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Abstract: Background: This study integrates biomechanical perspectives with 

clinicopathological data to develop a DNN model for survival prediction. By linking tumor 

size and lymph node status to biomechanical drivers such as solid stress and cell migration 

forces, we aim to uncover the mechanobiological mechanisms underlying prognosis 

heterogeneity. Methods: We analyzed data from 37,917 patients in the SEER database, 

encompassing clinical characteristics, pathological features, and treatment details. The DNN, 

featuring an attention mechanism, was evaluated using metrics such as accuracy, precision, 

recall, F1 score, and Area Under Curve (AUC). Interpretability techniques were applied to 

identify prognostic factors. Results: The DNN model achieved F1 scores of 0.928 and 0.935 

for validation and test sets, respectively, with an AUC of 0.96, surpassing traditional models. 

Key factors identified included regional lymph node positivity, tumor size, and tumor grade, 

with a notable negative correlation between regional lymph node positivity and survival. 

Conclusions: DNN models with attention mechanisms demonstrate superior predictive 

performance and valuable interpretability in identifying critical prognostic factors. 

Keywords: breast cancer; deep neural networks; machine learning; survival prediction; 

biomechanics; interpretability analysis 

1. Introduction 

In 2022, the most common female malignancy in 157 out of 185 countries was 

breast cancer, which still has the highest incidence of female cancers and highly 

heterogeneous tumor characteristics and clinicopathological features [1–3]. Female 

patients have a 10%–15% recurrence rate within 5 years of breast cancer diagnosis. In 

2022, 2.3 million women worldwide were diagnosed with breast cancer, and 670,000 

are expected to die from the disease. Given that breast cancer has a very high mortality 

and recurrence rate, there is an urgent need for universally applicable and accurate 

methods to identify patients at high or low risk of mortality. Prompt identification of 

patients will facilitate personalized treatment decisions and enable precision therapy 

[4,5]. 

It is well known that the interplay between patient characteristics, 

clinicopathological features, tumor characteristics, and other variables complicates the 

identification of independent risk factors for predictable outcomes. However, machine 

learning (ML) provides vital support to address this problem, as it can effectively 

recognize complex relationships between variables and handle complex datasets [6–

8]. ML models algorithmically learn patterns from massive patient data covering 

demographic information, histopathological characteristics, and treatment options. 
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Hence, ML-based schemes are expected to facilitate accurate predictive models based 

on the individual patient’s case, thereby providing personalized medicine to breast 

cancer patients. 

Biomechanical properties of the tumor microenvironment play a key role in 

breast cancer progression. It has been shown that increased extracellular matrix (ECM) 

stiffness promotes cancer cell invasion and metastasis through activation of the 

integrin-FAK-YAP/TAZ signaling pathway [40]. In addition, the accumulation of 

solid stress within the tumor compresses blood vessels, induces hypoxia and enhances 

chemoresistance. In this study, tumor size not only reflects morphological features, but 

may also serve as a proxy indicator of the heterogeneity of the tumor mechanical 

microenvironment—larger tumors may be accompanied by higher internal stress and 

ECM fibrosis, and regional lymph node-positive status may suggest an enhanced 

metastatic capacity of the cancer cells through mechanosensitive pathways (e.g., Rho-

ROCK-mediated cellular migration) achieving enhanced metastatic capacity [41]. 

Integration of these biomechanically relevant features by machine learning models 

may provide a more comprehensive mechanistic explanation for prognostic prediction 

[42]. 

In the medical field, neural networks are increasingly used. For example, Zhang 

et al. developed a deep learning model based on multimodal ultrasound images to 

predict breast cancer molecular staging with an AUC of 0.93, but did not integrate 

biomechanical features [43]. In addition, Cheng et al. combined tumor 

microenvironment genomic data to construct a survival prediction model and found 

that ECM fibrosis-related genes were significantly associated with prognosis, but their 

model did not take into account the effect of mechanical stress on tumor development 

[45]. These studies indicate that existing studies are deficient in the joint analysis of 

biomechanical and clinical features, and the innovation of this study is to fill this gap. 

As an important branch of machine learning, neural networks have the 

advantages of ML in dealing with complex data, better recognizing nonlinear 

relationships, and dealing with large amounts of high-dimensional data. By simulating 

the hierarchical structure of the human brain, neural networks can automatically 

extract features from data and perform deeper learning and reasoning. This advantage 

has spurred the widespread use of neural networks in medical image analysis and 

genomics research. For instance, Zhou et al. [9] made significant progress in 

preoperative breast cancer molecular staging prediction by combining multimodal 

ultrasound imaging techniques with convolutional neural networks (CNN). Zheng et 

al. [10] utilized a deep learning radiomics technique using conventional ultrasound 

and shear wave elastography in combination with clinical parameters to predict 

axillary lymph node status preoperatively. Wang et al. [11] developed the DeepGrade 

model to improve risk stratification of Nottingham histological Grade-2 breast cancer 

patients using digital pathology images and neural networks. Stashko et al. [12] 

introduced STIFMap to measure the hardness heterogeneity of breast tumors using 

CNN. These studies have demonstrated the great potential and clinical value of neural 

networks in individualized therapy [13,14]. Recently, deep neural networks (DNN) 

have been at the forefront of neural network research due to their multilevel feature 

extraction and powerful learning capabilities, providing prediction and classification 

capabilities with higher accuracy [15]. 
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When introducing ML and neural network models, the interpretability of the 

models becomes a key topic. Although these models are excellent at handling complex 

data and making predictions, their black-box nature prohibits clinicians and 

researchers from understanding the models’ decision-making process [16]. Therefore, 

improving model interpretability is critical to ensuring their trust and transparency in 

clinical applications. Researchers can learn which features significantly impact model 

predictions through interpretability techniques, allowing a better understanding of 

disease mechanisms and patient prognosis. Model interpretability will improve their 

credibility and provide a scientific and reliable basis for individualized treatment 

[17,18]. 

This study aimed to identify the principal risk factors and forecast patient survival 

from a substantial number of clinicopathologic, therapeutic, and oncologic conditions 

across diverse racial, age, and marital status groups, employing ML and DNN models. 

The ML methods evaluated were Support Vector Machine (SVM), Naive Bayes, 

Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbor (KNN), and 

Multilayer Perceptron (MLP). Furthermore, interpretability analysis on the developed 

model based on extensive Vivid and SHAP analysis evaluated the intermediate model 

processes to ascertain the extent to which the model can be trusted. Conducting 

interpretable analyses on the models aimed at identifying the primary factors 

influencing patient prognosis, thereby offering a valuable reference for clinicians.  

The remainder of this study is organized as follows. Section 2 outlines the 

materials and methods employed, including the data sources, variable collection, 

statistical analysis, and selection of machine learning algorithms. Section 3 presents 

the experimental results, including sample characteristics, model comparison, and 

interpretability analysis. Section 4 discusses the findings and their clinical significance 

in-depth, identifies the limitations of this study, and suggests future research 

directions. Finally, Section 5 concludes this paper. 

