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Abstract: In today’s fast-paced work environments, accurately predicting stress levels is 

essential for effective healthcare workforce management, particularly among nurses in high-

pressure settings. Despite the availability of various mental health initiatives, timely detection 

of stress remains challenging due to concerns over sensitive personal data privacy. To address 

this, we propose a federated learning (FL) framework that utilizes artificial intelligence (AI) to 

predict nurse stress levels by integrating distributed biomechanical data from wearable sensors, 

thereby preventing data leakage. Biometric features from datasets at each FL client are 

extracted and used to train local neural network (NN) models. After several aggregation rounds, 

the global model converges to predict nurse stress levels. Simulations demonstrate the 

effectiveness of our method, achieving over 90% prediction accuracy, which enhances the 

feasibility of privacy-preserving stress monitoring and offers scalable solutions for 

occupational health management. 

Keywords: artificial intelligence; neural network; federated learning; biomechanical feedback; 

stress prediction 

1. Introduction 

Nurses, as a critical component of the healthcare workforce, have long faced 

stressors such as high work intensity, complex doctor-patient relationships, and 

demanding shift systems. Research indicates that over half of nurses experience 

moderate to severe occupational stress, leading to both physical and mental health 

issues, such as anxiety and fatigue syndrome [1–3]. This stress also directly impacts 

the quality of nursing care, patient safety, and the operational efficiency of healthcare 

institutions. The increasing nurse turnover rate due to high stress exacerbates the 

global shortage of healthcare professionals [4,5]. Therefore, the development of 

precise, real-time monitoring and intervention technologies for nurse stress is crucial 

for improving medical service quality and ensuring the well-being of healthcare 

workers. 

In recent years, artificial intelligence (AI) technology, coupled with wearable sensors, 

has provided new approaches for continuous, non-invasive stress monitoring [6–9]. 

However, existing methods rely on centralized data models, facing two major 

challenges. First, biomechanical data, such as heart rate (HR) and posture, involve user 

privacy concerns, and centralized storage poses a risk of data breaches. Second, data silos 

between medical institutions hinder the model’s generalization capabilities [10,11]. 

Federated learning (FL) offers a distributed training framework that allows data to be 

processed privately on local devices, sharing only encrypted model parameters [12,13]. 
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This framework overcomes data silos and protects nurses’ biomechanical data privacy, 

significantly enhancing the robustness and applicability of stress prediction models. 

This paper explores an FL framework for predicting nurse stress, integrating 

multimodal biomechanical data streams collected from wearable sensors to capture 

subtle physiological and behavioral patterns associated with occupational stress. By 

establishing a decentralized training mechanism that enables cross-institutional 

collaboration without the exchange of raw data, the framework addresses critical 

challenges in healthcare AI deployment. Specifically, the system preprocesses sensor 

data locally, extracting time-domain features that serve as stress indicators. Our main 

contributions are as follows: 

1) A systematic analysis and discussion of the value of biomechanical data in nurse 

stress recognition, highlighting its cross-modal relationship with psychological 

states. 

2) An FL architecture that ensures the privacy and security of data from wearable 

devices is constructed, while maintaining high performance over 90% in nurse 

stress prediction accuracy compared to traditional centralized methods. 

3) The proposal of a feasible pathway for the integration of intelligent wearable 

devices and AI technologies, supporting the standardized use of biomechanical 

data in occupational health monitoring and providing guidance for the intelligent 

transformation of medical systems. 

The remainder of this paper is organized as follows: The background on AI, FL, 

and biomechanics related to human stress is introduced. Subsequently, the proposed 

FL framework for nurse stress prediction is described, including feature extraction and 

neural network (NN) model aggregation for FL. Dataset partitioning and related 

simulation results are presented and discussed. The hyper-parameters during model 

training are also detailed. Finally, the paper concludes with a discussion of future work. 

2. Related work 

Many works have focused on health care using AI technology. Hussain et al. 

proposed a continuous monitoring system that not only detects falls but also identifies 

falling patterns and associated activities, achieving high accuracy in fall detection [14]. 

