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Abstract: The advancement of endoscopic visual navigation is critical for accurate diagnosis 

and treatment of colonic disease. However, traditional techniques face challenges in 

adaptability to complex colonic conditions. This is exemplified by their limited ability to 

respond effectively to different situations, which results in less accurate navigation planning. 

This study proposes a navigation system to overcome this issue and improve navigation 

adaptability. An adaptive strategy has been designed based on a multidimensional 

discrimination method to guide endoscopes in traversing complex colonic environments. This 

strategy takes into account the biomechanical properties of the colon, such as tissue flexibility 

and kinematic characteristics, enhancing navigation accuracy. Furthermore, specific strategies 

for calculating navigation points have been developed for colonic collapses and tumors to 

ensure effective navigation under various biomechanical conditions. In simulated tests for the 

colon model, the system achieved an overall success rate of 92.5% (multiple scenarios), with 

average deviations of 3.15 mm horizontally and 2.51 mm vertically. Additionally, the system 

is characterized by its ease of operation, thereby reducing the reliance on operational 

experience and protracted training. By combining the principles of biomechanics, this study 

not only improves the accuracy of endoscopic navigation but also provides a new perspective 

for the treatment of colon diseases and emphasizes the importance of biomechanics in clinical 

applications. 

Keywords: navigation; intelligent system; biomechanics; computer-assisted navigation; 

adaptive strategy 

1. Introduction 

Intestinal diseases pose a significant threat to human health [1]. According to the 

2022 global cancer data [2], colorectal cancer is the third most common cancer in the 

global cancer incidence rate, accounting for 9.6% of all cancer cases, with a mortality 

rate of 9.3% among the fatal cases. Early screening and diagnosis are crucial for 

reducing treatment costs and improving the quality of patient survival [3,4]. As 

medical technology progresses, endoscopy emerges as a pivotal diagnostic tool in the 

timely detection and treatment of colorectal diseases due to its minimally invasive 

nature and high effectiveness [5]. 

The differences in endoscopic operation skills are an important factor affecting 

the quality of colonoscopy [6]. Traditional colonoscopy requires manual navigation of 

the endoscope through the intricately curved colon, requiring the skill and expertise of 

the surgeon [7]. However, the complex structure of the human colon and individual 

differences make endoscopy prone to contact or friction with the colonic wall. This 
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issue can increase patient discomfort and severe complications. Extended procedures 

can also lead to physician fatigue, compromising examination accuracy and safety [7]. 

Recent studies [8] have underscored the necessity of delivering consistent, efficient, 

and high-quality endoscopy services, emphasizing the imperative to enhance 

examination safety and patient comfort. The advent of computer-aided navigation 

technologies offers a potential solution to this challenge [9]. In particular, visual 

navigation technology employs image processing techniques to process image data 

from endoscopic sensors and computational tools, thereby assisting physicians in 

operating endoscopes with greater precision and reducing the reliance on physician 

operating experience. Navigation systems can facilitate endoscopic operations even 

for those with limited experience [10], thereby enhancing the accuracy and efficiency 

of operations, reducing the likelihood of complications, and improving the patient 

experience and quality of examinations. 

Perceiving the environment from endoscopic images is a critical aspect of the 

navigation [11]. Given the colonoscopy’s complexity, there is an urgent need for more 

robust and reliable visual navigation techniques. Researchers are actively exploring 

navigation methods. Reilink et al. [12], Xia et al. [13], and Zhang et al. [14] utilized 

the dark-area method of navigation, in which the endoscope is guided forward by 

searching for dark areas in the image. However, the dark areas in the lumen image are 

vulnerable to light interference. Furthermore, the proximity of the light source to the 

tube lumen wall results in an overall brighter image, causing the dark areas to be less 

visible or disappear, invalidating the dark area method. Another approach is the optical 

flow method, explored by Liu et al. [15] and Stap et al. [16], which is based on the 

principle of balancing the size of the optical flow at each feature image point and 

achieves navigation at locations with greater cavity curvature. However, the method’s 

sensitivity diminishes in the straight rows region of the lumen. Ciuti et al. [17], Abu-

Kheil et al. [18], Floor et al. [19], and Onogi et al. [20] extracted 3D information based 

on 2D-lumen images and reconstructed the lumen for navigation. However, the 

reconstruction error rate is high and time-consuming due to the small number of 

feature points and regional variability in the lumen. Jiang et al. [21] attempted to 

overcome these limitations by combining the dark area method with the optical flow 

method to realize the navigation at any position in the colonic lumen. Nevertheless, 

the utilization of a single judgment criterion, namely the presence of a dark area, is 

inadequate to accommodate the complexity of the colonic environment and to make 

optimal navigational decisions, which may lead to increased deviation. 