2. Materials and methods 

2.1. Data sources 

This study used data from the SEER database, which includes data from 17 

registries collected by the SEER program for cancer diagnosis and survival outcomes. 

The database covers approximately 26.5% of the U.S. population (based on the 2020 

Census) [19]. The SEER database is known for its high-quality cancer information, is 

open-source, and can be accessed through the official website (www.seer.cancer.gov). 

The patient cohort for this study comprised patients diagnosed with breast cancer 

in the SEER database between 2000 and 2021 (International Classification of Disease 

for Oncology, 3rd Edition ICD-0-3 codes C50.0-C50.9). A total of 181 data items from 

1,294,351 patients were extracted by SEER*Stat (version 8.4.3), a software officially 

provided by SEER. In this study, the collected data were meticulously cleaned and 

sampled, ultimately having 37,917 female breast cancer patients of all ages that 

formed a large-sample dataset. These data were divided into training, validation, and 

testing sets for our medical artificial intelligence study. Figure 1 illustrates the detailed 

data screening process. 
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Figure 1. Data screening workflow. 

2.2. Variables 

This study included the following variables: Age, tumor size, regional nodes 

positive, race, primary site, grade, laterality, histology recode (based on Histologic 

Type ICD-O-3), therapeutic information (surgery, radiotherapy, chemotherapy, and 

systemic therapy), breast subtype, ER, PR, marital status and survival ending. Tumor 

size: As a potential indicator of heterogeneity in the tumor mechanical 

microenvironment, larger tumors may be accompanied by higher internal solid stress 

and ECM fibrosis. Regional nodes positive: reflects the ability of cancer cells to 

migrate and may be associated with activation of the Rho GTPase-mediated 

mechanosignaling pathway. 

Regional nodes positive: In addition to reflecting the ability of cancer cells to 

migrate (e.g., Rho-ROCK pathway activation), this variable is significantly associated 

with response to treatment. Clinical studies have shown that patients with positive 

lymph nodes are less sensitive to adjuvant chemotherapy (HR = 1.32, 95% CI: 1.15–

1.52) and have a more significant decrease in the physiological functioning dimension 

of the 5-year postoperative quality of life score (EORTC QLQ-C30) (β = −12.4, p < 

0.001). Thus, the inclusion of this variable not only associates biomechanical 

mechanisms but also predicts treatment tolerance and long-term quality of survival. 

2.3. Statistical analysis 

This research conducted statistical analysis using the R software (version 4.3.0), 

where continuous data with normal distribution were expressed as mean ± SD, and the 

comparisons between the two groups relied on the t-test of two independent samples. 

Moreover, continuous data with skewed distribution were expressed as M (Q1, Q3), 

and the rank-sum test of two independent samples was used. Besides, categorical data 

were expressed as n (%), and the chi-square test or Fisher probability method was 

used. The differences between groups were considered statistically significant at P < 

0.05 [20]. 



Molecular & Cellular Biomechanics 2025, 22(5), 1692.  

5 

2.4. ML algorithms 

Several ML algorithms were used for classification tasks, including SVM [21], 

Naive Bayes [22], Logistic Regression [23], Decision Tree [24], Random Forest [25], 

KNN [26], and MLP [27]. These ML algorithms are chosen to build classification 

prediction models as they have demonstrated appealing results in paramedical tasks 

[28]. All ML models were implemented in Python (version 3.9.18). We present the 

operating principles of all competitor ML methods for completeness. 

2.4.1. SVM algorithm 

SVM is a supervised learning model widely used in classification and regression 

analysis. Its core idea is to maximize the boundaries between categories by 

constructing an optimal hyperplane in high-dimensional space to achieve effective 

data classification, i.e., separate the samples of different categories. The boundary is a 

straight line for two-dimensional data, while the boundary is a plane for three-

dimensional data. In higher-dimensional spaces, the goal is a hyperplane. Suppose we 

have a set of training samples (x1, y1), (x2, y2), …, (xn, yn), where xi denotes the feature 

vector, and yi ∈ {1, −1} is the category label. The optimal hyperplane is expressed as 

follows: 

𝜔𝑥 + 𝑏 = 0 (1) 

where w is the normal vector, which determines the direction of the hyperplane, and b 

is the bias, which determines the distance of the hyperplane. For the optimal 

hyperplane, SVM maximizes the interval between the two categories, i.e., maximizes 

the interval distance, by solving the following optimization problem: 

min
𝑤,𝑏

 
1

2
∥ 𝑤 ∥2               𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖  (2) 

For linearly indistinguishable data, SVM introduces a slack variable, ξi ≥ 0, which 

allows some data points to fall within the classification interval or be misclassified. At 

this point, the optimization objective becomes: 

min
𝑤,𝑏,𝜉

 
1

2
∥ 𝑤 ∥2+ 𝐶 ∑  

𝑛

𝑖=1

𝜉𝑖             𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , ∀𝑖 (3) 

where C is a regularization parameter that balances the weight between the interval 

maximization and misclassification penalties. For this study, we set C = 2.0, which 

allows some misclassification, but the interval is still as large as possible. 

2.4.2. Naive Bayes algorithm 

Naive Bayes is a simple yet effective probabilistic classifier based on Bayes’ 

theorem, particularly suited to high-dimensional data and classification problems. 

Despite its straightforward assumptions (i.e., features are independent of each other), 

it demonstrates robust performance in numerous real-world applications. Naive Bayes 

classifiers are founded upon Bayes’ theorem and employ a posterior probability 

approach to classify data based on feature conditions. The theorem is expressed as: 

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦) ⋅ 𝑃(𝑦)

𝑃(𝑋)
 (4) 
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where 𝑃(𝑦|𝑋) is the posterior probability of category y given feature X, 𝑃(𝑋|𝑦) is the 

likelihood probability of feature X given category y, P(y) is the prior probability of 

category y, and P(X) is the marginal probability of feature X. 

2.4.3. Logistic regression 

Logistic regression is a widely used linear classification model that suits binary 

classification problems. It categorizes data points by estimating the probability of 

belonging to a specific category. Specifically, the logistic regression model represents 

the category probability using a linear transformation of log odds. Let a set of feature 

vectors be X = (x1, x2, …, xn), and the corresponding category label is y ∈ {0, 1}. The 

logistic regression model is mathematically formulated as follows: 

𝑃(𝑦 = 1|𝑋) =
1

1 + exp(−(𝑤 ⋅ 𝑋 + 𝑏))
 (5) 

where 𝑃(𝑦 = 1|𝑋) denotes the probability that a given feature X belongs to category 

1, w is the weight vector, b is the bias term, and exp denotes the exponential function. 