Ilyas et al. used a deep learning framework combining convolutional NNs and long 

short-term memory to detect facial expressions and assist experts in scheduling 

rehabilitation sessions effectively [15]. Wong et al. randomized controlled trial aims 

to assess the effectiveness of a remote monitoring strategy, involving wearable 

biosensors, in detecting subtle physiological changes in asymptomatic individuals [16]. 

Combining wearable seizure detection devices, including motion and electrodermal 

activity sensors, a machine learning (ML) algorithm was proposed to accurately detect 

generalized tonic-clonic seizures, offering real-time alerts and continuous monitoring [17]. 

A random forest model was proposed to accurately detect sleep-wake states from 

accelerometer data, achieving a high F1 score and providing useful estimates 

correlated with self-reported nap behavior [18]. 

Stress prediction has garnered significant attention from researchers. Delmastro 

et al. investigated the use of wearable technologies and proposed a mobile system 

architecture for online stress monitoring during motor and cognitive training for frail 
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older adults with mild cognitive impairment [19]. To provide real-time and post-

workout feedback, a system called “RecoFit” was proposed to recognize the exercise 

being performed. The system achieves high performance, with precision and recall 

exceeding 95% [20]. Dasari et al. proposed a support vector machine-based system 

using electroencephalographic signals to accurately detect mental stress levels [21]. 

Mathur et al. used the body sensors and machine learning (ML) algorithms to monitor 

physiological indicators for stress detection in nurses [22]. 

However, related works aiming to predict stress levels do not consider data 

privacy, particularly the sensitive data captured from human beings, which presents a 

significant challenge and obstacle for ML methods to achieve accurate detection. 

3. Preliminary and background 

3.1. AI for healthcare 

As shown in Figure 1, the rapid evolution of AI is fundamentally reshaping 

healthcare paradigms by enabling data-driven insights into complex physiological and 

psychological datasets. Contemporary healthcare systems increasingly employ AI-

driven pattern recognition architectures to process multidimensional biosignals 

acquired through non-invasive wearable sensors, thereby establishing novel 

frameworks for proactive health management. This technological advancement holds 

particular significance in occupational medicine, where continuous biomechanical 

metrics—such as autonomic nervous system indicators, postural fluctuation patterns, 

and electrodermal activity dynamics—provide an empirical foundation for evaluating 

workforce wellness. By continuously quantifying these biomarkers, healthcare 

administrators gain objective metrics to correlate physical strain patterns with 

organizational risk factors, transcending traditional subjective assessment 

methodologies. 

 

Figure 1. AI for healthcare. 

AI-powered stress prediction exemplifies a paradigm shift, integrating real-time 

sensor data with ML models to uncover subtle correlations between biomechanical 

patterns and psychological states. In nursing, where high-stress environments directly 
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affect care quality and staff retention, these systems analyze multimodal datasets, 

including motion kinematics, respiratory rhythms, and workload duration. By 

applying multi-layered feature extraction, they identify hidden associations between 

biomechanical disruptions and psychological distress, which is particularly critical in 

high-stakes nursing environments where stress undermines both patient outcomes and 

professional sustainability. NN architectures, especially attention-based recurrent NNs, 

excel at modeling spatiotemporal relationships through hierarchical abstraction, such 

as micro-changes in gait symmetry during long shifts or irregular muscle activation 

patterns preceding cognitive fatigue. These computational biomarkers enable early 

intervention, offering detection windows previously undetectable through traditional 

observational methods. 

3.2. FL framework for healthcare 

 

Figure 2. FL for healthcare. 

FL has emerged as a transformative, privacy-preserving breakthrough in medical 

AI, effectively addressing the longstanding conflict between the need for multi-

institutional collaboration and the paramount importance of safeguarding healthcare 
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data confidentiality. This innovative approach enables institutions such as hospitals, 

research centers, and healthcare providers to collaboratively train advanced ML 

models without the need to directly share sensitive data. As illustrated in Figure 2, FL 

operates through a decentralized framework in which institutions participate in model 

training by sharing only encrypted updates to model parameters, rather than raw data. 

