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Abstract: The rapid development of information technology has enhanced the accuracy and 

depth of intelligent algorithms. However, significant challenges remain in expanding the 

application scope of intelligent systems and achieving synergistic coupling between 

mechanical and digital technologies. Inspired by multiscale dynamic feedback mechanisms in 

cellular biomechanics, such as cytoskeletal remodeling and mechanotransduction in 

extracellular matrix fiber networks, this study proposes a bio-inspired hybrid modeling 

framework that analogizes the integration of mechanical and digital systems to the coordinated 

molecule-cell-tissue multiscale mechanical responses in biological systems. A high-precision 

mechanistic model is constructed using Recurdyn multi-body dynamics simulation software to 

capture the physical characteristics of the drafting section through a strategy analogous to 

multiscale mechanical modeling of ECM (extracellular matrix) fibrous networks. 

Simultaneously, a GRU (Gated Recurrent Unit) neural network-based data-driven model is 

developed to emulate the adaptability of biological neural systems, particularly the feedback 

regulation of neuronal networks under dynamic mechanical stimuli. By calculating residuals 

between the mechanistic model, data-driven model, and experimental measurements, a dual-

channel SKNet (Selective Kernel Networks) architecture is introduced to mimic the multiscale 

signal extraction properties of mechanosensitive ion channels in cellular biomechanics. 

Convolutional kernels of different scales extract residual features, and an LSTM (Long Short-

Term Memory) residual model is constructed for compensation. Experimental validation 

demonstrates that the hybrid model significantly improves prediction accuracy and robustness, 

with its residual compensation mechanism functionally resembling the dynamic repair 

processes of cells under mechanical stress. This study provides an efficient solution for drafting 

section modeling and offers methodological insights for interdisciplinary applications in 

biomaterial fabrication and tissue engineering bio-inspired design. 

Keywords: drawing frame; mechanistic model; biomechanics; data-driven; hybrid modeling; 

neural network; residual compensation; multiscale modeling 

1. Introduction 

With the deepening of global economic integration and technological revolution, 

the textile industry is facing unprecedented changes. The traditional textile production 

model is gradually transforming to become intelligent and digital in order to adapt to the 

rapidly changing market demand and enhance the flexibility of the industrial chain [1]. In 

this context, multiscale mechanical modeling serves as a pivotal methodology in 

biomedical engineering for deciphering dynamic coupling mechanisms spanning 

molecular, cellular, and tissue hierarchies. A representative example lies in 

extracellular matrix (ECM) fibrous networks, where mechanical properties govern cell 

migration and differentiation—a system demanding integration of molecular 
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dynamics simulations with macroscale experimental data. Similar challenges arise in 

textile machinery drafting component modeling: Both domains require balancing 

mechanistic interpretability against data-driven adaptability [2]. In the spinning 

system, after the fiber material has been carded, it needs to be drafted to improve the 

fiber condition. This process allows hook-crimped fibers to be further straightened and 

parallelized, thereby improving the quality of the sliver [3]. The drawing frame, a key 

piece of equipment used in the textile industry, is responsible for merging, drafting, 

mixing, and making uniform slivers from multiple fiber strips. The drawing frame 

process is a complex fiber movement process, influenced by various factors such as 

process parameter settings, fiber properties, and fiber speed point distribution. Among 

these factors, the distribution of variable speed points is closely related to the quality 

of the slivers. The quality of the slivers is better when the distribution of the variable 

speed points is more concentrated and closer to the front roller jaws. Therefore, it is 

of great significance to study the distribution theory of the variable speed points in 

order to optimize production process parameters and strengthen fiber control. 

Drafting is a classic topic, focusing on drafting theory, many studies conducted 

by Chinese and foreign scholars and technicians, and the research content mainly 

focuses on the drawing frame drafting process, drafting structure, tension drafting, 

drafting roller drafting microtraction, uneven formation of lines in the traction process, 

and other research aspects. In many research fields, in order to effectively improve the 

correlation between the operating status of institutions and related models, many scholars 

have carried out in-depth research and achieved a series of valuable results [4]. Most of 

the existing studies focus on the optimization of the configuration and process analysis 

of the drafting mechanism, the optimal design of the draft part of the pressure bar, and 

the analysis of the influence of the drafting force on fiber fracture during the drafting 

process [5]. However, compared with the local optimization of the drafting 

mechanism, the discussion on the transmission mechanism of the front and rear 

gearbox and the dynamic behavior and efficiency analysis of the entire transmission 

system is still insufficient, and the digital twin technology can realize the accurate 

modeling of the key components of the transmission mechanism such as the front and 

rear gearboxes, and dynamically update the model through real-time data feedback, so 

as to simulate the actual operation state in the virtual environment, and the prediction 

and optimization of system performance with the help of real-time and global 

monitoring and analysis technology become more refined and efficient. Compared to 

traditional modeling methods, it offers significant advantages in improving system 

reliability, reducing failure rates, and optimizing energy efficiency. Lee et al. [6] took 

the feed system of CNC(Computer Numerical Control) machine tools as the research 

object, constructed a digital twin model driven by a mechanism and data mix, and 

proposed an adaptive model update method, which provides new ideas for research in 

this field. Du et al. [7] successfully established a hybrid model of constant hydraulic 

balance analysis of heat networks by using the method of data-driven correction 

mechanism model, which opened up a new path for the research in the field of heat 