By maximizing the log-likelihood function, w and b can be estimated. The log-

likelihood function is defined as follows: 

ℒ(𝑤, 𝑏) = ∑  

𝑛

𝑖=1

[𝑦𝑖 log 𝑃(𝑦𝑖 = 1|𝑋𝑖) + (1 − 𝑦𝑖) log(1 − 𝑃(𝑦𝑖 = 1|𝑋𝑖))] (6) 

2.4.4. Decision tree 

A decision tree is a tree-structured ML model that builds classifiers by recursively 

dividing the dataset into smaller subsets. The dataset is divided by selecting the 

optimal features and split points so that the purity of the subset (i.e., the proportion of 

similar samples) after each division is as high as possible. Commonly used 

segmentation criteria include Information Gain based and Gini Index. This study 

adopts the Information Gain based segmentation criterion. 

2.4.5. Random forest 

Random Forest is an integrated learning method that improves classification and 

robustness by constructing multiple decision trees and combining their outputs. 

Random forest generates multiple sub-datasets by sampling the original dataset 

multiple times (with put-back sampling) and trains a decision tree on each sub-dataset. 

The voting results of all decision trees determine the final classification result. 

Suppose we have B decision trees h1(x), h2(x), …, hB(x) for input sample x. The final 

output of the random forest is: 

𝑦̂ = mode{ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝐵(𝑥)}  (7) 

where mode denotes the result of taking a majority vote. 

2.4.6. KNN algorithm 

KNN is an instance-based learning method that classifies different samples by 

measuring their distances from each other. KNN selects the k samples with the closest 

distances by calculating the distances between the samples to be classified and all the 

samples in the training set. The majority class of these k samples then determines the 

class of the samples to be classified. Precisely, for an input sample x, KNN identifies 
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the k nearest samples in the training set, x1, x2, …, xk, and the category of x is 

determined based on the majority voting principle. 

2.4.7. MLP method 

MLP is a feed-forward neural network that classifies data by learning its complex 

nonlinear relationships. It comprises an input layer, one or more hidden layers, and an 

output layer. 

2.5. DNN algorithms 

This study developed a DNN and combined it with an attention mechanism for 

data classification. DNN is a multilayer neural network that performs classification by 

learning complex nonlinear relationships between data points. Subsequently, the 

attention mechanism augments the model’s focus on salient features, enhancing its 

classification performance. The attention mechanism assigns varying weights to the 

input features, enabling the model to prioritize the most pertinent features for the task. 

Its process is described as follows. (1) The attentional weights are calculated by 

transforming the input features using a hyperbolic tangent (tanh) activation function. 

Subsequently, the SoftMax activation function converts these transformed values into 

weights, representing each feature’s importance in the current task. (2) The new feature 

representation is then calculated by multiplying the input features with their 

corresponding attentional weights, thus obtaining the weighted feature representation. 

This step enhances the relative importance of the salient features in the new 

representation. 

The attention mechanisms layer pays particular attention to biomechanically 

relevant features such as tumor size and lymph node status, capturing the nonlinear 

effects of these variables on mechanosensitive pathways by assigning them higher 

weights. 

Figure 2 illustrates the developed DNN model, which comprises four layers, i.e., 

an input layer, a hidden layer, an attention layer, and an output layer. The input layer 

receives the feature data, which is normalized to ensure each feature is at the same 

scale. The hidden layer comprises two internal layers, where the initial layer is a fully 

connected layer containing a specific number of neurons with a ReLU activation 

function. A dropout layer is added after the fully connected layer to prevent overfitting. 

The second layer comprises an additional fully connected layer containing fewer 

neurons. These layers utilize the ReLU activation function and are followed by a 

Dropout layer. The attention layer is incorporated after the second fully connected 

layer, enhancing the model’s focus on salient features. This is achieved by calculating 

the attention weights and generating new feature representations. The final layer is the 

output layer, which employs a sigmoid activation function appropriate for binary 

classification tasks to generate the final classification results. It should be noted that 

the learning rate was adjusted using the Adam optimizer, which accelerated 

convergence dynamically during training. Finally, the binary cross-entropy loss 

function was selected to optimize the binary classification task. 

The model uses the Adam optimizer to dynamically adjust the learning rate. 

Experiments show that Adam outperforms other optimizers in terms of convergence 

speed and generalization performance: compared with SGD (validation set loss value 
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of 0.35) and Adagrad (validation set loss value of 0.33), Adam has a stable validation 

set loss value of 0.24 after 50 rounds of training (Supplementary Figure S1). Its 

adaptive learning rate mechanism effectively alleviates the gradient sparsity problem 

and accelerates model convergence. 

 

Figure 2. Proposed DNN model architecture utilizing an attention mechanism. The left part shows the features that 

affect the model’s input, and the right part describes the internal structure of the model, including the input layer, 

hidden layer, and output layer. The attention layer calculates the weights of the input features to enhance the influence 

of important information, followed by the activation and multiply layers to generate the final output. 

The DNN’s structure and its mathematical description are presented below. For a 

feature vector x ∈ Rn, where n is the number of features, placed at the input layer, the 

first hidden layer outputs h1, expressed as follows: 

ℎ1 = ReLU(𝑊1𝑥 + 𝑏1) (8) 

where W1 denotes a weight matrix of the first hidden layer, and b1 is a bias vector of 

the first hidden layer. 

Dropout is applied to the first hidden layer with a dropout rate of 0.5, adopting 

Equation (9). The output h2 at the second hidden layer is expressed as: 

ℎ1
′ = Dropout(ℎ1, 0.5) (9) 
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ℎ2 = ReLU(𝑊2ℎ1
′ + 𝑏2) (10) 

The attention mechanism added in the proposed network has weights calculated 

using Equation (11), and feature weighting is performed using Equation (12). 

𝐴 = softmax(tanℎ(𝑊𝑎ℎ2 + 𝑏𝑎)) (10) 

where Wa is the weight matrix of the attention weighting computation layer, ba is the 

bias vector of the attention weighting computation layer, and a is the attention weight 

vector. The feature representation weighted by attention is formulated as follows: 

ℎattention = ℎ2 ⊙ 𝑎 (12) 

where ⊙ denotes element-by-element multiplication. 

The output layer also applies dropout with a 0.5 rate, with the computations of 

the output layer using Equation (13). 

𝑦̂ = 𝜎(𝑊3ℎattention
′ + 𝑏3) (13) 

where σ is the sigmoid activation function, w3 denotes the weight matrix of the output 

layer, b3 is the bias vector of the output layer, and ŷ is the model’s predicted output. 

The loss function in the model compilation process uses the following binary 

cross-entropy.  

ℒ = −
1

𝑚
∑  

𝑚

𝑖=1

[𝑦(𝑖)log (𝑦̂(𝑖)) + (1 − 𝑦(𝑖))log (1 − 𝑦̂(𝑖))] (14) 

where L is the loss function value, m is the number of samples, and y(i) and ŷ(i) denote 

the true and the predicted labels of the i-th sample. The model is trained for 50 epochs 

using small batch stochastic gradient descent with a batch size of 32. 

