This approach enables personalized training interventions, focusing on 

enhancing postural control, reducing neuromuscular fatigue, and improving decision-

making under pressure. Additionally, the development of real-time feedback systems 

integrating biomechanical and physiological data could provide on-the-field stress 

monitoring, allowing for immediate adjustments in gameplay strategies and recovery 

techniques. 

Furthermore, the integration of biomechanical assessments with psychological 

monitoring can lead to more effective mental resilience programs, where physical 
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conditioning exercises targeting balance, muscle coordination, and reaction time are 

tailored to an athlete’s psychological stress profile. This interdisciplinary approach has 

the potential to reduce injury risks, enhance psychological adaptability, and improve 

overall performance consistency in football players. 

5. Conclusion 

This study developed a hybrid psychological state prediction model for football 

players, integrating biomechanical, physiological, and behavioral feedback to assess 

mental resilience and stress adaptation. The experimental results revealed that 

neuromuscular stability, postural control, and cognitive efficiency are critical factors 

influencing psychological fluctuations, with features such as heart rate variability, 

reaction time, and electrodermal activity playing a central role in predicting anxiety 

levels. The hybrid ARIMA-XGBoost model significantly outperformed standalone 

models, demonstrating the importance of combining time-series forecasting with 

nonlinear feature learning for robust mental health assessment. From a practical 

application perspective, these findings provide a strong foundation for developing 

real-time stress monitoring systems using wearable sensors and motion tracking 

technologies. Coaches and sports scientists can utilize this multimodal assessment 

framework to design personalized training interventions, focusing on improving 

movement stability, reducing neuromuscular fatigue, and optimizing cognitive 

performance under pressure. The integration of biomechanical feedback with 

psychological monitoring offers a novel approach to enhancing mental resilience in 

high-performance sports, enabling athletes to maintain consistency in decision-

making and physical execution during competitive matches. 

Future research should focus on advancing deep learning-based predictive 

models and expanding real-time feedback mechanisms to further enhance accuracy, 

reduce computational complexity, and provide on-the-field adaptive interventions. By 

leveraging biomechanics and machine learning, this study contributes to the growing 

field of sports science and mental health optimization, offering practical solutions for 

stress management and performance enhancement in professional football. 
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