This paradigm marks a significant departure from traditional centralized methods, 

where data is pooled and stored in a single location, thus mitigating concerns related 

to data security and privacy. 

The decentralized nature of FL helps resolve several ethical dilemmas that have 

historically complicated health data sharing. Traditionally, the sharing of medical data 

has raised concerns over consent, data breaches, and potential misuse of sensitive 

information. By ensuring that data remains within each institution’s secure 

environment, FL maintains privacy while still facilitating the collaborative 

development of advanced AI models. This is particularly crucial in healthcare settings, 

where trust and confidentiality are foundational to healthcare. 

Moreover, FL offers a unique opportunity for cross-institutional knowledge 

integration. By orchestrating the distributed analysis of geographically dispersed 

datasets, FL allows institutions to collectively benefit from a diverse range of data 

sources, enhancing the robustness and generalizability of predictive models. This 

distributed approach enables the development of more accurate and comprehensive AI 

models, which are trained on a broader array of data—critical in the healthcare sector, 

where populations, clinical practices, and disease presentations vary widely across 

regions and institutions. 

In addition to its privacy-preserving benefits, FL accelerates medical research by 

enabling faster and more scalable model development. Researchers and healthcare 

practitioners can collaborate across institutional boundaries, reducing the time needed 

to develop and deploy AI-driven diagnostic tools, treatment strategies, and predictive 

models. The efficiency of FL also makes it an attractive option for applications 

requiring large datasets that are difficult to centralize due to logistical, regulatory, or 

privacy concerns. By ensuring that sensitive data is never directly shared, FL paves 

the way for more secure, collaborative, and effective advancements in the field of 

medical AI. 

3.3. Biomechanics related to human stress 

The biomechanical study of human stress has gained significant attention in 

recent years, particularly with the advent of wearable sensor technologies that enable 

real-time monitoring of physiological and kinetic responses in real-world occupational 

settings. These advancements have paved the way for a more comprehensive 

understanding of stress dynamics, as wearable systems now capture a broad range of 

multidimensional biomechanical parameters. Among these, postural dynamics and 

electrodermal activity (EDA) have emerged as key biomarkers for quantifying stress 

levels, especially in high-intensity professions like nursing, where the physical and 

emotional demands of the job can profoundly affect health and well-being. 

Continuous monitoring of kinetic parameters provides valuable insights into the 

biomechanical patterns associated with stress. These patterns, often indicative of 
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cumulative physical strain, can be detected through wearable sensors equipped with 

inertial measurement units or 3-axis accelerometers, which measure subtle changes in 

posture and movement over time. For example, irregular gait symmetry during 

extended work shifts has been shown to predict the onset of cognitive fatigue, often 

before workers subjectively experience symptoms. Such early indicators are crucial in 

preventing long-term stress-related health issues, including musculoskeletal injuries 

and burnout. Moreover, when analyzed in conjunction with other physiological signals, 

these spatiotemporal postural metrics provide objective evidence of stress—something 

traditional self-report tools, like questionnaires, may overlook due to their subjective 

nature. 

EDA, which reflects sympathetic nervous system activation, has become a 

critical parameter in stress assessment. EDA is primarily driven by the activity of 

sweat glands, which are controlled by the sympathetic branch of the autonomic 

nervous system. In stressful situations, increased sympathetic nervous activity leads 

to a rise in sweat production, detectable as fluctuations in skin conductance. This 

physiological response provides a direct, real-time measure of emotional and 

psychological arousal. The temporal patterns of EDA, including both tonic and phasic 

variations, are crucial for understanding stress responses over time. Tonic EDA 

represents baseline skin conductance levels, while phasic EDA corresponds to rapid, 

short-term fluctuations typically triggered by acute stressors or emotional events. 

In occupational settings like nursing, EDA data can reveal circadian-linked stress 

peaks, especially during night shifts. These peaks reflect the body’s natural response 

to altered work-rest cycles and can indicate physiological strain due to the disruption 

of normal circadian rhythms. Studies have shown that EDA responses during night 

shifts often increase compared to daytime baselines, suggesting that prolonged work 

hours, high cognitive load, and disrupted sleep patterns can induce significant stress. 