networks. Li et al. [8] focused on the driving force of robotics in mechanical 

equipment, and the research results showed that this kind of microrobot has the ability 

of multi-mode motion adapted to the environment and can realize the function of 

transmission to the direction. 
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Focusing on the field of battery electrode manufacturing, Vijay et al. [9] proposed 

a hybrid modeling method, which organically combines physics-based simulation with 

deep learning, and successfully applied it to battery electrode manufacturing 

simulation. With its powerful data processing and pattern recognition capabilities, the 

deep learning part excavates complex nonlinear relationships from a large number of 

actual production data and captures the subtle features and coupling effects that are 

difficult to describe with traditional physical models, thus making up for the 

shortcomings of purely physics-based simulation. The application of hybrid models 

greatly improves the correlation between the model and the actual operating state in 

the battery electrode manufacturing process and provides technical support for the 

improvement of the battery electrode manufacturing process, the improvement of 

production efficiency, and the improvement of product quality. In addition, some 

researchers have conducted in-depth discussions on the optimization of the drawing 

frame’s control system based on the mechanism of drawing frames, the application of 

data-driven and hybrid modeling in the traction and tensile processes of drawing 

frames, and the importance of neural networks in the design of predicted value 

compensation to mechanism models [10]. This research not only has a broad 

application prospect of multi-mode motion and directional transfer functions in the 

field of industrial manufacturing but also further promotes the in-depth integration and 

development of intelligent and automation technologies in the field of textile 

machinery, especially in the field of drawing frames. Roland et al. [11] used the Gated 

Recurrent Unit (GRU) neural network to update and predict deformation and found 

that deep learning far surpasses the Bayesian optimization update method in terms of 

effectiveness and efficiency. This greatly improves the timeliness and accuracy of 

deformation prediction and provides strong technical support for the safety assurance 

and risk control of perpetual motion machines. Leite et al. [12] combined the 

knowledge of the physical mechanism of the drafting process and constructed a model 

based on the mechanism and data fusion. They described the basic principles of fiber 

motion and friction in the drafting process through the mechanism model, built the 

basic framework of the model, and used the data processing ability of deep learning to 

mine the complex nonlinear relationships in the drafting process and the factors that 

are difficult to be directly described by the mechanism. This approach not only realizes 

the accurate prediction of key parameters such as drafting force but also provides 

strong support for the improvement of product quality and production efficiency and 

promotes the development and progress of drawing frame drafting modeling 

technology. 

On the basis of previous research, this study studies the modeling method of the 

drafting part of the drawing frame based on the mechanism and data fusion method 

and uses the residuals of the mechanism model and the data model to train the residual 

model to compensate the mechanism model, which does not need to determine the 

parameters with greater influence than the tandem method, reduces the dependence on 

the prediction accuracy of the mechanism model compared with the parallel method, 

ensures the interpretability of the model, and improves the prediction accuracy of the 

mode [13,14]. At the same time, the hybrid model established by this method 

embodies one of the characteristics of the digital twin in the compensation mechanism 

model [15,16], but due to the lack of a real-time data interaction mechanism, it cannot 
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be regarded as a complete digital twin model. On the basis of the parallel algorithm, a 

multi-model residual learning method is proposed, which is used to establish a hybrid 

model of a mechanism model and a data-driven model, and the research algorithm 

focuses on the modeling process of the parallel hybrid model and improves on the 

basis of the existing method and elaborates the proposed multi-model hybrid modeling 

method in order to provide reference experience and reference for the drawing frame 

drawing part modeling method based on mechanism and data fusion. 

2. Model principle and modeling process 

This section elaborates on the principles and modeling processes for constructing 

both the mechanistic model and the data-driven model. The first part constructs the 

mechanistic model of the drawing section of the FA320A drawing machine, while the 

second part builds a data-driven model based on a GRU neural network. 

Regarding the FA320A drawing machine, the focus of this study, its drive system 

design, stands as a core component of the equipment. It plays a crucial role in the 

stable operation and high-quality production of the machine. The drive system design 

is depicted in Figure 1 (FA320A Drive System Diagram). Comprising several key 

components, such as 1) drive pulley, 2) transmission sprocket, 3) chain, 4) coaxial 

sprocket, 5) front gear box, 6) rear gear box, 7) main motor, etc., the drive system is 

integral. The front and rear gearboxes are of vital importance within it, coordinating 

and matching parameters like the tension and speed of different yarns. This ensures 

that multiple yarns can be arranged neatly under suitable conditions to ultimately form 

a uniform sliver. 

 

Figure 1. FA320A drive system diagram. 

1: Drive pulley, 2: transmission sprocket, 3: chain, 4: coaxial sprocket, 5: front gearbox, 6: rear gearbox, 

7: main motor. 
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As for the machine’s configuration, the FA320A drawing machine adopts a 4-

up4-down curve drafting pressure configuration with guide rollers. The upper rollers 

and the pressure springs are not directly connected to the drive section but are instead 

linked to the frame via bearings and supports. The model structure is presented in 

Figure 2. This design enables the upper rollers to flexibly adapt to the motion state of 

the yarn during operation. The pressure spring design also provides stable pressure, 

ensuring that the yarn tension remains stable during the drafting process. 

 

Figure 2. Tensioning section pressure apparatus. 

1: Frame assembly, 2: compression spring, 3: upper roller, 4: lower roller. 