This study proposes an adaptive navigation strategy to address this issue. This 

strategy employs a multidimensional discriminative method to guide endoscopes 

through complex colonic environments, thereby improving endoscopic navigation’s 

adaptive capability in complex environments. The key contributions of this study are 

as follows: 

1) A comprehensive discriminative mechanism based on quantitative analysis of 

image features is proposed to analyze various complex situations in the endoscopic 

navigation process in a multidimensional way and to select the optimal navigation 

strategy. The accuracy of the calculation of navigation points is enhanced. 

2) The calculation strategy of navigation points is proposed for the special cases 

of colonic collapse and tumor, enhancing the adaptability of endoscopic navigation in 
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special environments. Colonic collapse, specifically refers to the closure or partial 

closure of the lumen of the colon (a part of the large intestine) due to insufficient 

internal pressure and reduced gas or contents. Commonly seen during colonoscopy, 

caused by underinflation or abnormal bowel wall tension. 

2. Method of navigation 

2.1. Design of dark area method 

The autonomous guidance system developed by Krishnan et al. [22] demonstrates 

the possibility of utilizing depth information to enable automated navigation of an 

endoscope through the human colon. 

The endoscope relies exclusively on the camera to capture image information of 

the colon. A point light source illuminates the colonic wall; the light source and the 

camera on the endoscope can be considered to be situated in approximately the same 

plane. As the light source approaches the object, the light no longer appears parallel 

but instead becomes reflected. The correlation between the light intensity at the 

reflection point and the distance from the light source to the reflection point in the 

colonic wall can be described as follows. 

0

2inc

I
I

r
  (1) 

where incI is the light intensity at the reflection point and r is the distance from the 

light source to the reflection point at the colonic wall. Here, 0I is the light intensity of 

the light source. Since the light source and the camera are positioned closely together, 

the deepest part of the colon corresponds in the image to the darkest place of the colon, 

considering the observation angle. 

 

Figure 1. Endoscopic dark area method navigation process. 

The dark area method developed in this study (see Figure 1) begins with 

performing a series of preprocessing steps on the image, including converting the 

image to grayscale format, applying a smoothing filter to reduce noise, and increasing 

the image contrast to highlight important features. Subsequently, the region of interest 

(ROI) is extracted at the center of a circle with the height of the image as its diameter, 

thereby enabling the processing to be focused on the part containing the most 
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important navigational information. This not only improves the computational 

efficiency of the process, but also effectively reduces the interference caused by light 

reflections in the edge region. 

After that, the image is transformed into a binary image by applying a threshold 

(set to 35) where the dark area represents black pixel points. Navigation points (green-

marked points) are derived by computing the centroid of these black pixel points, 

furnishing essential information for operating the endoscope. 

In order to illustrate the computational process of the dark zone method more 

clearly, we introduce the following formula derivation. Suppose that the light intensity 

𝐼(𝑥, 𝑦) of each pixel point in the image can be calculated by the following equation: 

( )
( )

0 2

1
,

,
I x y I

d x y
=   (2) 

where 𝑑(𝑥, 𝑦) is the distance from the light source to the pixel point (𝑥, 𝑦). By 

calculating the light intensity of each pixel point, the light intensity distribution of the 

whole image can be obtained. The image is then converted to a binary image by setting 

a threshold T, where dark areas represent black pixel points. The selection of the 

threshold T is determined experimentally as follows: (1) Number of experiments: A 

total of 30 experiments were conducted, with different colon models and different light 

source intensities selected for each experiment. (2) Data Acquisition: A high-

resolution camera was used to acquire the image data, and 30 frames were acquired 

per second. (3) Data processing: The acquired image data were grayed out, smoothed 

and filtered, and contrast enhanced. Then the light intensity of each pixel point is 

calculated, and the area and location of dark areas under different thresholds are 

counted. 

Through the above experiments, we determined the threshold value T = 35 as the 

best threshold value. The navigation point (green-marked point) is derived by 

calculating the center of these black pixel points, which provides important 

information for operating the endoscope. 

2.2. Design of optical flow method 

This previous subsection discusses the dark area method, which provides an 

important reference point for endoscopic navigation. However, relying solely on the 

dark area method as a reference may not be entirely reliable. For example, when the 

endoscope is close to the colonic wall, the image tends to be brighter due to the 

proximity of the light source to the colonic wall, resulting in the dark areas being less 

visible or even disappearing. 

