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Abstract: This study proposes a network performance optimization strategy based on cloud 

computing to address the stringent demands of biomechanical big data on the efficiency of 

distributed storage systems. Biomechanical data, including motion capture, force plate 

measurements, and tissue strain analysis, involve large-scale, high-frequency, and 

heterogeneous datasets that necessitate efficient storage and real-time processing. By 

optimizing data transmission paths, designing an efficient caching mechanism, dynamically 

allocating bandwidth resources, and implementing network congestion control, the system 

significantly enhances throughput, reduces latency, and improves bandwidth utilization and 

data transmission reliability. 
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1. Introduction 

With the rapid expansion of biomedical data, including genome sequencing, 

medical imaging, and electronic health records, the demand for large-scale, multimodal, 

and high-frequency data access has grown exponentially. These trends introduce 

significant challenges to data storage and transmission efficiency. Traditional 

centralized storage architectures are increasingly inadequate for managing large-scale 

biomedical datasets due to their limited scalability and inefficiency in handling high-

speed access demands. As a result, distributed storage systems have emerged as a viable 

solution, offering high scalability and availability. However, biomedical big data 

imposes stringent requirements on the network performance of distributed storage 

systems, particularly in terms of throughput, latency, I/O operations, and bandwidth 

utilization. Existing research mainly focuses on storage architecture and data security, 

and the research on network performance optimization is limited, which is difficult to 

meet the data transmission requirements under high concurrency and high bandwidth 

scenarios [1]. For this reason, this study aims to improve the network performance of a 

biomedical big data distributed storage system through the multi-dimensional 

optimization strategies of data transmission path optimization, cache mechanism design, 

bandwidth resource dynamic allocation algorithm, and network congestion control 

mechanism and expects to provide theoretical support and practical guidance for the 

efficient storage and high-speed transmission of biomedical big data. 

With the rapid development of distributed storage systems, optimizing network 

performance has become a critical challenge in managing large-scale biomechanical 

data. Prior research has primarily focused on improving storage efficiency and data 

transmission strategies in distributed environments. Li et al. emphasized that network 

performance optimization is essential in hybrid energy storage systems, particularly in 

grid-forming strategies, to enhance stability and resource utilization [2]. Similarly, 
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Ning et al. analyzed instability mechanisms in distributed energy storage and proposed 

compensation strategies to mitigate latency and packet loss, thereby improving overall 

system reliability [3]. A crucial aspect of distributed storage optimization involves 

content-addressable memory (CAM), which has been widely explored in AI-based 

storage solutions. Mariani and Debusschere investigated how CAM could enhance data 

retrieval efficiency and reduce redundancy in distributed storage at the household level 

[4]. In the context of Hopfield neural networks, recent studies have incorporated 

advanced optimization techniques to improve storage reliability and logical reasoning. 

For instance, Kim and Chon explored binary ant colony optimization (B-ACO) in 

learning random satisfiability (RSAT) logic within discrete Hopfield networks, 

demonstrating significant improvements in memory recall and energy function 

minimization [5]. Furthermore, Majidi et al. introduced a dual optimization approach, 

which optimized weight updates in Hopfield networks, leading to enhanced network 

stability and faster convergence in real-time applications [6]. Another notable 

contribution is the MTS-PRO2SAT algorithm, which employs a hybrid mutation tabu 

search for probabilistic satisfiability optimization in discrete Hopfield networks [7]. 

This approach integrates CAM to accelerate storage operations and improve reasoning 

efficiency under high-dimensional constraints. These studies collectively highlight the 

significance of network performance optimization strategies in distributed storage, 

particularly for biomechanical data applications. While prior research has made strides 

in optimizing data transmission, further advancements in dynamic caching mechanisms 

and multi-path transmission strategies remain necessary to enhance real-time storage 

performance. 