This relationship between EDA and stress is further supported by the fact that elevated 

sympathetic nervous system activity, reflected in increased EDA, is associated with 

both physical and mental fatigue. 

The integration of EDA with other biomechanical measurements, such as 

postural dynamics and movement patterns, offers a more holistic approach to stress 

assessment. For instance, during high-stress situations, such as high-pressure care 

environments, both EDA and biomechanical parameters like irregular gait and posture 

shifts often exhibit simultaneous spikes. This co-occurrence emphasizes the 

interconnectedness of physiological and mechanical stress responses. Together, these 

data points enable researchers and practitioners to develop more accurate models for 

predicting stress levels, potentially leading to improved strategies for mitigating stress 

in the workplace. The combination of continuous, objective physiological monitoring 

and advanced data analytics holds great promise for enhancing our understanding of 

the multifaceted nature of stress and its impact on human health in demanding 

occupational settings. 

In conclusion, wearable sensors that measure both biomechanical and 

electrodermal parameters provide valuable tools for assessing stress in real-world 

environments. By capturing the dynamic interplay between postural changes, 

movement irregularities, and EDA responses, these technologies offer new avenues 
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for early intervention and stress management, ultimately contributing to better health 

outcomes for individuals in high-stress professions like nursing. 

4. FL framework for nurse stress prediction 

As above-mentioned, NN has emerged as a transformative technology in 

healthcare, bringing significant advancements. NN models, particularly those based 

on artificial NNs, have demonstrated remarkable capabilities in learning complex 

patterns from large-scale datasets, thereby aiding healthcare professionals in making 

more accurate detections, particularly in stress prediction. 

Supervised learning is a type of ML in which a model is trained on a labeled 

dataset consisting of input-output pairs. The model learns to map the input data to the 

correct output by minimizing a loss function, which quantifies the difference between 

predicted and actual values. Formally, given a training set 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), . . . }  where 𝑥𝑖  represents the sample data and 𝑦𝑖  is the 

corresponding class, the objective of supervised learning is to learn a mapping function 

𝑓: 𝑋 → 𝑌  that minimizes a loss function ℒ(𝑓(𝑥𝑖), 𝑦𝑖)  over the entire dataset. The 

model performance is evaluated using a suitable metric, such as accuracy for 

classification tasks or mean squared error (MSE). The supervised learning task can be 

formulated as follows. 

𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑛
∑ℒ(𝑓(𝑥𝑖), 𝑦𝑖)

𝑛

𝑖=1

 (1) 

where 𝑓(𝑥𝑖) is the predicted output for the input 𝑥𝑖, and ℒ is the close loss function. 

During training, the model iteratively adjusts its parameters using training algorithms 

to minimize this loss. 

Gradient descent (GD) is a widely used optimization algorithm for training NN 

models, particularly in supervised learning [23]. It is an iterative method that 

minimizes the loss function by updating the model parameters in the direction of the 

negative gradient. The parameter   updates are performed as follows: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛻ℒ(𝑓(𝑥𝑖), 𝑦𝑖) (2) 

where 𝑡 denotes the index of iterations and 𝜂 is the learning rate during training. 𝛻 

represents the operation for extracting the gradient. 

FL is an emerging decentralized ML framework that facilitates collaborative 

model training across multiple institutions while preserving data privacy by avoiding 

the exchange of raw data. The fundamental principle of FL is to enable participants to 

train models independently on local devices while sharing only updated model 

parameters rather than raw data, thereby preserving data privacy.  