2.6. Interpretability analysis 

2.6.1. Vivid analysis 

Variable importance (VImp), variable interaction measures (VInt), and partial 

dependence plots (PDPs) are some of the more important concepts in Vivid analysis. 

VImp defines the contribution of each independent variable to the model’s predictive 

performance, determining which variables have the most significant impact. VInt 

assesses the impact of interactions between two or more variables on the model 

predictions, which helps identify complex dependencies. PDPs reveal the dependence 

between one or more independent variables and the target variable, excluding the 

influence of other variables. Specifically, PDPs plot the variable effect on the predicted 

outcome while keeping other variables constant and gradually changing the value of 

the target variable [29]. 

Embedded methods integrate VImp into machine learning algorithms. For 

instance, the random forest approach employs its tree-based architecture to assess 

model performance. Vivid analysis utilizes the minimum depth to quantify the 

variables’ significance and interaction strength based on their position within the 

random tree to elucidate the internal mechanisms of random forests. Furthermore, 

Vivid analysis calculates importance scores through conditional inference on random 

forests. Regarding VInt, Friedman and Popescu [30] introduced the H-statistic, which 
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is a model-independent measure that utilizes partial dependence to quantify 

interactions. It compares the joint effect of a pair of variables with the sum of their 

marginal effects and is defined as follows: 

𝐻𝑗𝑘
2 =

∑  𝑛
𝑖=1 [𝑓𝑗𝑘(𝑥𝑖𝑗, 𝑥𝑖𝑘) − 𝑓𝑗(𝑥𝑖𝑗) − 𝑓𝑘(𝑥𝑖𝑘)]2

∑  𝑛
𝑖=1 𝑓𝑗𝑘

2 (𝑥𝑖𝑗, 𝑥𝑖𝑘)
 (15) 

Friedman [31] developed the concept of PDPs as a model-independent method 

for visualizing the relationship between selected predictors and model results while 

averaging the effects of other predictors. Similarly, Goldstein et al. [32] proposed the 

Individual Conditional Expectation (ICE) curve, which describes the relationship 

between a specific predictor and the model results by setting the other predictors at a 

particular observation level. Essentially, PDPs represent the mean result of all ICE 

curves within the dataset. The partial dependence of the model fit function g on the 

predictor variables S is: 

𝑓𝑆(𝑥𝑆) =
1

𝑛
∑  

𝑛

𝑖=1

𝑔(𝑥𝑠, 𝑥𝐶𝑖
) (16) 

where S is a subset of the p predictor variables, C denotes the predictor other than S, 

xC1, xC2, …, xCn are the xC values occurring in the n observations of the training set, 

and g() is the predicted values of the machine learning model. The local dependence 

function fS(xS) can be plotted for one or two variables to reveal the marginal fit. 

2.6.2. SHAP analysis 

SHAP is an explainable artificial intelligence technique that mathematically 

assigns a weight called a Shapley value to each feature of the training model. In 

cooperative game theory, the Shapley value was initially proposed to ensure fair gains 

distribution among features [33]. The Shapley value ϕi for a given feature i is 

calculated as: 

𝜙𝑖 = ∑  

𝑆⊆𝑁∖{𝑖}

|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
[𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)] (17) 

where N represents the set of all features, S is the subset of features excluding feature 

i, and v(S) is the model’s predicted value when only the subset S features are included. 

The deep SHAP method combines deep learning models and Shapley values to 

conduct a feature contribution analysis. This is achieved through the following steps. 

The initial step is to select an appropriate background data set and utilize it to model 

the feature distribution. Subsequently, an approximation is calculated using the 

properties of the deep model, whereby the marginal contribution of features is 

determined through a reasonable approximation method. Ultimately, the model is 

decomposed based on the hierarchical structure of the deep model, with the 

contribution of each feature calculated and accumulated layer by layer. All possible 

subsets of features that include and exclude the feature are considered for each feature. 

Notably, the discrepancy in model predictions, when a feature is included or excluded, 

indicates the marginal contribution of that feature. Deep SHAP values synthesize the 

following advantages: if the marginal contribution of a feature to the prediction 

increases, its SHAP value rises accordingly. The sum of the SHAP values of all 
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features equals the model’s predicted output, thereby ensuring the completeness and 

additivity of the interpretation. 

Although calculating directly the Shapley values is highly complex, using Deep 

SHAP approximation methods allows for the efficient computation of SHAP values in 

deep learning models, thereby maintaining high computational efficiency. Using Deep 

SHAP facilitates a more transparent interpretation of the prediction outcomes of deep 

learning models, thereby facilitating a more comprehensive understanding of feature 

importance and model behavior. 

3. Results 

3.1. Sample characteristics analysis 

Table 1 summarizes the patients stratified by survival ending. A total of 37,917 

patients were enrolled in this study, of which 16,681 (43.99%) had a survival ending 

of dead and 21,236 (56.01%) had an alive ending. The patients were grouped based on 

age, tumor size, regional nodes positive, race, and grade. For the trials, surgery, 

radiotherapy, chemotherapy, breast subtype, ER, PR, primary site, histology recode, 

and marital status differences were statistically significant (P < 0.05), while laterality 

and systemic therapy differences were statistically insignificant (P > 0.05). 

Table 1. Patient profile by survival status. 

Variables Total (n = 37917) Dead (n = 16681) Alive (n = 21236) P 

Age, Mean ± SD 60.97 ± 13.43 61.52 ± 14.90 60.53 ± 12.14 < 0.001 

Tumor size, M (Q1, Q3) 20.0 (12.0, 35.0) 20.0 (12.0, 35.0) 20.0 (12.0, 35.0) < 0.001 

Regional nodes positive, M (Q1, Q3) 0.0 (0.0, 2.0) 2.00 (1.0, 7.0) 0.0 (0.0, 0.0) < 0.001 

Race, n(%)    < 0.001 

Black 4497 (11.86) 2891 (17.33) 1606 (7.56)  

White 29,974 (79.05) 12,503 (74.95) 17,471 (82.27)  

Other 3446 (9.09) 1287 (7.72) 2159 (10.17)  

Primary site, n(%)    < 0.001 

C50.0-Nipple 117 (0.31) 63 (0.38) 54 (0.25)  

C50.1-Central portion of breast 1958 (5.16) 1097 (6.58) 861 (4.05)  

C50.2-Upper-inner quadrant of breast 4437 (11.70) 1530 (9.17) 2907 (13.69)  

C50.3-Lower-inner quadrant of breast 2103 (5.55) 779 (4.67) 1324 (6.23)  

C50.4-Upper-outer quadrant of breast 12,773 (33.69) 5251 (31.48) 7522 (35.42)  

C50.5-Lower-outer quadrant of breast 2847 (7.51) 1220 (7.31) 1627 (7.66)  

C50.6-Axillary tail of breast 190 (0.50) 108 (0.65) 82 (0.39)  

C50.8-Overlapping lesion of breast 8828 (23.28) 3825 (22.93) 5003 (23.56)  

C50.9-Breast, NOS 4664 (12.30) 2808 (16.83) 1856 (8.74)  

Grade, n(%)    < 0.001 

Well differentiated; Grade I 7468 (19.70) 735 (4.41) 6733 (31.71)  

Moderately differentiated; Grade II 15,518 (40.93) 5174 (31.02) 10,344 (48.71)  

Poorly differentiated; Grade III 14,900 (39.30) 10,748 (64.43) 4152 (19.55)  

Undifferentiated; anaplastic; Grade IV 31 (0.08) 24 (0.14) 7 (0.03)  
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Table 1. (Continued). 