2. Network performance evaluation methods for distributed storage 

systems 

Network performance is a critical factor influencing the efficiency of data storage 

and retrieval in distributed storage systems. Its evaluation must consider multiple key 

performance indicators, including throughput, latency, input/output operations per 

second (IOPS), and bandwidth utilization. Throughput is usually defined as the amount 

of data successfully transmitted per unit of time and is calculated as follows (Equation 

(1)): 

𝑇 =
𝐷

𝑡
 (1) 

where 𝑇 denotes the throughput (MB/s), 𝐷 is the total amount of data transferred 

(MB), and 𝑡 is the transfer time (s). 

Higher throughput means more efficient data storage and reading, which is 

suitable for large-scale biomedical data storage requirements. On the other hand, 

latency refers to the time interval between data request and response, which is usually 

calculated using a ping test or based on the TCP three-time handshake process with the 

Equation (2): 

𝐿 = 𝑅𝑇𝑇 +
𝑆

𝐵𝑊
 (2) 

where 𝐿 is the total delay, 𝑅𝑇𝑇 is the round trip time, 𝑆 is the packet size (MB), and 
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𝐵𝑊  is the network bandwidth (MB/s). The reduction of latency can significantly 

improve the real-time performance of the system, especially for scenarios that require 

efficient access such as genomic data analysis. 

In order to evaluate the effect of different optimization strategies, this paper adopts 

the Ceph distributed storage system to conduct experiments, and selects three OSD 

(Object Storage Daemon) nodes in a 10 GbE Ethernet environment to test the random 

read and write performance respectively. The benchmark results show that the write 

throughput of 256 KB block size is about 350 MB/s without optimization, and the 

optimized throughput is increased to 480 MB/s with a 17% reduction in latency. See 

Figure 1 for details. 

 

Figure 1. Trend of IOPS with different block sizes. 

As can be seen in Figure 1, IOPS decreases gradually with increasing block size, 

due to the fact that the transfer of larger blocks reduces the number of I/O requests, but 

the amount of data in a single operation is larger, resulting in a decrease in overall IOPS. 

After optimization, IOPS increases significantly at all block sizes, with the largest 

increase especially at small blocks of data (4 KB and 16 KB), where IOPS increases by 

approximately 26% and 23%, respectively. In the case of large blocks (256 KB and 

1024 KB), the optimized improvement is relatively small but still reaches 40%. Overall, 

the optimization scheme effectively reduces the overhead of I/O requests and improves 

the read/write performance of the distributed storage system, which is especially 

suitable for small-block data-intensive biomedical application scenarios. 

Network bandwidth utilization is an important measure of the efficiency of system 

resource utilization and is calculated as Equation (3): 

𝑈 =
𝑇

𝐵𝑊
× 100% (3) 

In the experimental environment, the bandwidth utilization is increased by 23% 

after optimization, indicating that the data transmission efficiency is significantly 

improved. Therefore, adopting a reasonable network optimization strategy can 

effectively reduce latency, improve throughput, and increase bandwidth utilization, 
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making the distributed storage system more suitable for the storage needs of biomedical 

big data [5]. 

3. Design of distributed storage network architecture for 

biomedical data 

A. Overall system architecture 

The proposed system is structured using a layered architecture, consisting of a 

client layer, data storage layer, computation layer, and network transmission layer, 

aimed at optimizing the distributed storage performance of biomedical big data (Figure 

2). 

 

Figure 2. Flowchart of overall system architecture. 

The client layer is responsible for user data requests and supports REST APIs, 

RPC remote calls, and file system mounts (e.g., FUSE). The compute layer is deployed 

in a cloud computing environment (e.g., Kubernetes cluster) and adopts 

containerization technology (Docker) to deploy compute nodes, realizing compute and 

storage separation and improving compute efficiency. The data storage layer adopts the 

Ceph distributed storage architecture, combined with the HDD + SSD hierarchical 

storage scheme, which stores high-frequency data in SSDs and low-frequency data in 

HDDs and combines with erasure coding to realize efficient data redundancy. The 

network transport layer adopts 10 GbE Ethernet, supports RDMA (Remote Direct 

Memory Access) to accelerate large-scale data transmission, and introduces traffic 

scheduling algorithms to realize load balancing. The whole architecture optimizes the 

data access path, improves throughput, and reduces latency to ensure efficient storage 

and access of biomedical big data [8,9]. 
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B. Data slicing and distribution strategy 

In distributed storage systems, reasonable data slicing and distribution strategies 

are crucial for improving storage efficiency and access performance. This system 

designs a data type-based sharding method and a multi-tier data distribution strategy 

for the characteristics of biomedical big data (large scale, multi-modal, high access 

frequency). 