Firstly, the central server generates an initial version of the global model and 

distributes it to all participating clients. Upon receiving the global model, each client 

utilizes its private data for personalized training using the GD algorithm. During this 

process, the client does not expose any raw data and only retains the updated local 

model parameters. After completing a round of local training, each client uploads the 

trained model parameters to the central server. Upon receiving updates from all clients, 

the central server aggregates them to generate a new global model. The most 
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commonly used aggregation algorithm, FedAvg, computes a weighted average of the 

submitted parameters, where the weights are dynamically adjusted based on the data 

volume of each client to ensure fairness and representativeness [24]. Then, the 

aggregated model parameters 𝜔𝑡 are represented as follows: 

𝜔𝑡 =
1

𝒟
∑𝒟𝑖𝜃

𝑡

𝑁

𝑖=1

 (3) 

where D  is the number of all samples in datasets from all FL clients. 𝒟 𝑖 denotes 

the one of them. Finally, the above steps constitute a complete FL cycle. This cycle is 

repeated until a stopping condition is met, such as convergence or observing no 

significant improvement in global model performance.  

This paper aims to predict the stress levels of nurses using an FL framework 

based on continuous monitoring of physiological signals while preserving data privacy 

and providing valuable insights into the factors contributing to stress in healthcare 

environments. The dataset is collected from wearable sensors worn by nurses and 

includes both physiological and behavioral data [25]. Specifically, the dataset is 

captured from nurses using the Empatica E4 wearable devices. To ensure 

generalizability, data were collected from a total of 15 nurses, including both male and 

female participants. None of the participants were pregnant, had a history of heavy 

alcohol use, or suffered from other diseases. Specifically, the dataset captures vital 

signs, including orientation data from accelerometers and gyroscopes along the X-, Y-, 

and Z-axes, EDA, HR, skin temperature (ST), and timestamp information. The data 

are typically labeled with corresponding stress levels categorized into three levels: 

“High”, “Normal”, and “Low”, based on self-reported measures. The number of 

samples for each class is approximately 8.5 million for “High”, 0.8 million for 

“Normal”, and 2.2 million for “Low”. 

Firstly, the dataset undergoes several preprocessing steps to prepare it for 

modeling. One critical step involves removing duplicate samples. If certain samples 

repeatedly appear in the dataset, the model may overfit to the features of these samples, 

ignoring the diversity of other instances. This reduces the model’s ability to generalize 

and affects its performance on unseen data.  

Pearson correlation analysis is used to assess the linear relationships between 

various physiological signals and stress levels [26]. This analysis is crucial as it helps 

eliminate features that are strongly correlated with each other, which would introduce 

redundancy in the prediction process. The Pearson correlation results 𝜌 are obtained 

as follows: 

𝜌 =
∑(𝑋𝑖 − 𝑋𝑖)(𝑋𝑗 − 𝑋𝑗)

√∑(𝑋𝑖 − 𝑋𝑖)
2∑(𝑋𝑗 − 𝑋𝑗)

2

 
(4) 

where 𝑋𝑖  and 𝑋𝑗  denote two different features. 𝑋𝑖  and 𝑋𝑗  represent their respective 

mean values. After conducting the analysis, no features need to be eliminated. 

However, the timestamp is recorded in the format of year, month, day, hour, minute, 

and second, which is not suitable as input for a NN model. This feature is transformed 
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into two new variables: “date of year” and “time of day.” Specifically, the unit of “date 

of year” is in days, and the unit of “time of day” is in hours. 

Then, potential class imbalance should be considered. Imbalanced sample sizes 

across different classes can cause the model to favor the majority class and neglect the 

minority class during training. Minority class samples are submerged during training, 

preventing the model from learning their features and resulting in poor performance 

for these classes. The undersampling is applied in this paper to balance the dataset, 

ensuring the model does not become biased toward the majority class. After this step, 

the numbers of samples in each class are all equal to about 773.6 thousand. 

Another essential preprocessing step is Z-score normalization, which 

standardizes the features to ensure they contribute equally to the model. Z-score 

normalization transforms each feature to have a mean of zero and a standard deviation 

of one, preventing features with larger ranges from dominating the learning process. 

This is accomplished as follows: 

𝑋′ =
𝑋 − 𝑋

𝜎
 (4) 

where   denotes the standard deviation of the feature.  