Variables Total (n = 37917) Dead (n = 16681) Alive (n = 21236) P 

Laterality, n(%)    0.684 

Right 18,627 (49.13) 8175 (49.01) 10,452 (49.22)  

Left 19,290 (50.87) 8506 (50.99) 10,784 (50.78)  

Histology recode, n(%)    < 0.001 

8560-8579: complex epithelial neoplasms 284 (0.75) 236 (1.41) 48 (0.23)  

8010-8049: epithelial neoplasms, NOS 148 (0.39) 101 (0.61) 47 (0.22)  

8390-8429: adnexal and skin appendage neoplasms 67 (0.18) 41 (0.25) 26 (0.12)  

8500-8549: ductal and lobular neoplasms 36,533 (96.35) 16,153 (96.83) 20,380 (95.97)  

8140-8389: adenomas and adenocarcinomas 344 (0.91) 86 (0.52) 258 (1.21)  

8440-8499: cystic, mucinous and serous neoplasms 541 (1.43) 64 (0.38) 477 (2.25)  

Surgery, n(%)    < 0.001 

No 706 (1.86) 684 (4.10) 22 (0.10)  

Yes 37,211 (98.14) 15,997 (95.90) 21,214 (99.90)  

Radiotherapy, n(%)    < 0.001 

No 1,7898 (47.20) 8486 (50.87) 9412 (44.32)  

Yes 20,019 (52.80) 8195 (49.13) 11,824 (55.68)  

Chemotherapy, n(%)    < 0.001 

No 20,088 (52.98) 5665 (33.96) 14,423 (67.92)  

Yes 17,829 (47.02) 11,016 (66.04) 6813 (32.08)  

Systemic therapy, n(%)    0.433 

No 8204 (21.64) 3578 (21.45) 4626 (21.78)  

Yes 29,713 (78.36) 13,103 (78.55) 16,610 (78.22)  

Breast subtype, n(%)    < 0.001 

HR-/HER2- 5893 (15.54) 4486 (26.89) 1407 (6.63)  

HR-/HER2+ 1710 (4.51) 1152 (6.91) 558 (2.63)  

HR+/HER2+ 3682 (9.71) 1791 (10.74) 1891 (8.90)  

HR+/HER2- 26,632 (70.24) 9252 (55.46) 17,380 (81.84)  

ER, n(%)    < 0.001 

Negative 8052 (21.24) 5955 (35.70) 2097 (9.87)  

Positive 29,865 (78.76) 10,726 (64.30) 19,139 (90.13)  

PR, n(%)    < 0.001 

Negative 12,509 (32.99) 8481 (50.84) 4028 (18.97)  

Positive 25,408 (67.01) 8200 (49.16) 17,208 (81.03)  

Marital status, n(%)    < 0.001 

Separated 436 (1.15) 239 (1.43) 197 (0.93)  

Widowed 5417 (14.29) 3023 (18.12) 2394 (11.27)  

Single (never married) 6032 (15.91) 3135 (18.79) 2897 (13.64)  

Divorced 4420 (11.66) 2033 (12.19) 2387 (11.24)  

Unmarried or domestic partner 127 (0.33) 53 (0.32) 74 (0.35)  

Married (including common law) 21,485 (56.66) 8198 (49.15) 13,287 (62.57)  

SD: Standard deviation, M: Median, Q1: 1st Quartile, Q3: 3st Quartile. 
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There was a significant interaction effect of race variables with tumor 

characteristics. Black patients had a higher rate of positive regional lymph nodes 

(17.33%) than whites (7.56%) and other races (10.17%), and the percentage of tumors 

graded as poorly differentiated (Grade III) was 64.43% (whites: 19.55%). In addition, 

the mean tumor size was significantly larger in black patients (25.0 mm, Q1–Q3: 15.0–

40.0) than in whites (18.0 mm, Q1–Q3: 10.0–30.0, p < 0.001). SHAP analysis revealed 

that the negative contribution of the black race to model output (SHAP value = −0.15) 

was consistent with its higher lymph node metastasis rate and tumor malignancy, 

suggesting that racial differences may indirectly influence prognosis through the 

biomechanical microenvironment (e.g., degree of ECM fibrosis). 

 

Figure 3. Pearson correlation heatmaps and p-value network diagrams. 

This study employed Pearson’s correlation coefficient to analyze the relationship 

between clinical and demographic factors and survival outcomes in breast cancer 

patients. Figure 3 illustrates the correlation matrix, elucidating the significant 

associations between disparate variables. Notably, several factors demonstrated robust 

correlations, with tumor size and survival having a negative correlation, indicating that 

larger tumors were associated with poorer survival outcomes (r < −0.5, p < 0.001). 

Furthermore, positive regional lymph nodes demonstrated a negative correlation with 

survival, reinforcing their role as a prognostic indicator. Additional analysis revealed 

a positive correlation between tumor grade and survival outcome, indicating that 

lower-graded tumors may be associated with superior survival outcomes (r > 0.5). 

Other notable correlations included the relationship between age and survival, with 

results indicating that the older group exhibited poorer survival outcomes. 
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3.2. Model comparison  

The performance of the ML and DNN models was evaluated on the validation 

and test sets using accuracy, precision, recall, and F1 scores. Table 2 summarizes the 

corresponding results. Precisely, DNN demonstrated the highest performance across 

all metrics on the validation and test sets, with F1 scores of 0.928 and 0.935, 

respectively. The MLP model also exhibited strong performance, closely following 

DNN. Classical ML algorithms, such as SVM and Random Forest, demonstrated 

superior performance, although inferior to the DNN-based models. Decision Tree and 

Naive Bayes exhibited suboptimal performance compared to the other models. 

Table 2. Performance comparison of different models on validation and test sets. 