2.1. Principle of the FA320A drawing machine transmission system 

The FA320A drawing machine employs a pressure bar stretching format with 

four upper and four lower guide rollers. The transmission system, a core component 

of the machine, operates through gearboxes at both the front and rear ends, primarily 

coordinating the tension and speed of different yarns to align them side by side, 

ultimately forming a uniform sliver. The upper roller and the pressure springs are not 

directly connected to the transmission system but are instead mounted on the machine 

frame through bearings and support structures. The model structure is illustrated in 

Figure 2. 

2.2. Constructing the mechanistic model using Recurdyn simulation 

software 

A mechanistic model is a mathematical representation constructed based on a 

deep understanding of the internal working mechanisms of a system, with physical, 

chemical, and biological principles serving as the foundation. Its core feature lies in 

the ability to explain and depict the interactions between various components of the 

system at a fundamental level, as well as how these interactions collectively shape and 

determine the overall behavior of the system [17]. In many research and application 

scenarios in engineering, constructing an accurate and effective mechanistic model is 

of indispensable importance for analyzing the operating principles of the system, 

optimizing system performance, and conducting reliable predictive analyses [18,19]. 

When faced with the task of modeling and analyzing complex mechanical 

systems, selecting the appropriate tool is crucial. Recurdyn is a software specifically 

designed for multibody dynamics analysis, and it demonstrates outstanding 

advantages in handling complex mechanical transmission systems, ensuring high 

analytical precision while maintaining computational efficiency [20,21]. Particularly 

in large-scale multibody system simulations, Recurdyn’s relatively fast computational 
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speed and powerful ability to handle a large number of components and complex 

constraints allow it to significantly reduce simulation time and greatly improve work 

efficiency [22]. 

In this study, the key components of the drawing section, such as shafts, gears, 

and rollers, were first modeled using SolidWorks and then imported into the multibody 

dynamics simulation software Recurdyn in the Parasolid file format. As the upper 

rollers and pressure springs are connected to the frame via bearings and supports, not 

directly linked to the transmission section, for simplicity and to reduce computational 

burden, this part was modeled as a frictional force and represented as a load in the 

simulation. The friction force equation is used as follows: 

𝑓 = 𝜇 × 𝐹𝑁 (1) 

In the section addressing the unilateral pressure 𝐹𝑁, the pressure exerted by the 

compression springs on the upper roller is sequentially 294 N, 294 N, 392 N, and 392 

N. The coefficient of friction μ is taken as 0.1 in this context. The values for pressure 

correspond to the unilateral pressure, and when calculating frictional force, this value 

is multiplied by 2. Consequently, the loads on the roller are 58.8 N, 58.8 N, 78.4 N, 

and 78.4 N, respectively. 

Parameter settings for the imported model in the Recurdyn software, including 

constraints, drives, and loads, are outlined in Table 1. Figure 2 displays the model’s 

state after adjusting constraints and contact parameters. A dynamic simulation is 

conducted on the adjusted model to establish the mechanistic model of the stretching 

section. 

 

Figure 3. Drafting section model. 

Figure 3 illustrates the primary transmission components within the transmission 

system: The right side depicts the front gearbox transmission section, the left side 

shows the rear gearbox transmission, the middle section contains four lower rollers, 

and the lower right corner features a pulley connected to the main motor, which is a 

5.5 kW, 4-pole variable frequency motor. 

Table 1 shows the constraints and contact types involved in the modeling 

process. In the modeling of the FA320A drawing machine’s drawing section, based 

on the motion characteristics and interaction relationships of each component, 

appropriate fixed and rotational pairs are set for the gears, rollers, shafts, and chains. 

Surface contact is set between the gears, and solid contact is established between the 

chain and sprocket. A constant rotational speed of 1450 n/min is applied to the drive 

wheel to provide power input to the entire transmission system, ensuring that the 
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simulation accurately reflects the actual operating conditions. 

Table 1. Constraints and contact statistics between components. 

Type Location Add mode Quantity 

Joint 

Gear, roller Translational 40 

Shaft Revolute 5 

Chain Revolute 32 

Contact 
Between gears Surface to surface 14 

Chain and sprocket Solid to solid 64 

In multibody dynamics simulations, the mechanistic model of the drafting 

machine is established through dynamic analysis [23]. This model reconstructs 

geometric features and component spatial relationships with high fidelity [24,25], akin 

to coarse-grained representations of cytoskeletal networks in cellular biomechanics 

that preserve macroscopic mechanical behavior while abstracting molecular-scale 

details. However, structural complexity and parameter sensitivity necessitate 

simplifications during modeling—a compromise reminiscent of tissue-level 

biomechanical studies where heterogeneous cell-ECM interactions are homogenized 

to tractable constitutive laws. 

The deterministic nature of mechanistic frameworks further limits their capacity 

to emulate transient environmental perturbations, mirroring the challenge of predicting 

dynamic ECM remodeling driven by fluctuating cellular traction forces. Such gaps 

between idealized simulations and operational variability echo the fidelity-adaptability 

trade-off inherent in biological systems. 

To bridge this gap, a data-driven model is introduced, inspired by biological 

systems that decode environmental noise through adaptive signaling. Just as 

mechanosensitive ion channels convert mechanical stimuli into electrochemical 

signals for real-time cellular feedback, the hybrid framework leverages neural 

networks to dynamically compensate for unmodeled perturbations, synergizing 

interpretable mechanics with data-driven adaptability [26,27]. 