The system adopts a hybrid partitioning strategy, combining hash partitioning and 

range partitioning. For genome sequence data, hash partitioning is used to evenly 

distribute the data to multiple storage nodes to prevent excessive pressure on a single 

point of storage. For medical images (e.g., MRI, CT scan data), range partitioning is 

used to partition the data according to image type or timestamp to improve query 

efficiency. Meanwhile, an adaptive sharding mechanism is used to dynamically adjust 

the sharding size according to the heat of data access to optimize the storage resource 

utilization [10]. 

Data distribution uses copy storage + erasure coding to balance data availability 

and storage efficiency. Hot data (e.g., frequently accessed electronic medical records) 

is stored in SSDs, and 3 copies are maintained in multiple nodes to improve read 

performance; cold data (e.g., historical image data) is stored in HDDs, and erasure 

coding strategies (e.g., Reed-Solomon 4 + 2) are used to reduce storage overhead. The 

distribution of data among nodes adopts a consistent hash algorithm to ensure load 

balancing and combines with DHT (Distributed Hash Table) for efficient data lookup. 

In addition, the system supports a dynamic migration mechanism, which can adjust the 

data storage location in real time according to the load of the storage node, preventing 

hot data from causing performance bottlenecks in the storage node. This strategy 

ensures efficient storage and fast retrieval of biomedical big data and meets the storage 

requirements of high throughput and low latency. 

C. Load balancing mechanisms 

In the distributed storage system, in order to effectively allocate network and 

storage resources and improve the stability of the system and the efficiency of data 

access, this system designs a set of dynamic load balancing mechanisms. The 

mechanism is based on the consistent hashing algorithm (consistent hashing), 

combined with the node weight dynamic adjustment technology, to ensure that the data 

requests can be evenly distributed on each storage node to avoid the problem of 

overloading hot nodes. To achieve dynamic resource allocation, the system 

continuously monitors the CPU utilization, memory usage, network bandwidth, and I/O 

load of storage nodes. It employs the Least Connection algorithm to distribute incoming 

requests evenly among underutilized nodes, while the Weighted Round Robin 

algorithm ensures efficient request scheduling based on node capacities [11]. If the 

CPU utilization of a node exceeds 80% or the length of the I/O waiting queue is greater 

than 50, the system will automatically assign the new request to the node with a lower 

load. 

The data allocation in the load balancing process can be represented by the 

following Equation (4): 

𝑊𝑖 =
1

𝐶𝑖 + 𝑁𝑖 + 𝐼𝑖
 (4) 
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where 𝑊𝑖 represents the allocation weight of node 𝑖, 𝐶𝑖 is the CPU load rate, 𝑁𝑖 is 

the network latency, and 𝐼𝑖  is the I/O queue length. The system will prioritize the 

allocation of requests to the node with the largest 𝑊𝑖 to achieve load balancing. 

The replica selection policy is introduced when storing data, which prioritizes the 

node with the lowest latency for read operations for data stored in multiple replicas. 

The load of read and write operations is further balanced by data prefetching and 

delayed write techniques. In the 10 GbE network environment, this mechanism 

increases bandwidth utilization by about 15% and, at the same time, effectively reduces 

the response time of requests during highly concurrent accesses, improving the service 

quality and resource utilization efficiency of the entire system. 

D. Fault tolerance and recovery mechanisms 

Fault tolerance and recovery mechanisms in distributed storage systems are 

important means to ensure data reliability and system high availability. This system 

adopts the dual fault-tolerance strategy of replication and erasure coding and stores data 

in three copies in different storage nodes by default when data is written so as to realize 

fast data switching and uninterrupted access in case of node failure [12]. Meanwhile, 

for large-scale cold data (e.g., historical biomedical images), the (6,4) corrective coding 

scheme is used to ensure data redundancy while significantly reducing storage space 

consumption. 

