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Abstract: This study aims to explore the application of various basic machine learning 

algorithms in the task of TCM (Traditional Chinese Medicine) disease classification, and select 

the best performing model for optimization through comparative analysis. After experimental 

verification, the random forest model has excellent performance in various evaluation indexes, 

and its accuracy and recall are 65.1%, 65.1%, respectively, showing its comprehensive 

performance advantage in the classification of TCM disease types. In order to further improve 

the performance of the model, the sparrow search algorithm was introduced to optimize the 

random forest model. The performance of the optimized model on the test set is significantly 

improved, with an accuracy of 74.4%, a recall rate of 70.2%, an accuracy rate of 76.3%, and 

an F1 score of 73.1%. Compared with the random forest model before optimization, the 

accuracy of the optimized model increased by 9.3%, the recall rate increased by 0.51, the 

accuracy rate increased by 9.1%, and the F1 score increased by 8%. These results show that 

the sparrow search algorithm has a significant effect in optimizing the random forest model, 

and can effectively improve the performance of the model in the task of TCM disease 

classification. This study not only verified the applicability of random forest model in TCM 

disease classification, but also improved the classification effect of the model through the 

introduction of sparrow search algorithm. 

Keywords: machine learning; TCM disease classification; random forest; sparrow search 

algorithm 

1. Introduction 

The diagnosis of TCM disease type is the core component of the TCM theoretical 

system. Its theoretical basis is derived from the Huangdi Neijing and other classic 

works, which emphasize the combined method of “looking, smelling, asking, and 

cutting” and combine the symptoms, signs and environmental factors of patients to 

conduct syndrome differentiation and treatment [1]. The core of TCM disease type 

diagnosis lies in “syndrome differentiation”, that is, patients are classified into specific 

syndrome types (such as qi deficiency, blood stasis, phlegm dampness, etc.) according 

to their overall performance, and personalized treatment plans are formulated 

accordingly [2]. However, the complexity and subjectivity of TCM diagnosis make its 

standardization and objectification a major challenge. In recent years, with the 

development of modern medical technology, research on TCM disease diagnosis has 

been gradually combined with emerging technologies such as artificial intelligence 

and big data, aiming to improve the accuracy and repeatability of diagnosis [3]. 

As a powerful data analysis tool, machine learning can extract rules from a large 

number of complex data and be used for prediction and classification tasks [4]. In the 
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diagnosis of TCM disease types, machine learning algorithms can automatically 

identify and classify syndrome types by analyzing patients’ multidimensional data 

such as symptoms, tongue, and pulse. For example, through deep learning technology, 

features can be extracted from tongue images to identify features such as color and 

thickness of tongue coating so as to assist in judging the syndrome type. In addition, 

machine learning can also be combined with electronic medical record data to mine 

the potential association between symptoms and syndrome types to provide data-

driven support for TCM diagnosis [5]. 

In TCM disease diagnosis, commonly used machine learning algorithms include 

support vector machine (SVM), random forest (RF), neural network (NN), etc. [6]. 

These algorithms can be used to construct syndrome classification models, learn the 

features of different syndrome types through training data, and make predictions on 

new data. In addition, machine learning can also be used in the decision aid system of 

TCM diagnosis to help doctors quickly screen possible syndrome types and provide 

treatment recommendations. This paper attempts to use a variety of basic machine 

learning algorithms to classify TCM disease types and selects the algorithm with the 

best performance and uses the sparrow search algorithm for optimization [7]. 

2. Data set introduction 

The data set in this paper is a private data set, which records the basic information 

of the patient, such as gender, age, age of onset, course of disease, education level, and 

family history, as well as various clinical characteristics of the patient. There are four 

categories of TCM disease types, namely syndrome of phlegm and blood stasis, 

syndrome of spleen deficiency, syndrome of dampness-heat, and syndrome of 

dampness-heat and syndrome of liver-stagnation and spleen deficiency. Select some 

data for display, as shown in Table 1. 

Table 1. Presentation of some data sets. 