2.3. LSTM and GRU neural networks 

As illustrated in Figure 4A, the LSTM neural network’s basic structure replaces 

the hidden state’s activation function in traditional RNNs (Recurrent Neural Network) 

with memory units. It controls the flow of information through input gates, forget 

gates, and output gates, thus preventing issues of gradient vanishing and explosion. 

The specific implementation process of LSTM is as follows: 

(1) Calculation of the forget gate 𝑓𝑡: 

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

The forget gate determines which information from the previous cell state 𝐶𝑡−1 

should be omitted. In this formulation, ℎ𝑡−1 and 𝑥𝑡 serve as inputs, with 𝑊𝑓 and 

𝑏𝑓 representing the weight matrix and bias term, respectively. The sigmoid function 

σ is employed to facilitate this determination. 
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(A) 

 
(B) 

Figure 4. The basic structure of (A) LSTM; (B) GRU neural networks. 

(2) Calculation of the input gate:  

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

𝐶�̃� = tanℎ(𝑊𝑐 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4) 

The input gate decides which information from the current input 𝑥𝑡  and the 

previous hidden state ℎ𝑡−1 will be incorporated into the cell state. Here, 𝑊𝑖 and 𝑏𝑖 

denote the weight matrix and bias term, respectively, while tanℎ  serves as the 

activation function. 

(3) Update of the cell state: 
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𝐶𝑡 = 𝑓𝑡×𝐶𝑡−1 + 𝑖𝑡×𝐶�̃� (5) 

The update of cell state 𝐶𝑡 is facilitated through a conjunction of the forget gate 

and the input gate. The forget gate dictates the extent of old information from the cell 

state to be discarded, while the input gate determines the amount of current candidate 

information to be incorporated. In this context, 𝐶𝑡−1 represents the cell state from the 

previous moment. 

(4) Output gate:  

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

ℎ𝑡 = 𝑜𝑡 × tanh⁡(𝐶𝑡) (7) 

The output gate determines which portions of the current cell state 𝐶𝑡  will 

become part of the final output as the hidden state ℎ𝑡. Here, 𝑜𝑡 denotes the value of 

the output gate, with 𝑊𝑜  and 𝑏𝑜  representing the weight matrix and bias term, 

respectively. 

As shown in Figure 4B, the GRU is a simplified version of the LSTM model, 

featuring two main gating units: The update gate and the reset gate. Unlike LSTM, 

GRU does not separate the storage unit from the hidden state but controls the flow of 

information within the unit through these two gates. Specifically, the update gate 

determines the extent to which the previous time step’s hidden state influences the 

current hidden state, and it also controls how much information is updated to the 

current state. A higher value of the update gate indicates that more information will be 

carried over to the next state unit, thus enhancing memory updating. On the other hand, 

the reset gate helps control the degree of forgetting, determining how the current input 

influences the updated state [28]. 

Specific computational processes of the GRU neural network are as follows: 

(1) Updating the update gate 𝑧𝑡: 

𝑧𝑡 = 𝜎(𝑊𝑧 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑥) (8) 

The update gate moderates the balance between the current and previous hidden 

states, influencing the extent of new state updates. In this formula, 𝜎 represents the 

sigmoid function, while 𝑊𝑧  and 𝑏𝑥  denote the weight matrix and bias terms, 

respectively. The vector [ℎ𝑡−1, 𝑥𝑡] constitutes the input. 

(2) Calculating the reset gate: 

𝑟𝑡 = 𝜎(𝑊𝑟 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (9) 

The reset gate employs the sigmoid activation function to apply a linear 

transformation to the input 𝑥𝑡 and the previous hidden state ℎ𝑡−1, resulting in a value 

between 0 and 1. Outputs closer to 0 induce the network to forget information from 

earlier states; conversely, values near 1 prompt the retention of such information. In 

this context, 𝑊𝑟  and 𝑏𝑟  serve as the weight matrix and bias terms, respectively, 

determining which pieces of information are to be discarded. 

(3) Computation of the candidate hidden state ℎ�̃�: 

ℎ�̃� = tanℎ(𝑊 · [𝑟𝑡 × ℎ𝑡−1, 𝑥𝑡] + 𝑏⁡ (10) 
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The candidate hidden state ℎ�̃� represents a potential hidden state at the current 

moment, determined through the reset gate’s modulation of the current input and the 

prior hidden state. The parameters 𝑊  and 𝑏  are the weight matrix and bias, 

respectively, while the tanℎ function acts as the activation mechanism. The term 

𝑟𝑡 × ℎ𝑡−1 denotes the element-wise multiplication of the reset gate with the previous 

hidden state, indicating the extent of memory retention. 

(4) Updating the final hidden state ℎ𝑡: 

ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 × ℎ�̃� (11) 

This step is pivotal in updating the current hidden state, with the update gate 𝑧𝑡 

balancing the retention of the old state against the adoption of the new candidate state. 

The data-driven model relies on massive datasets collected via sensors, mobile 

internet, or relevant software tools. These models undergo training and fitting 

processes supported by extensive data to become automated decision-making systems. 

This paper develops a data-driven model for the drafting section of a ring-spinning 

frame based on a GRU recurrent neural network. The model includes three hidden 

layers with 128 neurons each, a dropout rate of 0.2, 500 training epochs, a batch size 

of 10 per iteration, and a learning rate of 0.001. It utilizes the Adam optimizer for 

parameter updates and incorporates the speeds of four rollers in the ring-spinning 

frame as input-output for the GRU network. 