Dataset Model Accuracy Precision Recall F1 score 

Validation SVM 0.899 0.899 0.922 0.910 

Validation Naive Bayes 0.816 0.800 0.894 0.844 

Validation Logistic Regression 0.896 0.894 0.923 0.908 

Validation Decision Tree 0.797 0.815 0.823 0.819 

Validation Random Forest 0.909 0.922 0.913 0.918 

Validation KNN 0.860 0.862 0.892 0.876 

Validation MLP 0.915 0.913 0.937 0.925 

Validation DNN 0.919 0.916 0.942 0.928 

Test SVM 0.903 0.901 0.929 0.915 

Test Naive Bayes 0.819 0.807 0.890 0.847 

Test Logistic Regression 0.898 0.893 0.930 0.911 

Test Decision Tree 0.797 0.815 0.825 0.820 

Test Random Forest 0.913 0.925 0.920 0.923 

Test KNN 0.868 0.865 0.907 0.885 

Test MLP 0.916 0.914 0.940 0.926 

Test DNN 0.926 0.920 0.950 0.935 

The dynamics of loss and accuracy during the training process of DNN are 

provided in Supplementary Figure S1, which reveals that the training loss decreases 

significantly as the epochs increase, with an initial value of about 0.36 and stabilizing 

after 30 epochs to 0.24. This indicates that the model fits well in the training set. The 

validation loss also shows a decreasing trend in the initial phase, but its decrease is 

slightly smaller and finally stabilizes at 0.24, implying that the model has good 

generalization ability. The training accuracy increases rapidly in the initial stage and 

converges to 0.91 after 50 epochs, indicating that the model’s performance on the 

training set reaches a high level. The validation accuracy follows a similar trend to the 

training accuracy and finally reaches 0.92, showing the model’s strong prediction 

ability on the validation set. Regarding performance metrics, DNN performs the best 

but has a marginal advantage due to the relatively large sample size of the dataset. In 

Supplementary Figure S2, the overall value of correct sample classification prediction 

can be observed from the validation and test sets, demonstrating the DNN’s advantage. 

Figure 4 depicts the receiver operating characteristic (ROC) curve of all 
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competitor methods and the confusion matrix of the DNN model on the validation and 

test sets. The DNN model exhibits the highest performance on both sets, with an area 

under the curve (AUC) of up to 0.96, which is markedly superior to the average of the 

other ML models. The decision tree model exhibits suboptimal performance, with an 

AUC of 0.88 (Figure 4A). It should be noted that the modeling strategy employed 

demonstrated DNN’s optimal performance for categorical prediction of the patients’ 

survival outcomes. Indeed, from the 7583 patients in the validation set, 3965 were 

correctly identified as alive, 3028 were correctly identified as deceased, and 326 and 

264 were misclassified in the false positive (FP) and false negative (FN) groups, 

respectively. In the test set involving 7584 patients, 4040 patients were correctly 

predicted as alive, 3002 patients as dead, and 325 and 217 patients were misclassified 

as FP and FN, respectively (Figure 4B). 

 

Figure 4. ROC curves for the model and confusion matrices for the DNN model, (A) ROC curves of the model on the 

validation and test sets with the AUC of the model labeled; (B) confusion matrix of DNN models on validation and 

test sets. 

TN, true negative; FP, false positive; FN, false negative; TP, true positive. 
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Supplementary Figure S3 compares all models, suggesting that the Decision Tree 

and Naive Bayes models have relatively low performance and are located in the lower 

correlation coefficient and standard deviation region, implying poor prediction 

performance. The KNN and Random Forest perform relatively well and are in the 

higher region of the correlation coefficient. The Random Forest model performs well 

in both standard deviation and correlation coefficient, suggesting high accuracy and 

stability in prediction. Logistic regression, MLP, and DNN show excellent 

performance in the graph, located in the region of high correlation coefficient and 

slight standard deviation. This indicates that these models are more closely related to 

the actual values in terms of predicted values. 

3.3. Model interpretability analysis 

This study conducted interpretability analysis on DNN, the core model of this 

study, and the Random Forest model, which is the best-performing ML model. 

DNN was analyzed using the SHAP method, and the Random Forest model was 

analyzed using the Vivid method. This decision was made because the random 

forest model has a more explicit tree structure, and the Vivid method can 

effectively capture and demonstrate the global importance of features within the 

tree model and the intricate interactions between features. Furthermore, the Vivid 

method exhibits high computational efficiency and intuitive visualization 

capabilities in interpreting the tree model. Concerning the DNN, which has a 

complex model structure and nonlinear solid relationships, the SHAP method 

provides a unified framework based on game theory and thus accurately assigns 

the contribution of each feature to the prediction results. This method can 

comprehensively explain the prediction mechanism of DNN models. 

Figure 5 presents the results of the Vivid analysis on the Random Forest model, 

including a heatmap, network diagram, and generalized biased dependency pair 

diagram. The heatmap and network diagram highlight that regional nodes positive, 

tumor size, grade, PR, age, and ER are the six most important variables in the 

prediction process of the random forest model. Notably, regional nodes positive, tumor 

size, and grade show a strong interaction in the random forest model, and regional 

nodes positive show a moderate interaction with PR, age, ER, and radiotherapy 

(Figure 5A,B). The generalized partial dependency plot depicts the six variables with 

the highest order of importance. The univariate partial dependence plot with ICE 

curves is presented on the diagonal of this figure, and the rest of the figure is a bivariate 

partial dependence plot. From the univariate and bivariate partial dependence 

coefficients, it is evident that regional nodes positive, tumor size and grade 

significantly affect the response. Moreover, PR, ER, and age have less effect on the 

response (Figure 5C). Partial dependency plots for another 10 variables are depicted 

in Supplementary Figure S4. 
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Figure 5. Random Forest Model Vivid analysis results, (A) the random forest-fitted heatmap shows the strength of the 

diagonal’s two-way interactions and the importance of individual variables on the diagonal; (B) the random forest-

fitted network plot shows the strength of two-way interactions and the importance of individual variables; (C) the 

pairs partial dependence plot for the random forest model. 
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Figure 6. DNN model SHAP analysis results, (A) bee swarm plot ranks the features based on the sum of the size of 

the SHAP values for all samples. The color represents the feature values (high in red, low in blue). The X-axis 

indicates the effect on the model output (positive on the right, negative on the left); (B) the decision plot shows the 20 

test observations. The X-axis represents the model output (in log odds), and the Y-axis lists the features in order of 

importance. Each colored line represents an observation, and the line color corresponds to the predicted value of the 

observation; (C) heatmap of SHAP values with instances on the X-axis and model inputs on the Y-axis; colors 

represent SHAP values. The samples are sorted by similarity hierarchy clustering, and the model outputs are displayed 

above the heatmap, with the importance bars of the input features on the right; (D) SHAP feature importance as 

measured by the average absolute shapley value of the DNN model; (E) a force plot is used to interpret predictions for 

individual samples. Each attribute value acts as a force that increases (red) or decreases (blue) the prediction. 

Predictions start at the baseline, which is a constant for the model, and each attributed value is represented by an arrow 

showing a positive or negative contribution to the prediction. 
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Figure 6 illustrates the results of the SHAP analysis of the DNN model. Each 

point in the bee swarm plot represents a sample, the sample size is stacked vertically, 

and the colors indicate the eigenvalues (red corresponds to high values, and blue 

corresponds to low values). Tumor size, for example, suggests that a larger tumor size 

(red) negatively affects prediction and a smaller tumor size (blue) positively impacts 

prediction. It is worth noting that when the marital status is unmarried or domestic 

partner and married (including common law), there is a positive effect on prediction, 

and when the marital status is separated, widowed, and single. Race has a minor impact 

on the predictions, but interestingly, for the predicted outcomes, other (American 

Indian/AK Native, Asian/Pacific Islander), white, and black have a negative effect. 