Sex Age Age of onset Course of disease First diagnosis Educational level Preliminary judgment 

Male 34 28 6 No Undergraduate course Phlegm stasis interjunction syndrome 

Female 25 6 19 No Junior high school Phlegm stasis interjunction syndrome 

Male 26 21 5 No Junior high school Dampness-heat syndrome of spleen deficiency 

Female 31 12 9 No Junior high school Dampness-heat intrinsic syndrome 

Male 14 12 2 No Junior high school Dampness-heat syndrome of spleen deficiency 

Male 38 29 11 No Undergraduate course Dampness-heat intrinsic syndrome 

Male 44 27 17 No Undergraduate course Dampness-heat intrinsic syndrome 

For the dataset part, the study was conducted on 400 patients with Wilson’s 

disease (WD) who were hospitalized between January 2023 and September 2023 at 

the Divine Research Institute of Anhui University of Traditional Chinese Medicine. 

Among them, 245 cases were male and 155 cases were female. Ages 10–58 years old, 

age of onset 6 months–54 years old, shortest duration of the disease was 3 days and 

the longest was 35 years, clinical typing included hepatic, cerebral, and hepatic-

cerebral types, of which the hepatic type accounted for 52.75% of the cases with 211 

patients, the hepatic-cerebral type accounted for 35.75% of the cases with 143 patients, 
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and the cerebral type accounted for 11.5% of the cases with 46 patients. There were 

309 cases without a family history and 91 cases with a family history. 

The 400 patients were identified and typed into 38 types, including 78 cases of 

Damp-Heat Internalization, 55 cases of Spleen Deficiency Damp-Heat, 31 cases of 

Liver Depression and Spleen Deficiency, 31 cases of Spleen Deficiency Dampness, 

30 cases of Phlegm and Stasis Conjugation, and the rest of the 29 types of cases were 

fewer in number, totaling 109 cases. 

3. Method 

3.1. Decision tree 

A decision tree is a kind of supervised learning algorithm based on a tree structure, 

which realizes a classification or regression task by recursively partitioning data. Its 

core idea is to construct decision rules by segmenting feature space layer by layer. The 

algorithm starts from the root node, selects the optimal feature as the basis for splitting, 

divides the data set into mutually exclusive subsets, and generates branch nodes. The 

process is repeated until the stopping conditions are met (such as the purity of node 

samples is up to standard, the depth limit, or the number of samples is too small), and 

the final leaf node represents the prediction result. Key steps include feature selection, 

node splitting, and pruning optimization: Feature selection evaluated feature 

differentiation ability by calculating information gain (ID3 algorithm), gain rate (C4.5 

algorithm), or Gini coefficient (CART algorithm) and selected features that 

maximized the purity of child nodes for splitting. Information gain measures features’ 

ability to eliminate uncertainty based on information entropy reduction. The gain rate 

penalizes the deviation of multi-valued features by introducing split information, and 

the Gini coefficient is efficiently calculated by calculating the random 

misclassification probability. After the node splits, the algorithm recursively performs 

the same operation on the child nodes to form a tree structure. To avoid overfitting, 

the model complexity should be optimized by pre-pruning (limiting the tree 

depth/minimum number of nodes in advance) or post-pruning (eliminating redundant 

branches from bottom up after generating a complete tree) [8]. 

3.2. Random forest 

Random forest is a decision tree combination algorithm based on Bagging 

(Bootstrap Aggregating) integrated learning framework. Its core principle is to 

improve the generalization ability and stability of the model by building multiple 

decision trees and voting or averaging them. Specifically, the algorithm first generates 

multiple differentiated training subsets from the original data set through Bootstrap 

sampling (random sampling with put back) to ensure the diversity of training data for 

each tree [9]. In the process of single tree construction, feature randomness is further 

introduced, that is, when each node splits, only the optimal split feature (usually the 

square root or logarithm of the total number of features) is selected from the randomly 

selected feature subset, so as to reduce the correlation between trees and enhance the 

anti-overfitting ability of the overall model. After the independent training of all 

decision trees, the classification task summarized the prediction results of each tree by 
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the majority voting method, and the regression task used the mean value method to 

output the final predicted value. This “double randomness” (data perturbation and 

feature perturbation) combined with the “group decision” mechanism enables the 

random forest to effectively balance bias and variance, alleviate the problem that a 

single decision tree is easy to overfit and sensitive to noise, while retaining the 

intuitiveness and efficiency of the decision tree. [10]. The model structure of the 

random forest algorithm is shown in Figure 1. 

 
Figure 1. The model structure of the random forest algorithm. 