3. Improvement of hybrid model methods 

In the modeling and analysis of complex industrial systems today, a single model 

often fails to fully and accurately meet practical requirements. To overcome the 

limitations of traditional single models and improve the performance and applicability 

of models, research and improvement of hybrid model methods become particularly 

important [28,29]. This section will provide a detailed explanation of the construction 

process of parallel hybrid models and, based on this, propose an innovative multi-

model residual learning method. This will enable the establishment of more efficient 

and accurate hybrid models, providing new breakthroughs for the modeling of the 

drawing section of the spinning drawing machine. 

3.1. Construction of parallel hybrid model 

Previous work established individual mechanistic models and data-driven models 

for the drafting section of the spinning frame, although the single mechanistic model 

exhibits strong interpretability. However, its capacity for complex system modeling is 

limited, necessitating extensive domain knowledge and assumptions. Moreover, 

environmental factors in the production process are complex and cannot be 

represented in mechanistic models. Data-driven models, which often rely on the 

quality and quantity of data, may produce overfitting or bias and are typically 

considered “black box” models, making it challenging to understand their internal 

workings. To enhance model prediction accuracy and interpretability, this study 

integrates the strengths of mechanistic and data-driven models to establish a 

mechanistic-data hybrid model.  

The parallel method establishes the hybrid model, which uses residual data from 
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the mechanistic model to train a neural network. The predictions from the neural 

network compensate for the mechanistic model, thus establishing a mechanistic-data 

hybrid model. The modeling process is illustrated in Figure 5. 

 

Figure 5. Process for establishing a hybrid model via parallel methodology. 

Figure 5 shows the process flow for establishing the hybrid model using the 

parallel method, where the data-driven model is trained using residual data from the 

mechanistic model, and the predicted residuals are used to compensate and correct the 

mechanistic model. This method relies to some extent on the accuracy of the 

mechanistic model. Considering the numerous components and involved parameters 

in the drafting section of the spinning frame, simplifications are made during the 

construction of the mechanistic model, which may not ensure model accuracy. 

Therefore, on the basis of parallel hybrid modeling, a multi-model residual learning 

method is proposed to establish the hybrid model. 

3.2. Construction of hybrid model using multi-model residual learning 

method 

The multi-model residual learning method improves on the parallel method by 

reducing the dependency on the predictive accuracy of the mechanistic model. The 

hybrid modeling process using this method is depicted in Figure 6. 

Figure 6 illustrates the improvements in the multi-model residual learning 

method, including constructing an additional data-driven model based on a GRU 

neural network. This model computes the residual data of the predicted values, which 

are then processed using SKNet to extract features from the residual data of both the 

mechanistic and data-driven models. These features are used to train a residual model 

based on the LSTM neural network, which uses the predicted residual values to 

compensate and correct the prediction data of the mechanistic model, thereby 

enhancing the overall prediction accuracy. The specific implementation process is as 

follows: 
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Figure 6. Process of establishing hybrid models using the multi-model residual learning method. 

(1) Preprocessing of physical entity data. 

Handling of missing data: Sensor malfunctions, such as equipment aging and 

network fluctuations, often result in data omissions. To ensure the precision of model 

predictions, missing data are rectified using linear interpolation. 

𝑥1(𝑡+𝑖) = 𝑥1(𝑡) +
𝑖 · (𝑥1(𝑡+𝑗) − 𝑥1(𝑡))

𝑗
, 0 < 𝑖 < 𝑗 (12) 

In the equation, 𝑥1(𝑡+𝑗) and 𝑥1(𝑡) denote the known data values at times 𝑡 + 𝑗 

and 𝑡 respectively, while 𝑥1(𝑡+𝑖) represents the missing value at time 𝑡 + 𝑖. Should 

the interval of missing values be substantial (indicated by a more significant 𝑗), 

interpolation using adjacent values is employed for data imputation. 

Outlier Management: Under stable operating conditions, dramatic fluctuations in 

data are generally not expected in the spinning and doubling machinery. When a data 

set collected under unchanged conditions exhibits a variation exceeding ±10% at any 

given moment, this is considered an anomaly. Such data requires smoothing to 

mitigate this issue. The mean smoothing method is employed to address these outliers. 

Should conditions |𝑥1(𝑡) − 𝑥1(𝑡−1)| > 𝜖1  or |𝑥1(𝑡) − 𝑥1(𝑡+1)| > 𝜖2  be met, 

then 𝑥1(𝑡) =
𝑥1(𝑡+1)+𝑥1(𝑡−1)

2
, 𝜖1  and 𝜖2  are designated as the respective error 

thresholds for adjacent data points. 

(2) Construction of mechanistic and data-driven models. 

This research uses Recurdyn software to establish the mechanistic model and a 

GRU neural network to establish the data-driven model.  

(3) Residual sequences from both models are obtained using the following 

formula. 

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 (13) 

where 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted value by the model, and 𝑒𝑖 is the 

residual. 
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(4) SKNet processes the two types of residual data for feature extraction. 

SKNet, comprising the Split, Fuse, and Select modules, utilizes two differently 

sized perception fields (convolutional kernels), allowing incoming data to choose the 

most appropriate perception field during feature extraction. SKNet implements an 

attention mechanism for convolutional kernels, enabling the network to adaptively 

select the proper kernel based on different stimuli, thus enhancing feature extraction 

effectiveness. Furthermore, by adjusting the group convolution parameter to 3, SKNet 

not only reduces the number of parameters to one-third of a standard convolution but 

also enhances the training efficiency of the network model, achieving a lightweight 

design. Traditional network models typically use a single convolutional kernel from 

the same layer, neglecting data scale differences, which can lead to suboptimal results. 