In the context of FL, the dataset is distributed among multiple clients in a manner 

that reflects both practical considerations and the non-independent and identically 

distributed (non-IID) nature of real-world data [27,28]. By assigning overlapping 

classes to each client’s data, each client’s data distribution is not identical, introducing 

a controlled form of non-IID data. This mirrors the real-world scenario where wearable 

device data is collected from different individuals. The dataset contains three stress-

level classes, and the data is partitioned among three FL clients such that each client 

holds an equal number of samples from two specific classes. In detail, the distribution 

of data among FL clients is shown in Table 1. 

Table 1. Data distribution among FL clients. 

 “High” “Normal” “Low” Total 

Client 1 386,790 386,790 0 773,580 

Client 2 0 386,790 386,790 773,580 

Client 3 386,790 0 386,790 773,580 

Moreover, for each client, the dataset is further split into a training and validation 

set, with 80% of the data allocated for training and 20% reserved for validation. This 

division allows each client to evaluate and fine-tune their local models while ensuring 

a sufficient amount of data for training. To ensure that the global model is validated 

across a diverse set of data, the validation data from all clients is aggregated. Half of 

the validation data from all clients is used to validate the global model, providing a 

comprehensive, cross-client dataset for evaluation. The remaining 50% of the 

validation data is held out and used to assess the final test set, offering an unbiased 

estimate of the model’s generalization performance across different stress levels. 

For the FL framework, an NN network is designed to process physiological data 

from wearable sensors and predict nurse stress levels. As shown in Figure 3, the model 

consists of an input layer, followed by two fully-connected layers with rectified linear 
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unit (ReLU) activation functions, and a final fully-connected layer and a softmax 

output layer for classification. This architecture balances computational efficiency 

with sufficient model complexity to capture nonlinear patterns in physiological signals. 

 

Figure 3. NN for nurse stress prediction. 

5. Result and discussion 

To ensure efficient and stable training of the NN model within the FL framework, 

the training hyperparameters are carefully configured. The training algorithm is the 

stochastic GD algorithm, which facilitates efficient parameter updates while 

accommodating decentralized, non-IID data distributions. The learning rate is set to 

0.01 to balance convergence speed and stability. Each client performs local training 

with a mini-batch size of 1024, ensuring stable gradient estimation. Furthermore, each 

client updates the model using one local training epoch before transmitting updates to 

the central server. The cross-entropy loss is employed as the objective function for 

training. To enhance generalization, the samples are shuffled before training. The FL 

process runs for a total of 100 rounds. 

Figure 4 presents the training loss of each FL client over iterations. As training 

progresses, all clients demonstrate a rapid initial decline in loss, eventually converging 

toward a stable minimum. Notably, the loss values of clients 1 and 2 converge more 

quickly compared to client 3. The faster convergence of clients 1 and 2 is attributed to 

differences in data distribution. Additionally, periodic spikes in the loss curves are 

observed, which can be explained by the model aggregation process at the server 

during each round. This aggregation introduces significant updates to the model 

parameters, temporarily increasing the loss before it stabilizes again. 
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Figure 4. Training loss of FL clients. 

Figure 5 illustrates the training accuracy of the three clients over iterations. All 

clients demonstrate a consistent upward trend in accuracy as training progresses, 

eventually converging to values above 95%. Client 2 achieves the fastest convergence 

and maintains the highest accuracy throughout the training process, closely followed 

by Client 1. In contrast, Client 3 converges more slowly and reaches a slightly lower 

final accuracy. Fluctuations in accuracy are observed across all clients during training. 

The observed fluctuations are also attributed to the model aggregation process at the 

server. Despite differences in convergence rates, all clients exhibit substantial 

improvements in accuracy over time, indicating the overall effectiveness of the FL 

training process. 

 
Figure 5. Training accuracy of FL clients. 

Figure 6 illustrates the validation loss curves for the three clients during training. 

All clients exhibit a general downward trend in validation loss as training progresses, 

indicating continuous improvement in model performance. Compared to the training 

loss, the validation loss shows fewer fluctuations, particularly in the later iterations. 

The inset in Figure 6 magnifies the early training phase, where periodic spikes in 
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validation loss are observed. Despite these fluctuations resulting from aggregation, all 

clients demonstrate a clear convergence toward lower validation loss over time. This 

suggests effective generalization of the models on validation data and highlights the 

stability of the training process in later iterations. 