The core of the fault tolerance mechanism is the fault detection and fast recovery 

algorithm. The system monitors the status of each storage node in real time through the 

Heartbeat mechanism. When it detects that a node has been out of connection for more 

than 30 s or that the I/O response has timed out, the system immediately triggers the 

fault recovery process, redirects the data request to the available replica node, and 

initiates the data rebalance operation to redistribute the data copy of the failed node to 

other healthy nodes. The data recovery speed can be calculated by the following 

Equation (5): 

𝑅 =
𝑆

𝐵 × 𝑁
 (5) 

where, 𝑅  is the data recovery time, 𝑆  is the data size (GB), 𝐵  is the network 

bandwidth (Gbps) and 𝑁 is the number of nodes recovered in parallel. 

For example, under 10 Gbps bandwidth, if a 1 TB data node fails, the system 

recovers through five parallel nodes, and the estimated recovery time is about 27 min. 

To ensure data consistency, the system adopts distributed lock and version control 

technologies during the recovery process to prevent conflicts between read and write 

operations. Combined with Log Replay technology, the system can quickly recover to 

data consistency after reboot even under extreme conditions such as power interruption, 

thus effectively ensuring the security and reliability of biomedical big data in 

distributed storage systems [13]. 

4. Research on network performance optimization algorithms 

A. Data transmission path optimization 

In a distributed storage system, the optimization of data transmission paths directly 

affects network latency and throughput. In this system, the network transmission 

efficiency is effectively improved by the optimization strategies of Multi-Path TCP and 
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Shortest Path First. In order to verify the optimization effect, different block sizes (4 

KB, 16 KB, 64 KB, 256 KB, and 1024 KB) are selected for testing to compare the 

changes in latency and throughput before and after optimization, and the results are 

shown in Table 1. 

Table 1. Comparison of results. 

Block size 

(KB) 

Latency before 

(ms) 

Latency after 

(ms) 

Latency 

improvement (%) 

Throughput before 

(MB/s) 

Throughput after 

(MB/s) 

Throughput 

improvement (%) 

4 15.8 10.2 −35.40% 220 310 40.90% 

16 12.4 8.9 −28.20% 400 520 30.00% 

64 9.3 6.7 −28.00% 680 780 14.70% 

256 7.8 5.2 −33.30% 840 910 8.30% 

1024 6.2 4.8 −22.60% 920 980 6.50% 

Table 1 presents a comprehensive comparison of latency and throughput before 

and after optimization, demonstrating significant improvements in system performance. 

For small block sizes (4 KB, 16 KB), latency decreased by 35.4% and 28.2%, 

respectively, while throughput increased by 40.9% and 30%, making the system highly 

efficient for high-frequency, small data transactions such as biomechanical sensor data 

streams. Medium block sizes (64 KB, 256 KB) show latency reductions of 28.0% and 

33.3%, with throughput improvements of 14.7% and 8.3%, beneficial for MRI motion 

tracking and genomic sequencing. For large blocks (1024 KB), latency decreased by 

22.6%, and throughput improved by 6.5%, enhancing large-scale biomedical image 

processing. These results confirm that the proposed optimizations significantly enhance 

storage and retrieval performance across various biomedical data workloads. The 

details are shown in Figure 3. 

 

Figure 3. Comparison of results. 

B. Caching mechanism design and implementation 

In order to improve the access speed of biomedical big data in the distributed 
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storage system, this system designs and implements a multi-level caching mechanism. 

The mechanism consists of three layers: Edge caching, in-memory caching, and 

distributed caching, which effectively reduce the delay of data requests and improve 

the system throughput. 