Therefore, this study incorporates SKNet in the processing of data residuals, as shown 

in Figure 6, where two different-sized convolutional kernels impact differently scaled 

targets through adaptive adjustment of parameter weights, achieving feature extraction 

and adaptive output for differently scaled targets, further optimizing the extraction of 

residual data features.  

(5) Normalization of the integrated residual data. 

𝑥4̅̅ ̅ =
𝑥3 − 𝑥3min

𝑥3max − 𝑥3min
 (14) 

In this context, 𝑥4̅̅ ̅  represents the data normalized through the process of 

normalization, where 𝑥3  denotes the original data, and 𝑥3min  and 𝑥3max  are 

respectively the minimum and maximum values within the dataset. 

(6) A residual model was trained utilizing processed residual data. 

This model is based on a Long Short-Term Memory (LSTM) neural network 

comprising three hidden layers, each with 256 neurons. The configuration includes a 

dropout rate of 0.2, with the training process spanning 500 epochs and a batch size of 

10 for each iteration. The learning rate was set at 0.001, and parameter updates were 

facilitated using the Adam optimizer. The integrated residual sequence data were used 

to train the LSTM neural network, culminating in the development of the residual 

model. 

(7) Compensation mechanism for predicted values from the residual model. 

The compensation mechanism for the predicted values of the residual model was 

implemented using Equation (15) to enhance the accuracy of the compensation 

mechanism model. 

𝑦′ = 𝑦 + 𝑒 (15) 

In the formula, 𝑦′ represents the output from the hybrid model established by 

the multi-model residual learning method, 𝑦  denotes the output predicted by the 

mechanistic model, and 𝑒 is the residual value predicted by the residual model. 

Building upon the parallel method framework, the multi-model residual learning 

method additionally incorporates a data-driven model based on GRU (Gated Recurrent 

Unit). This approach involves arranging residual data in columns, thereby increasing 

the dimensionality of residual data. Subsequently, the residual data are used to train 

an LSTM (Long Short-Term Memory) to develop a residual model. Finally, this model 

compensates for the predictive output of the mechanistic model, thereby reducing 
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dependency on the accuracy of the mechanistic model and establishing a robust hybrid 

model. 

4. Experimental results and analysis 

The data used in the experiment was sourced from the FA320A drafting machine 

in the spinning preparation workshop of Xinjiang Huashu Textile Technology Co., 

Ltd. At the time of data collection, the drafting machine was operating under the 

following conditions: The draft ratio was 6.57, the output speed was 256.61 m per 

second, the roller spacing was 2.52 mm, the main motor speed was 1450 revolutions 

per minute, and the feed rate was 150.62 m per second. 

4.1. Grid search hyperparameter tuning 

The hyperparameters of neural networks directly affect the model’s learning 

efficiency, expressiveness, and generalization ability. Proper hyperparameter 

configuration can improve the model’s performance and accuracy. This study used 

grid search to optimize key hyperparameters: learning rate, hidden layer size, and 

number of layers. The parameter space for the learning rate was set as [0.001, 0.005, 

0.01]. The learning rate controls the step size for each parameter update; an appropriate 

learning rate helps accelerate convergence and avoids oscillations during the model 

training process. The parameter space for hidden size was set as [64, 128, 256]. The 

hidden layer size determines the network’s capacity; larger hidden layers can capture 

more features but may also lead to overfitting. The parameter space for the number of 

layers was set as [2,3]. The number of layers determines the depth of the network; 

increasing the number of layers can improve the model’s expressiveness, but it may 

also lead to issues such as vanishing gradients or overfitting. The loss value was 

chosen as the evaluation metric to evaluate the impact of different hyperparameter 

combinations on model performance. A grid search was then performed, traversing 

the hyperparameter space to find the optimal combination. In the experiment, 70% of 

the data was used as the training set and 30% as the test set. Finally, the optimal 

parameter combination was used to train the model. Figure 7 shows the loss values of 

the LSTM and GRU networks with different parameter combinations. 

Figure 7a,b display the loss values for the LSTM neural network, while Figure 

7c,d show the loss values for the GRU neural network. In these figures, the model 

performance under different hyperparameter combinations is observed. In Figure 7b, 

when the learning rate, hidden layer size, and number of layers are set to 0.001, 256, 

and 3, respectively, the minimum loss value is 0.0120, indicating that the LSTM model 

performs best under this configuration. In Figure 7d, when the learning rate, hidden 

layer size, and number of layers are set to 0.001, 128, and 3, respectively, the minimum 

loss value is 0.0135, indicating that this configuration yields the best performance for 

the GRU model. Therefore, after optimization, the optimal hyperparameter values for 

the LSTM and GRU neural networks are 0.001, 256, 3, and 0.001, 128, and 3, 

respectively. These parameter combinations provide the best learning performance for 

both models. 
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Figure 7. Hyperparameter selection process for LSTM and GRU. 

4.2. Parallel comparative experiment 

The measured roller speed data from the FA320A spinning drafting machine was 

compared with the predicted roller speed values from different models to evaluate the 

accuracy of the predictions made by each model. 