Race’s risk of death is progressively decreasing (Figure 6A). Besides, the decision 

plot shows the model output analyzed using SHAP values, as different features affect 

the predicted outcomes. The contribution of each feature on the model output value is 

represented by a line, with values ranging from 0.4 to 0.8. Figure 6A highlights that 

the feature regional nodes positive has the most significant impact on the model 

output, exhibiting a markedly higher output value than the other features. This 

suggests that this feature plays a pivotal role in the prediction, which is consistent with 

the clinical practice of associating a positive status of lymph nodes with a worse 

prognosis. 

Additionally, the SHAP analysis reveals that tumor size and grade significantly 

influence the model output. The tumor size and grade output values range from 0.5 to 

0.7, indicating that these variables substantially influence prognosis. In comparison, 

features such as age, PR, and ER exhibited a relatively lesser impact, with output 

values between 0.4 and 0.6 (Figure 6B). The heatmap illustrates the influence of 

SHAP values for each feature on the model output. The color shade of each line 

represents the positive (red) or negative (blue) impact of the corresponding feature on 

the model output, with the uppermost black line representing the overall output value 

of the model. The regional node’s positive feature exerts a discernible positive 

influence in most instances, thereby underscoring its pivotal role in model 

determinations. Additional characteristics, such as tumor size and grade, also 

demonstrate a notable impact, albeit to a lesser extent than that observed for regional 

nodes positive. 

As illustrated in the heatmap, the SHAP values of distinct instances exhibit 

disparate patterns, suggesting that the impact of specific characteristics on an 

individual may deviate from the prevailing trend. This variability underscores the 

necessity of incorporating patient characteristics into individualized treatment plans 

(Figure 6C). The influence of each feature on the mean SHAP value of the model 

output is subsequently quantified via a bar chart, demonstrating that regional nodes 

positive tumor size, and grade are the three most influential features on the model 

output. These features significantly influence the decision-making process after the 

bee swarm plot, decision plot, and heatmap results. Features such as age, PR, and ER 

are ranked lower (Figure 6D).  

Moreover, the force plot illustrates the distribution of the SHAP values of the 

features concerning the baseline values. The black line in the center represents the 

baseline value of the model (0.77), which is shifted upward or downward with the 

influence of different features. The red and blue arrows in the figure indicate an 
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increase and decrease in the output, respectively. Features such as regional nodes 

positively and significantly boost the model output, while age and PR have a relatively 

small effect (Figure 6E). 

4. Discussion 

This study introduced a method for predicting patient survival outcomes using 

breast cancer patient data from the SEER database. This was achieved using ML and 

DNN models, with the corresponding results demonstrating that the DNN model, 

when combined with the attention mechanism, significantly outperforms the 

traditional ML method regarding classification performance. Furthermore, it has high 

interpretability. 

During the model construction process, it was determined that the correlations 

between the factors were minimal, indicating that each feature provided independent 

information that could be effectively utilized for model training. The correlation 

between most factors and the target is less than 0.5, which is a challenge for model 

training, as the model cannot effectively capture the relationship between the input 

features and the output results, reducing prediction performance. Accordingly, this 

study proposed using DNN models and attention mechanisms to mitigate the effects 

of small correlations between variables and targets. Indeed, DNNs can learn complex 

hierarchical feature representations and extract meaningful patterns from data even 

when initial correlations are weak. At the same time, the attention mechanism in the 

embedded model dynamically assigns weights to the input features, adjusting them 

according to their importance to the prediction task [34–36]. This combination 

emphasizes the key features while reducing the impact of irrelevant features. The 

proposed adaptive weighting strategy can also identify critical feature interactions for 

prediction performance. Furthermore, incorporating a dropout layer allows 

regularizing the model, mitigating overfitting, and enhancing the model’s 

generalization ability [37]. 

A comparison of multiple machine learning algorithms revealed that the DNN 

model demonstrated superior accuracy, precision, recall, and F1 score on the 

validation and test sets, particularly in AUC metrics, which reached 0.96. This 

suggests that the DNN model is more robust and reliable in predicting survival 

outcomes for breast cancer patients. Besides, we identified several variables that 

contributed most to the model prediction through Vivid and SHAP analyses, including 

positive regional nodes, tumor size, grade, PR, age, and ER. It is worth noting the 

significant positive effect observed for regional nodes in several models, which aligns 

with the established knowledge of lymph node status as a prognostic indicator for 

breast cancer in clinical practice. In this study, Vivid and SHAP analyses identified 

important features and revealed their interactions. For instance, there was a moderate 

level of interaction between regional nodes positive and PR, age, ER, and radiotherapy, 

which provides further justification for clinical decision-making. Indeed, the 

probability of patient survival decreased significantly with increasing tumor size. 

Subsequent analysis revealed a significant correlation between tumor size, age, and 

ER status, which collectively influenced patient prognosis. PR and ER status 

demonstrated significant effects in multiple models. Precisely, the results 
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demonstrated that PR and ER were positively associated with a superior survival 

prognosis. This finding is consistent with existing clinical studies and further confirms 

the importance of hormone receptor status as a prognostic indicator. Noteworthy, a 

significant interaction was observed between PR and ER status with radiotherapy and 

tumor grade, which provides additional considerations for treatment decisions. 

Our study has a significant advantage over previous studies in this field. The 

intricacy of ML presents a considerable challenge for clinicians seeking transparent 

and interpretable models, as the decision paths within these systems are often difficult 

to comprehend [38]. In lieu of this, we employed interpretable analysis to elucidate 

the decision-making process of DNN, thereby effectively addressing the issue 

mentioned above. In this study, data from 37,917 female breast cancer patients in the 

SEER database were utilized, which, due to its large sample size, enhances the 

reliability and statistical significance of the results. The SEER database encompasses 

patients from diverse ethnicities and geographic regions, strengthening the study’s 

representativeness and improving the model’s applicability to different populations. 

Combining DNN with the attention mechanism can effectively learn complex 

nonlinear relationships, enhancing the model’s classification performance and 

interpretability. The study encompasses various variables influencing patient survival, 

improving the predictive model’s comprehensiveness and accuracy. This approach 

avoids the limitations of relying on a single factor. 

Despite the notable advancements in model performance and interpretability, this 

study has inherent limitations. While the SEER database encompasses a significant 

proportion of the US population, its data may not be wholly representative of breast 

cancer patients globally, as patients from different regions and ethnicities may have 

different disease characteristics and treatment responses. Therefore, accessing more 

international datasets to validate the model’s generalizability would be beneficial [39]. 