Edge caching, deployed on computing nodes close to users, caches data for high-

frequency access to reduce network transmission latency. With Content Delivery 

Network (CDN) technology, edge nodes can intelligently determine and cache hot data 

to improve the local hit rate of data. In-memory caching Redis and Memcached are 

used to cache metadata and small files to ensure efficient read and write operations 

[14]. For the characteristics of biomedical data, the system stores high-frequency access 

data such as electronic medical records and gene sequences in memory to improve read 

and write performance. In the distributed cache hierarchy, data is distributed to each 

cache node using consistent hashing to ensure load balancing and high availability of 

the cache. In order to improve the hit rate of the cache, the system designs a cache 

replacement algorithm based on the mixed policy of LRU (Least Recently Used) and 

LFU (Least Frequently Used) and carries out fine-grained management of data with 

different access frequencies and data sizes. The system avoids data consistency 

problems through the asynchronous cache update mechanism. 

C. Algorithm for dynamic allocation of bandwidth resources 

In distributed storage systems, the reasonable allocation of bandwidth resources is 

crucial to optimize the performance of data transmission. Aiming at the problems of 

network congestion and low bandwidth utilization during the transmission of 

biomedical big data, this system designs a set of dynamic bandwidth resource allocation 

algorithms. Based on the QoS (Quality of Service) prioritization policy and bandwidth 

adaptive allocation model, the algorithm dynamically adjusts the bandwidth resource 

allocation by monitoring the network status and data transmission priority in real time 

in order to maximize the network utilization and reduce the transmission delay [15]. 

The system classifies data transmission tasks into three categories according to 

priority: high priority (e.g., real-time genetic analysis data), medium priority (e.g., 

electronic medical record access), and low priority (e.g., historical image archiving). 

High-priority tasks enjoy priority transmission when bandwidth resources are tight, 

while low-priority tasks are relieved from network pressure through delayed 

transmission and time-slicing. The system dynamically adjusts the bandwidth 

allocation strategy by monitoring the network bandwidth utilization, transmission 

delay, and packet loss rate in real time and predicting the network traffic using AI 

algorithms. To further optimize bandwidth utilization, the algorithm introduces multi-

path transmission technology, which splits large data streams into multiple sub-streams 

and transmits them through different paths in parallel to maximize bandwidth resource 

utilization. The system adopts congestion control mechanisms (e.g., BBR and CUBIC 

algorithms) to dynamically adjust the data transmission rate to avoid network 

congestion. 

D. Network congestion control mechanisms 

In distributed storage systems, network congestion significantly affects the 

performance of data transmission, resulting in high latency, low throughput, and 

increased data packet loss. To solve this problem, this system designs a multilevel 

network congestion control mechanism, which combines transport layer protocol 
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optimization and traffic scheduling algorithms to achieve precise control of data flow 

and efficient use of network resources [16]. 

In terms of transport layer protocols, the system adopts two kinds of congestion 

control algorithms: BBR (Bottleneck Bandwidth and Round-trip propagation time) and 

CUBIC. BBR dynamically adjusts the data sending rate by estimating the available 

bandwidth and minimum delay of the network in real time, which is excellent in high-

bandwidth and low-latency network environments; CUBIC is suitable for high-latency 

and large-bandwidth networks and can quickly increase the sending rate after the 

network returns to normal. BBR dynamically adjusts the data transmission rate by 

estimating the available bandwidth and minimum delay in real time, which is excellent 

in high-bandwidth and low-latency network environments. The system dynamically 

switches between the two algorithms according to the network state to realize the 

optimal transmission efficiency. In terms of traffic scheduling, the system introduces 

priority-based queuing (PBQ) technology, which categorizes data flows according to 

the degree of urgency; for example, real-time genetic data analysis traffic is prioritized 

over historical image backup traffic. The scheduler adopts a Weighted Fair Queuing 

(WFQ) algorithm to allocate more bandwidth resources for high-priority data streams, 

which ensures that mission-critical tasks can still maintain low latency and high 

throughput during network congestion [17]. In order to further improve the 

performance of the system in complex network environments, this system combines AI 

prediction models to predict future network congestion risks based on historical 

network traffic data and transmission patterns and adjusts the data sending rate and path 

in advance to avoid potential network congestion. 