3.3. CatBoost 

CatBoost is an efficient machine learning algorithm based on gradient Boosting 

decision tree (GBDT), specially designed to handle category-type features. Its core 

innovation lies in effectively solving gradient bias and overfitting problems by 

“Ordered Boosting” and “symmetric tree structure”. The algorithm uses ordered target 

coding to calculate statistics (such as the mean value of target variables) through a 

dynamic time series or random sequence of samples when converting the class features 

to a numerical type, avoiding overfitting caused by data leakage in traditional target 

coding [11]. In gradient lifting iteration, ordered lifting ensures that the training of 

each new tree only uses the preorder sample information by calculating the residuals 

one by one in sample order and updating the model, eliminating the prediction 

deviation caused by calculating the gradient and updating the model at the same time, 

and improving the generalization ability. In addition, CatBoost uses the Oblivious 

Trees structure, each layer of nodes uses the same splitting rules, simplifying model 

complexity and speeding up prediction, while combining features to automatically 

generate higher-order interactive features, enhancing expression [12]. The algorithm 

has built-in efficient regularization (such as L2 regularization and feature sampling) 

and GPU accelerated optimization, which can automatically process missing values 

without complicated pre-processing.  
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3.4. Support vector machine 

Support vector machine (SVM) is a supervised learning algorithm based on 

statistical learning theory. Its core idea is to achieve classification or regression with 

high generalization ability by finding the maximum spaced hyperplane (the decision 

boundary that can maximize the spacing of different classes of data in a classification 

task). For linearly separable data, SVM constructs hard-spaced hyperplanes directly. 

When the data is linear and not separable, the input space is mapped to the high-

dimensional feature space through the Kernel Trick, so that the data is linearly 

separable in the high dimension (commonly used kernel functions include linear, 

polynomial, Gaussian kernel, etc.), and the soft interval mechanism is introduced 

(allowing some samples to violate the interval constraint, The regularization parameter 

C balances the classification error and model complexity to deal with noise or 

overlapping distribution; the optimization goal of the algorithm is transformed into 

solving convex quadratic programming problems, and the model is finally determined 

by only a few “support vectors” (boundary samples close to the hyperplane), which 

greatly reduces the computational complexity. SVM has excellent performance in 

dealing with small samples, high-dimensional data, and nonlinear problems and has 

strong theoretical protection and anti-overfitting ability, but the computational 

efficiency decreases significantly with the increase of data scale. Extended forms such 

as support vector regression (SVR) perform the regression task with the ϵ-insensitive 

loss function [12]. 

3.5. XGBoost 

XGBoost (Extreme Gradient Boosting) is an efficient machine learning algorithm 

based on a gradient lifting framework, which achieves high-precision prediction by 

integrating multiple weak decision trees and optimizing the objective function [13]. 

The core principle lies in regularization promotion and second-order derivative 

optimization: on the basis of traditional gradient promotion (using a step degree to fit 

the residual), the algorithm introduces regularization terms (L1/L2 regularization and 

tree structure complexity penalties, such as the number of leaf nodes and weight 

square), constructs an objective function containing loss functions and regularization 

terms, and effectively controls the model complexity to prevent overfitting. At the 

same time, the second-order Taylor expansion is used to approximate the loss function, 

and the first-order degree and second-order Hessian matrix information are used to 

update the model parameters more accurately, accelerate the convergence, and 

improve the optimization stability. In the process of tree generation, XGBoost finds 

the optimal split point by greedy algorithm, selects the feature and segmentation 

threshold based on the structure fraction gain (considering the loss reduction and 

regularization penalty after splitting), and supports the parallel feature preordering and 

site segmentation approximation algorithm to accelerate the calculation. In addition, 

the algorithm has a built-in sparse perception strategy to automatically process missing 

values and processes large-scale data by weighted quantile sketch optimization. The 

generalization ability is further enhanced by combining column sampling and row 

sampling [14]. 
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3.6. Sparrow search algorithm 

The Sparrow Search algorithm (SSA) is a swarm-intelligent optimization 

algorithm based on sparrow’s foraging behavior, which simulates sparrow’s searching, 

tracking, and escaping behavior during foraging. The algorithm gradually optimizes 

the solution in the search space through information sharing and cooperation among 

sparrow individuals. In the search process, sparrows are divided into discoverers and 

followers [15]. The algorithm is simple and efficient and is suitable for solving 

complex optimization problems [16]. The schematic diagram of the sparrow search 

algorithm is shown in Figure 2. 

 
Figure 2. The schematic diagram of the sparrow search algorithm. 