(1) Performance of the Single Model 

The single data-driven model demonstrates high accuracy in predicting the 

rotational speed of the rollers. Its predictions provide timely feedback during actual 

production, helping to monitor the dynamic behavior of the equipment in real-time 

[30]. However, this model has a notable limitation: It is a “black box” model with poor 

interpretability. When prediction deviations or equipment anomalies occur, it is 

difficult to quickly and accurately pinpoint the root cause of the issue, limiting its 

widespread application and in-depth analysis. 

In contrast, the single mechanistic model has strong interpretability, helping 

researchers gain a deeper understanding of the model’s working principles and internal 

mechanisms [31]. As seen in Figure 8, the loads on the three faster rollers exhibit 

significant changes, and their rotational speeds fluctuate greatly. In Figure 8, it is 

apparent that the rear roller, with a lower rotational speed, experiences relatively stable 

external loads, and its rotational speed does not exhibit significant fluctuations. 
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However, constructing an accurate mechanistic model for the many components in the 

drawing system presents significant challenges. To reduce modeling difficulty during 

simulation, some simplifications had to be made (such as simplifying the upper roller 

section in Chapter 2), which sacrifices a degree of model accuracy and leads to 

suboptimal overall prediction performance. 

 

Figure 8. Group-comparison charts of speeds of each roller under different models. 

(2) Performance of the parallel hybrid model 

The parallel hybrid model combines the advantages of both the mechanistic 

model and the data-driven model. While ensuring interpretability, it improves the 

model’s predictive accuracy. The parallel method only uses the residuals of the 

mechanistic model’s predictions, which somewhat depends on the accuracy of the 

mechanistic model [32,33]. 

As seen in Figure 8, when the mechanistic model exhibits large fluctuations, the 

residuals of the mechanistic model at that moment are also large, reducing the 

effectiveness of residual compensation, and the parallel hybrid model shows larger 

errors at that time. In Figure 8, when the rear roller’s rotational speed is relatively 

stable, the parallel method’s predictions maintain high accuracy.  

(3) Performance of the multi-model residual learning hybrid model 
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The multi-model residual learning method proposed in this study is an 

enhancement of the parallel hybrid model. This method uses SKNet to extract features 

from the residual data of both the data-driven and mechanistic models, effectively 

reducing the dependence on the accuracy of the mechanistic model [34]. As shown in 

Figure 8, the prediction accuracy of the rotational speeds for all four rollers 

significantly improved and was not affected by fluctuations in the mechanistic model’s 

speed at certain moments. This indicates that the multi-model residual learning hybrid 

model successfully enhances predictive accuracy while maintaining interpretability, 

demonstrating superior performance and stability. 

4.3. Comparison of model prediction errors 

The table below presents the maximum and average relative errors in predicting 

the speeds of four rollers for four different models, as illustrated in Table 2. The speed 

of the rear roller, subject to a relatively stable external load, did not exhibit significant 

fluctuations in the mechanistic model predictions. The errors between the hybrid 

model developed using the parallel method and the hybrid model established through 

multi-model residual learning are minor; hence, the error analysis does not consider 

the rear roller.  

Table 2. Prediction errors across different models. 

Modeling method 

Maximum relative error Mean relative error 

Front 

roller 

Two 

roller 

Three 

roller 

Rear 

roller 

Front 

roller 

Two 

roller 

Three 

roller 

Rear 

roller 

Mechanism model 0.390% 0.610% 0.530% 0.970% 0.230% 0.360% 0.360% 0.780% 

Data-driven model 0.076% 0.074% 0.039% 0.170% 0.013% 0.025% 0.011% 0.047% 

Parallel hybrid model 0.110% 0.160% 0.120% 0.089% 0.039% 0.033% 0.024% 0.050% 

Multi-model method mixed model 0.051% 0.056% 0.029% 0.088% 0.017% 0.016% 0.011% 0.049% 

The mechanistic model displayed a maximum relative error ranging from 0.39% 

to 0.61%, with predictions showing considerable fluctuations; the average relative 

error varied from 0.23% to 0.36%. Simplifications made during the modeling process 

led to suboptimal overall predictive outcomes. 

The data-driven model had a maximum relative error between 0.039% and 

0.076% and an average relative error ranging from 0.011% to 0.025%. Overall, the 

errors were minor, and the predictions remained stable, making this model suitable for 

scenarios where interpretability is not a concern, as it effectively fulfills the prediction 

requirements. 

The parallel hybrid model exhibited a maximum relative error from 0.11% to 

0.16%, affected by significant fluctuations in the mechanistic model’s predictions, 

which compromised the stability of the outcomes; the average relative error was 

between 0.024% and 0.039%. The model compensates through the residuals, 

maintaining a relatively low overall predictive error. 

The hybrid model developed using the multi-model residual learning method 

showed a maximum relative error from 0.029% to 0.056%, smaller than that of the 

parallel hybrid model and less affected by fluctuations in the mechanistic model’s 
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predictions, resulting in more stable predictions; the average relative error ranged from 

0.011% to 0.017%. This model benefits from handling residuals from both single-

model types, achieving a relatively lower overall prediction error. 

For the parallel and multi-model residual learning hybrid models, the latter 

mitigates the impact of significant fluctuations from the mechanistic model’s 

predictions and completes the prediction tasks for all four roller speeds. 

4.4. Ablation experiments 

In order to gain a deeper understanding of each component’s contribution to the 

model’s overall performance, a series of ablation experiments were designed in this 

study. Ablation experiments evaluate the impact of each part on the overall 

performance by progressively removing or modifying key components of the model. 