5. System implementation and testing 

A. Experimental environment and test program 

The experimental setup is deployed in a cloud computing environment designed 

to evaluate the network performance optimization strategies for distributed biomedical 

big data storage. The infrastructure consists of: 

Computing nodes: 8 physical computing nodes, each equipped with an Intel Xeon 

Gold 6240 2.6 GHz CPU (18 cores, 36 threads), 128 GB DDR4 RAM, and a 1 TB 

NVMe SSD. 

Storage nodes: 12 dedicated storage nodes, each configured with dual 10TB 

HDDs (RAID 1) for persistent storage and a 2TB SSD for caching. These nodes run 

the Ceph distributed storage system with an HDD + SSD hybrid tiering strategy. 

Networking infrastructure: All nodes are interconnected via a 10 GbE Ethernet 

network using a Mellanox ConnectX-5 network interface card (NIC) to minimize 

latency and improve bandwidth utilization. A dedicated switch with a 320 Gbps 

backplane ensures minimal packet loss and congestion. 

Software environment: 

Operating system: Ubuntu Server 22.04 LTS with Linux Kernel 5.15. 

Storage system: Ceph 17.2 (Pacific Release) with BlueStore storage backend. 

Containerization: Docker 24.0.5 and Kubernetes 1.27 for workload orchestration. 

Testing tools: 

Iperf3 for network bandwidth and packet loss analysis. 
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FIO (Flexible I/O Tester) to evaluate storage performance across different block 

sizes (4 KB, 16 KB, 64 KB, 256 KB, and 1 MB). 

Ceph Benchmarking Tool (CBT) for measuring IOPS, latency, and throughput 

under various workloads. 

During the experiments, we simulate the scenarios of high concurrent requests, 

mixed read/write scenarios, and large data file transfer scenarios and evaluate the actual 

effects of network performance optimization algorithms and caching mechanisms by 

comparing the performance changes before and after optimization. The details are 

shown in Table 2. 

Table 2. Configuration of experimental environment and test program. 

Component Configuration 

Computing nodes 8 × Intel Xeon 2.6 GHz, 128 GB RAM 

Storage nodes 12 × 10 TB HDD, 2 × 1TB SSD per node 

Network bandwidth 10 GbE Ethernet 

Storage system Ceph Distributed Storage 

Test tool Iperf3, FIO 

B. Performance assessment indicators 

In order to comprehensively evaluate the network performance optimization effect 

of the distributed storage system, this experiment selects throughput, latency, I/O 

Operations Per Second (IOPS), bandwidth utilization, and packet loss rate as the 

performance evaluation indexes. Throughput reflects the system’s ability to process 

data per unit of time and is measured in MB/s for read and write operations using the 

FIO tool. Latency is the delay between data request and response, measured by Ping 

and Iperf3, in ms. IOPS mainly evaluates the efficiency of the system when reading 

and writing small files and is tested under different block sizes (4 KB, 64 KB, 256 KB). 

Bandwidth utilization evaluates the ratio of the actual data transfer rate to the network 

bandwidth, measured by Iperf3 in %, to reflect the utilization of network resources. 

Data packet loss rate reflects network stability and is calculated by the ratio of packets 

sent to packets received in %. 

C. Comparative experiments and analysis 

In order to verify the effectiveness of network performance optimization 

algorithms in distributed storage systems, this experiment compares the key 

performance indicators before and after optimization, including throughput, latency, 

IOPS, bandwidth utilization, and packet loss rate. IOPS, bandwidth utilization, and 

packet loss rate.) The test scenarios cover high concurrent read/write, mixed read/write, 

and big data transmission, and the results are shown in Table 3. 

Table 2 shows the comparison of different performance indicators before and after 

optimization. Table 2 shows the comparison of different performance indicators before 

and after optimization. It can be seen that the throughput increases from 720 MB/s to 

980 MB/s, an increase of 36.1%, which effectively improves the efficiency of data 

transmission; the latency decreases from 12.5 ms to 8.7 ms, a decrease of 30.4%, which 

significantly improves the response speed of the system; the IOPS increases by 33.8%, 

which indicates that the optimized system performs better in the highly concurrent 



Molecular & Cellular Biomechanics 2025, 22(5), 1743.  