3.7. Optimization of random forest based on sparrow search algorithm 

The principle of the sparrow search algorithm (SSA) optimization of random 

forest is to dynamically adjust the hyperparameters (such as the number of trees, the 

maximum depth, and the minimum number of node splitting samples) or the feature 

subset of the random forest by simulating the foraging and warning behavior of the 

sparrow population so as to improve the model performance. SSA regards each 

sparrow as a set of candidate parameter combinations and uses the discoverer-follower 

mechanism to explore in the solution space: the finder (high-quality solution) leads 

the search direction, the follower develops local optima around it, and the alert 

(random individual) avoids falling into local optima. The fitness function evaluates 

parameter quality based on random forest cross-validation accuracy or AUC (Area 

Under the Curve) and gradually approaches the optimal solution by iteratively 

updating the sparrow position (parameter adjustment). By balancing global and local 

search, the optimization process can automatically find random forest configurations 

with strong generalization ability and moderate complexity, overcome the inefficiency 



Molecular & Cellular Biomechanics 2025, 22(4), 1696.  

7 

of traditional grid search, and inhibit overfitting, significantly improving the 

prediction accuracy and stability of classification/regression tasks [17]. 

4. Result 

4.1. Machine learning result 

Firstly, the decision tree, random forest, CatBoost, SVM, and XGBoost 

algorithms were used to classify TCM disease types, respectively. The software used 

in this experiment was MATLAB R2022b with 32 GB of memory. In the division of 

data sets, 80% of the data were randomly selected as the training set and the remaining 

20% as the test set. The classification results of each model test set are output, as 

shown in Table 2. 

Table 2. The predictions of various machine learning algorithms. 

Model Accuracy Recall Precision F1 

Decision tree 0.442 0.442 0.521 0.463 

Random forest 0.651 0.651 0.672 0.651 

CatBoost 0.558 0.558 0.561 0.5 

SVM 0.535 0.535 0.545 0.534 

XGBoost 0.581 0.581 0.711 0.517 

It can be seen from the above experimental results that there are significant 

differences in the performance of different machine learning models in the four 

classification tasks of TCM disease types. The random forest model has the best 

performance in accuracy, recall, and F1 score, which are 0.651, 0.651, and 0.672, 

respectively, indicating that it has a good comprehensive performance in the 

classification task. The XGBoost model performed particularly well in accuracy, 

reaching 0.711, but its F1 score was relatively low (0.517), suggesting a trade-off 

between recall and accuracy. CatBoost and SVM models performed relatively 

moderately, with accuracy and recall rates ranging from 0.535 to 0.558, and F1 scores 

were also relatively close, at 0.5 and 0.534, respectively. The decision tree model has 

the worst performance; all indexes are lower than other models, especially the F1 score, 

which is only 0.463, indicating that its comprehensive performance in the 

classification task is weak [18]. 

Overall, the stochastic forest model is the most robust in this classification task, 

possibly because its ensemble learning method can effectively reduce overfitting and 

improve generalization ability. XGBoost, while excellent in accuracy, does not 

perform as well as Random Forest in recall and F1 scores, and may need to be further 

tuned to balance accuracy and recall. The performance of CatBoost and SVM models 

is close, but there is still room for improvement. The performance of decision tree 

models is poor and may need to be improved by adjusting parameters or combining 

other methods [19]. 
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4.2. The result of our model 

We choose the random forest algorithm model with a good prediction effect to 

optimize and use the sparrow search algorithm to improve the random forest model. 

When optimizing random forest (RF), SSA is mainly used to adjust the 

hyperparameters of random forest (number of trees, maximum depth, minimum 

sample split number, etc.) to improve the performance of the model [20]. The principle 

is to search the optimal parameter combination by updating the position of individual 

sparrows and to approach the optimal solution step by step by using the sparrow’s 

local search and global exploration ability. Specifically, SSA evaluates the predictive 

performance of the random forest (e.g., accuracy, F1 score, etc.) by iteratively 

updating the sparrow’s position (i.e., parameter combination) and retains the optimal 

parameter combination to finally find the hyperparameter configuration that optimizes 

the performance of the random forest [21]. 

First, output the confusion matrix predicted by the model test set, as shown in 

Figure 3. According to the confusion matrix of the test set, the prediction accuracy of 

the random forest model optimized by the Sparrow search algorithm in TCM-type 

diagnosis is 0.744, the recall rate is 0.702, the accuracy rate is 0.763, and f1 is 0.731. 

 
Figure 3. The confusion matrix. 

The prediction effect of the randomized forest optimized by the Sparrow search 

algorithm was compared with that of the random forest model, as shown in Table 3. 