This approach allows for identifying which modules or features play a decisive role in 

the model and which contribute little or have no impact on performance. This is crucial 

for further optimizing the model architecture, improving performance, and reducing 

computational resource consumption. 

In the experiments, different settings for removing specific modules were 

defined: MD-S-L, MD-L, and MD-S. Specifically: 

(1) MD-S-L refers to the hybrid model established by the multi-model residual 

learning method. 

(2) MD-L refers to the model where SKNet is removed, and the residual data of 

the mechanistic model and the data-driven model are processed in parallel. These 

parallel data are then used for LSTM training, and the LSTM-predicted residual data 

are used to compensate for the mechanistic model, forming a hybrid model. 

(3) MD-S refers to the model where LSTM is removed, and the residual data of 

the mechanistic model and data-driven model are directly processed by SKNet for 

feature recognition, compensating for the mechanistic model to form the hybrid model. 

Table 3 shows the prediction accuracy of the multi-model residual learning 

method with different modules removed. By comparing the prediction accuracy of 

different configurations, the following observations can be made: 

(1) Removal of LSTM: After removing LSTM, the model’s ability to capture 

temporal dependencies significantly declines. Since there are temporal dependencies 

in the roller speed data of the drafting machine, the model fails to accurately capture 

the dynamic changes in the data, resulting in a decrease in prediction accuracy. 

(2) Removal of SKNet: After removing SKNet, the model’s ability to process the 

residual data of the mechanistic and data-driven models weakens. This is particularly 

evident when the residuals of the data are large. Simply arranging the residual data in 

parallel, without SKNet’s data processing, leads to a decrease in prediction accuracy. 

(3) Advantages of the MD-S-L Configuration: The complete MD-S-L 

configuration performs the best in terms of performance, demonstrating the 

complementary roles of SKNet and LSTM in residual processing and temporal 

modeling. 

Therefore, the combination of LSTM and SKNet significantly improves the 

model’s prediction accuracy when dealing with data that has temporal dependencies 

and complex residuals. The removal of either of these modules results in a decline in 
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model performance. 

Table 3. Ablation experiments (Unit: %). 

Experimental 

Prediction accuracy 

Front roller Two roller Three roller Rear roller 

MD-S-L MD-L MD-S M-D-S-L MD-L MD-S MD-S-L MD-L MD-S MD-S-L MD-L MD-S 

test1 99.64 98.45 97.55 99.65 98.55 97.25 99.72 98.45 97.63 99.57 98.65 97.22 

test2 99.66 98.64 97.54 99.64 98.54 97.24 99.74 98.42 97.62 99.55 98.64 97.25 

test3 99.61 98.12 97.52 99.61 98.52 97.24 99.75 98.43 97.61 99.52 98.62 97.23 

test4 99.64 98.43 97.43 99.62 98.43 97.27 99.71 98.43 97.61 99.54 98.63 97.23 

test5 99.64 98.45 97.55 99.64 98.45 97.26 99.78 98.47 97.66 99.54 98.65 97.24 

test6 99.59 98.44 97.54 99.60 98.54 97.25 99.72 98.41 97.62 99.52 98.64 97.21 

test7 99.65 98.54 97.54 99.61 98.54 97.24 99.74 98.42 97.64 99.54 98.64 97.24 

test8 99.63 98.32 97.52 99.64 98.52 97.23 99.74 98.38 97.62 99.57 98.62 97.25 

test9 99.67 98.76 97.56 99.67 98.56 97.22 99.76 98.42 97.63 99.52 98.66 97.24 

test10 99.68 98.81 97.51 99.62 98.51 97.25 99.74 98.43 97.64 99.51 98.61 97.23 

In summary, after experimental evaluation, the hybrid model established through 

the multi-model residual learning method offers greater flexibility in data processing, 

greater relevance in mechanistic interpretation, and effectively balances accuracy and 

interpretability. Overall, the hybrid model demonstrates significant advantages. 

5. Conclusions 

Despite its higher accuracy, the multi-model residual learning method introduces 

additional computational costs. Compared to hybrid models established through 

parallel methods, training an additional data-driven model and handling the residuals 

from both models is required, which increases complexity. Future research could 

explore optimizing this method to reduce computational overhead or investigate the 

development of more accurate mechanistic models for hybrid modeling using parallel 

methods. 

Through experiments, the performance of various models in predicting roller 

speed data for the FA320A drafting machine was evaluated. The main findings are as 

follows: 

(1) Limitations of a single model: The single mechanistic model offers strong 

interpretability, but due to the system’s complexity, simplifications are necessary 

during modeling, which affects accuracy. The data-driven model achieves high 

prediction accuracy, meeting the goal of providing predicted values, but lacks 

interpretability, making it difficult to analyze and solve specific issues in practical 

applications. 

(2) Advantages and trade-offs of hybrid models: The parallel hybrid model 

improves prediction accuracy while maintaining interpretability, but its performance 

is somewhat dependent on the accuracy of the mechanistic model. When the 

mechanistic model experiences significant errors, the prediction stability of the 

parallel hybrid model is affected. The multi-model residual learning method reduces 
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the reliance on mechanistic model predictions but increases computational costs and 

model complexity. 

In conclusion, the hybrid model established through the multi-model residual 

learning method, after experimental evaluation, achieved more than 95% accuracy in 

predicting the roller speeds of different rollers in the FA320A spinning drafting 

machine and demonstrated better robustness compared to the hybrid model established 

using the parallel method. 
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