11 

small-file read/write scenarios. The bandwidth utilization rate increased from 68% to 

85%, indicating a significant improvement in the utilization of network resources. The 

data packet loss rate decreases from 1.2% to 0.5%, down 58.3%, reflecting the 

effectiveness of the optimization strategy in improving network stability. Taken 

together, these data validate the significant performance improvement of the 

optimization scheme in the distributed storage system for biomedical big data. 

Table 3. Experimental comparison. 

Metric Before optimization After optimization 

Throughput (MB/s) 720 980 

Latency (ms) 12.5 8.7 

IOPS 68,000 91,000 

Bandwidth utilization (%) 68 85 

Packet loss rate (%) 1.2 0.5 

D. Discussion of results 

The experimental results show that the distributed storage system shows 

significant performance improvement in biomedical big data storage and transmission 

through multi-dimensional network performance optimization strategies, such as data 

transmission path optimization, caching mechanism, dynamic allocation of bandwidth 

resources, and network congestion control. The 36.1% improvement in throughput is 

mainly due to the application of Multi-Path TCP and the Shortest Path First (SPF) 

algorithm, which effectively reduces network congestion and improves bandwidth 

utilization. Meanwhile, the latency is reduced by 30.4% from 12.5 ms to 8.7 ms, 

indicating that the optimized system is more responsive in highly concurrent access 

scenarios. 

In the optimization of the caching mechanism, the combined design of edge 

caching and in-memory caching effectively improves the local hit rate of data and 

reduces the high latency problem caused by remote data access. Experiments show that 

the IOPS of small block data (4 KB, 16 KB) increases by 33.8%, proving the 

effectiveness of the caching strategy in high-frequency access scenarios. Dynamic 

allocation of bandwidth resources in the strategy, through the combination of QoS 

priority policy and AI traffic prediction, the system allocates more bandwidth resources 

to high-priority tasks, increasing the bandwidth utilization rate from 68% to 85%, 

effectively relieving the network congestion and guaranteeing the data transmission 

speed of critical tasks. Network Congestion Control Mechanism. The dynamic 

switching of BBR and CUBIC algorithms and priority-based queue scheduling (PBQ) 

further optimize the performance of data transmission under high concurrency, which 

reduces the packet loss rate from 1.2% to 0.5%, down by 58.3%, and significantly 

improves the stability of the network and the reliability of data transmission. See Figure 

4 for details. 
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Figure 4. Experimental comparison. 

In summary, the multidimensional network performance optimization strategy 

proposed in this study is effective in improving throughput, latency, IOPS, and 

bandwidth utilization, which is especially suitable for high concurrency and high-

frequency access scenarios of biomedical big data. However, it is also found in the 

experiments that the improvement of throughput and latency decreases with the 

increase of block size, which may be related to the fact that multipath transmission is 

limited by the TCP retransmission mechanism in large data block scenarios. In addition, 

the accuracy of the AI traffic prediction model has a direct impact on the effectiveness 

of bandwidth resource allocation, so the model algorithm can be further optimized in 

the future and tested in more complex hybrid cloud environments to verify the 

applicability and generality of the strategy. 

6. Conclusion 

This study presents a comprehensive network performance optimization strategy 

for distributed storage systems handling biomedical big data. By integrating data 

transmission path optimization, caching mechanisms, dynamic bandwidth allocation, 

and network congestion control, the proposed system enhances throughput, reduces 

latency, and significantly improves bandwidth utilization and data transmission 

reliability. The experimental results validate the effectiveness and practicality of these 

strategies, demonstrating substantial performance improvements in high-concurrency 

and large-scale data transmission scenarios. The experimental results show that the 

optimized system performs well in the scenarios of high concurrency and large data 

volume and achieves significant improvement in key performance indicators, which 

verifies the effectiveness and practicality of the proposed method. In the future, we will 

further deepen the system performance under complex network environments, explore 

more intelligent bandwidth resource scheduling algorithms, and design more fine-

grained caching and data transmission strategies for diversified biomedical data types 

in order to promote the wide application of distributed storage technology in the field 

of big data and to provide more efficient and stable data support for medical data 
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analysis and precision medicine. 
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