 
Figure 6. Validation loss of FL clients. 

Figure 7 depicts the validation accuracy curves for the three clients during 

training. All clients demonstrate a steady increase in accuracy in the early stages, with 

each eventually surpassing 95% validation accuracy. Client 3 converges more slowly 

and attains a slightly lower final accuracy compared to Clients 1 and 2. The inset in 

Figure 7 focuses on the validation index range between 400 and 700, where periodic 

fluctuations in accuracy are observed. The slower convergence and marginally lower 

final accuracy of Client 3 may be influenced by data heterogeneity. Nevertheless, the 

consistent upward trend and high final accuracy across all clients underscore the 

effectiveness of the training process in improving model generalization. 

 
Figure 7. Validation accuracy of FL clients. 

Figure 8 presents the normalized confusion matrix for the three stress classes. 

The diagonal elements represent the correctly classified instances, with the highest 
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accuracy observed for the “Normal” class, followed by the “Low” and “High” stress 

classes. The off-diagonal elements indicate instances of misclassification between the 

different stress levels. The results highlight the strong overall performance of the FL 

model in predicting nurse stress levels. However, the slight variations in accuracy 

across classes suggest that the model is more effective at identifying the “Normal” 

stress state compared to “Low” and “High” stress levels. Despite these differences, the 

high accuracy across all classes demonstrates the effectiveness and reliability of the 

proposed FL approach. 

 
Figure 8. Confusion matrix of FL. 

Figure 9 illustrates the accuracy progression of the global model within the FL 

framework. The global model’s accuracy increases rapidly during the initial FL rounds, 

rising from approximately 50% to 85% within the first 20 rounds. After this initial 

phase, the rate of improvement slows, with accuracy gradually stabilizing around 90% 

by round 40. Minor fluctuations in accuracy are observed in the later rounds. The rapid 

accuracy improvement in the early rounds indicates efficient knowledge aggregation 

from the participating clients. Despite these fluctuations, the global model 

demonstrates effective convergence toward high accuracy, highlighting the robustness 

and stability of the FL training process. 

 
Figure 9. Accuracy versus FL round. 
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Figure 10 compares the performance of FL and centralized learning (CL) for 

predicting nurse stress levels across three stress classes. In the CL framework, all 

samples are aggregated into a single dataset for training, whereas in FL, data remains 

distributed across clients. The y-axis represents precision, recall, and F1-score metrics 

for both frameworks. For all stress classes, both FL and CL achieve high performance, 

with all metrics exceeding 85%. CL slightly outperforms FL in terms of recall and F1-

score, with differences generally less than 0.1. The precision of FL is comparable to 

that of CL. The overall accuracy achieved by CL is 0.97, while FL attains 0.93. The 

slightly lower performance of the FL framework, particularly in recall and F1-score, 

may be attributed to the challenges posed by data distribution differences. Despite this 

gap, the FL model maintains strong performance across all metrics, demonstrating its 

feasibility for nurse stress prediction without centralized data aggregation. These 

results highlight the practicality and effectiveness of the FL approach, offering a 

privacy-preserving alternative to traditional CL while achieving competitive 

predictive accuracy. 

 
Figure 10. Performance in FL and CL. 

6. Conclusion 

This paper presents an FL framework for nurse stress prediction that integrates 

biomechanical data while preserving data privacy. Using wearable devices worn by 

nurses, biomechanical data such as orientation and EDA are captured, analyzed, and 

processed for stress prediction. An elaborate NN model is designed for FL, and client 

datasets are allocated considering the non-IID nature of the data. The results show that 

the performance, including accuracy, is comparable to that of CL, demonstrating the 

effectiveness of the approach, which provides an example of stress prediction based 

on biomechanical data while keeping sensitive information local, contributing to 

wearable distributed computing for timely detection of healthcare issues. Considering 

the limited number of stress-related features and the dynamic nature of stress, we plan 

to collect additional physiological data and deploy the trained model on embedded 

processors to enable real-time detection. 
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