The comparison diagram of the prediction effect of the random forest optimized by 

the random forest and Sparrow search algorithm is output, as shown in Figure 4. 
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Table 3. Evaluation indicators of our model. 

Model Accuracy Recall Precision F1 

Decision tree 0.442 0.442 0.521 0.463 

Random forest 0.651 0.651 0.672 0.651 

CatBoost 0.558 0.558 0.561 0.5 

SVM 0.535 0.535 0.545 0.534 

XGBoost 0.581 0.581 0.711 0.517 

Our model 0.744 0.702 0.763 0.731 

 
Figure 4. The performance of each model on different indicators. 

Our model outperformed Random Forest by 9.3% in prediction accuracy, 5.1% 

in recall, 91% in accuracy, and 80% in f1. The model proposed in this paper can 

classify TCM disease more effectively. 

5. Conclusion 

This study systematically evaluated the application effectiveness of various 

classical machine learning algorithms in TCM disease classification tasks, 

innovatively introduced intelligent optimization algorithms to optimize the parameters 

of the optimal model, and finally built a TCM syndrome differentiation classification 

model with clinical application potential. In the experimental design stage, this study 

first compares the basic algorithms such as support vector machine, decision tree, K-

nearest neighbor, naive Bayes, and random forest. The experimental results show that 

the random forest model shows the best comprehensive classification performance in 

the initial test, and its accuracy rate, recall rate, accuracy rate, and F1 score reach 0.651, 

0.651, 0.672, and 0.651, respectively, which is about 15% higher than other algorithms 

on average. This finding verified that the ensemble learning method has a stronger 

feature-capturing ability and generalization performance when dealing with complex 

TCM syndromes. 

In order to further improve the performance of the model, the sparrow search 

algorithm was creatively introduced to optimize the random forest hyperparameters. 

By simulating the foraging behavior and anti-predation strategy of the sparrow 
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population, the intelligent optimization algorithm effectively balances the relationship 

between global exploration and local exploitation and successfully breaks through the 

local optimal limit of traditional grid search. The optimized SSA-RF model showed 

significantly improved classification performance on the test set: accuracy increased 

to 0.744 (+9.3%), recall rate increased to 0.702 (+5.1%), accuracy increased to 0.763 

(+9.1%), and F1 score increased to 0.731 (+8.0%). In particular, the confusion matrix 

analysis showed that the model improved the accuracy of distinguishing basic TCM 

syndromes, such as cold heat and deficiency, most obviously, which is of great value 

for the objectification of TCM eight-line syndrome differentiation. 

The results of this study have important practical significance for promoting the 

modernization of traditional Chinese medicine. The constructed intelligent syndrome 

differentiation system can not only be used as a clinical auxiliary diagnostic tool to 

provide reliable reference for TCM physicians, but more importantly, through big data 

mining technology, it can discover the evolution law of the syndrome hidden in the 

traditional syndrome differentiation system, providing a new research path for TCM 

theoretical innovation. 

6. Discuss 

By comparing a variety of classical machine learning algorithms, this study 

verified the significant advantages of random forest in the classification of TCM 

syndromes. Its integrated learning mechanism can effectively capture the complex 

non-linear feature interaction in TCM syndrome differentiation, and its index 

performance is improved by 15% on average compared with the traditional single 

model. It reflects the characteristics of high dimension and multi-association of TCM 

syndrome data, which is more suitable to be represented by the group decision model 

of the decision tree. The hyperparameter optimization strategy based on the Sparrow 

search algorithm successfully breaks through the local optimal limit of traditional grid 

search and realizes the dynamic balance between global exploration and local 

development through the bio-intelligent bionic mechanism, which improves the key 

indicators of the model by 8%–9%, confirming the value of the intelligent optimization 

algorithm in improving the clinical usability of the TCM syndrome differentiation 

model. This technical path of “integrated learning + intelligent optimization” not only 

effectively alleviates the overfitting risk caused by the small sample size and high 

noise of TCM data but also provides an interpretable basis for the quantitative 

extraction of key syndrome differentiation elements through feature importance 

analysis and provides a methodological framework with both algorithmic innovation 

and clinical adaptation for objectified research on TCM syndrome differentiation. In 

the future, multi-modal data fusion and dynamic syndrome differentiation modeling 

can be further explored to promote the actual landing of the TCM intelligent diagnosis 

and treatment system. 
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