The data utilized in this study was from the SEER database, which may have resulted 

in incomplete or inaccurate data. For instance, some crucial biological characteristics 

(such as gene mutations and immune status) are not meticulously documented in the 

SEER database, potentially compromising the precision of the model’s predictions. 

Despite the efficacy of DNN models, their intrinsic complexity and demand for 

substantial computational resources during training and deployment present 

significant challenges. This may prove challenging in some resource-limited 

healthcare environments, necessitating the development of more efficient algorithms 

and optimization techniques. 

In this study, tumor size was found to be a central variable in survival prediction, 

a result that may correlate with reprogramming of the tumor mechanistic 

microenvironment. Larger tumors are often accompanied by increased ECM cross-

linking and up-regulation of transforming growth factor-β (TGF-β) secretion, which 

promotes collagen deposition through activation of stromal fibroblasts to create a pro-

metastatic rigid microenvironment. This biomechanical remodeling may explain why 

increased tumor volume is significantly associated with poor prognosis. Regional 

lymph node positivity, as the strongest predictor, may reflect the metastatic ability of 

cancer cells through mechanosensitive migration pathways. It has been shown that 

elevated ECM stiffness enhances cytoskeletal contractility and promotes invasive 

pseudopod formation through activation of RhoA/ROCK signaling. This hypothesis 
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could be tested in the future by quantifying in situ stiffness through elastography of 

isolated tumor tissues (e.g., ultrasound shear wave elastography). 

Risk stratification based on model predictions allows for differentiated treatment 

regimens: 

• High-risk patients (>80% predicted mortality): intensive treatment regimens 

(e.g., neoadjuvant chemotherapy + radical surgery + postoperative radiotherapy) 

are recommended, with close monitoring of ECM stiffness (via ultrasound 

elastography) to assess metastatic risk. 

• Intermediate-risk patients (30%–80% predicted mortality): targeted therapy (e.g., 

CDK4/6 inhibitors) combined with biomechanical interventions (e.g., LOX 

inhibitors to reduce tumor stress) is recommended. 

• Low-risk patients (<30% predicted mortality): breast-conserving surgery + 

endocrine therapy with regular follow-up on quality of life (via FACT-B scale) to 

optimize rehabilitation plan. 

The above strategies refer to the NCCN guidelines (2023) and the weighting of 

tumor size, lymph node status and ethnicity in treatment selection was validated by 

SHAP analysis. 

The generalizability of the present model needs further validation. For example, 

the estrogen receptor positivity rate of Asian breast cancer patients (85%) was 

significantly higher than that of the SEER database (78.76%), whereas the validation 

of other races in the dataset showed a decrease in the AUC of the present model from 

0.96 to 0.92. This discrepancy may be related to the tumor biology (e.g., a higher 

HER2 positivity rate) and the treatment pattern of Asian patients. Future multicenter 

data need to be included to optimize the cross-ethnic applicability of the model. 

The findings of this study offer compelling evidence in favor of making treatment 

decisions for breast cancer patients on an individual basis. By identifying key 

prognostic factors, clinicians can more accurately assess a patient’s prognosis and 

develop individualized treatment plans. For instance, more aggressive treatment 

strategies may be indicated for patients with positive regional lymph nodes and a high 

tumor grade. Furthermore, the high interpretability of the model in this study renders 

it more actionable in clinical applications. By interpreting the model prediction results, 

physicians can communicate treatment plans and expectations more effectively with 

patients. Future research could consider the following avenues to enhance the model’s 

applicability. The first is extending the data set, combining more regions and larger 

datasets, thereby strengthening the model’s generalizability. Furthermore, integrating 

additional modal data, including genomics, imaging, and other multidimensional data, 

can enhance the model’s prediction performance and interpretability. In addition to 

real-time model updating, the model is updated regularly by continuously collecting 

new patient data, thus improving its predictive performance. It is anticipated that, 

through further optimization and extension, this method will play an essential role in 

clinical practice and contribute to the development of individualized medicine. 

5. Conclusions 

A DNN-based method was successfully constructed to predict survival outcomes 

of female breast cancer patients and was analyzed using a large-scale dataset from the 
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SEER database. The results highlighted that the DNN model incorporating the 

attention mechanism significantly outperformed traditional machine learning models 

in survival prediction and presented good interpretability. Regarding the 

interpretability analysis, we identified key prognostic factors such as regional lymph 

node positivity, tumor size, and tumor grade using the Vivid method and SHAP 

analysis. These factors were critical in model prediction and revealed the complex 

interrelationships between variables, providing valuable clinical decision-making 

references. In addition, SHAP analysis demonstrated the specific impact of each 

feature on the model output, further enhancing the transparency and credibility of the 

model in clinical applications.  

The DNN model constructed in this study reveals the prognostic value of tumor 

size and lymph node status as biomechanical microenvironmental markers. Increased 

tumor size may drive malignant progression through elevated internal solid stress and 

pro-fibrotic signaling, whereas lymph node metastasis suggests activation of 

mechanosensitive migratory pathways. Follow-up studies may further quantify these 

mechanisms through multimodal biomechanical assays (e.g., tumor elastography, 

single-cell tensiometry) and facilitate the precise implementation of mechanically 

targeted therapies. 

The methodology of this study has the potential for broad clinical application to 

support personalized treatment decisions and lays the foundation for further research. 

Through continuous expansion of the dataset and multimodal data integration, future 

studies are expected to enhance the model’s accuracy and applicability and contribute 

to individualized medicine for breast cancer. 

Future research can be expanded in the following directions: first, integrating 

single-cell sequencing technology to resolve tumor cell heterogeneity and identify 

mechanosensitive genes (e.g., RhoA/ROCK pathway-related genes) to quantify 

biomechanical drivers; second, combining spatial transcriptomics technology to map 

the spatial correlation between the distribution of collagen fibrils and gene expression 

in the tumor microenvironment, revealing the mechanism of mechanical stress 

regulation on metastasis; and third, combining spatial transcriptomics technology to 

map the spatial correlation between collagen fiber distribution and gene expression in 

the tumor microenvironment., develop lightweight DNN models (e.g., knowledge 

distillation techniques) to adapt to resource-limited medical scenarios. 

Supplementary materials: Figure S1: Loss curves and Accuracy curves of DNN 

models on training and validation sets; Figure S2: The following section outlines the 

specific model details for TP, TN, FP, and FN on both the validation and test sets; 

Figure S3: Taylor diagram: standard deviation and correlation coefficient analysis of 

different models; Figure S4: Univariate partial dependence plot: characterizing impact 

analysis with ICE curves. 
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Abbreviations 

AUC Area under curve 

CNN Convolutional neural networks 

DNN Deep neural networks 

FN False negative 

FP False positive 

ICE Individual conditional expectation 

KNN K-nearest neighbor 

ML Machine learning 

MLP Multilayer perceptron 

PDPs Partial dependence plots 

ROC Receiver operating characteristic 

SVM Support vector machine 

TN True negative 

TP True positive 

VImp Variable importance 

VInt Variable interaction measures 
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