Therefore, we introduce the Lucas-Kanade [23] optical flow method to overcome 

the limitations of the dark area method. This method estimates the motion of pixel 

points as the endoscope traverses the colon. Analyzing a sequence of two consecutive 

frames of images captured by the endoscopic camera provides navigational hints. The 

optical flow can be expressed as 

0
I I I

u v
x y t

  
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  
 (3) 
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where 
dx

u
dt

= ,
dy

v
dt

=  denote the velocity vectors of the optical flow along the X-axis 

and Y-axis, respectively, and denote the partial derivatives of the grayscale of the pixel 

points in the image along the X and Y-axis, respectively. , ,
I I I

x y t

  

  
is obtained from 

the image data, and ( ),u v is the vector of the requested optical flow. 

 

Figure 2. Pyramid structure of images. 

In this study, a preprocessing step is performed on the image, including grayscale 

conversion, smoothing filtering, and contrast enhancement. Following these steps, a 

region of interest (ROI) is extracted to reduce the computational complexity, thereby 

enhancing computational efficiency. A three-level pyramid structure is established to 

progressively reduce the image resolution through downsampling, allowing for a 

focused examination of key features at each tier. The image pyramid structure 

constructed in this paper is shown in Figure 2. At each level of the pyramid, feature 

points are selected at intervals of every 5 pixels in both the vertical and horizontal 

directions. For each feature point, its optical flow is computed using the Lucas-Kanade 

algorithm with a window size of 5 × 5. In this process, the Lucas-Kanade algorithm is 

employed to determine the motion vectors of the feature points by calculating the 

image gradients between neighboring frames. These motion vectors are then utilized 

to infer the displacement direction and velocity of the feature points, which in turn 

generates the motion trajectories of the feature points. 

In order to ensure the accuracy of the tracking, multiple iterations of feature 

points were performed for each pyramid level. Multi-scale information was used to 

optimize the results of feature point matching. Consequently, the trajectories of all 

feature points were delineated with blue lines, and the real-time movement of the 

endoscope was guided by identifying the center of mass of these blue trajectories 

(green-marked points). The process of calculating navigation points by the optical 

flow method is illustrated in Figure 3. 
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Figure 3. Endoscopic optical flow method navigation process. 

3. Navigation strategies for colonic collapse and tumors 

3.1. Detection and processing of colonic collapse 

Colonic collapse may occur during endoscopic navigation, which can obstruct 

the smooth advancement of the endoscope and create challenges for our navigation 

method. Specifically, collapsed regions may lead to irregular dark areas in the image, 

which are not ideal for navigation, rendering the dark area method non-applicable. In 

addition, the lack of texture information in collapsed regions hinders the optical flow 

method, making it challenging to track feature points in the image. Consequently, it is 

crucial to distend the collapsed colon to restore the original configuration of the colon 

before applying the method described previously. 

In cases where insufflation is not suitable, dilatation operations in morphology 

can be used to simulate the process of dilatation of the colon [24]. This is done by 

converting the image to a grayscale image and binarizing it and then enhancing the 

stenotic regions using an erosion operation. Stenotic regions are identified by 

calculating the aspect ratio of each connected region, and if the aspect ratio exceeds a 

threshold (set to 2), the region is considered to be stenotic. Once collapse is detected, 

a closure operation (dilation followed by erosion) is performed on the region to restore 

part of the colonic structure. The processed image can be navigated using either the 

dark area method or the optical flow method, the choice of which is described in 

Section 4. 
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Figure 4. Schematic diagram of collapse detection and processing strategy. 

Erosion and dilation operations are the primary methods. The strategy for 

identification and processing is shown in Figure 4. Initially, the image is converted to 

grayscale and binarized, after which the narrow regions are enhanced with an erosion 

operation. The erosion operation is used because it is applied to the white parts 

(highlights). Next, connected regions are labeled on the binarized image after erosion. 

The loop is utilized to traverse each connected region (in which there may be more 

than one connected region in the image), and the aspect ratio of each region is 

calculated. Here, the ‘aspect ratio’ refers to the ratio of the long and short axes of the 

region, that is to say, the ratio between the maximum and minimum width of the area. 

The aspect ratio can be expressed as 

MajorAxisLength
AspectRatio

MinorAxisLength
=  (4) 

where MajorAxisLength represents the length of the main axis, which is usually the 

longest axis in the region, while MinorAxisLength represents the length of the secondary 

axis, which is usually the shortest axis in the region. 

If the aspect ratio exceeds a predetermined threshold (set to 2), it is identified as 

a narrow region. If there is at least one narrow region, it can be considered a colonic 

collapse. Once the region is detected as collapsed, a close operation (dilation followed 

by erosion) is performed in this region. 

The collapsed images, processed through morphological operations, effectively 

restore part of the colonic structure. The endoscope can be guided forward, employing 

the dark area or optical flow method. The choice between the dark area method and 

the optical flow method is covered in Section 4. 

3.2. Detection and segmentation of colonic tumor 

Tumors pose a significant challenge during endoscopic procedures, often 

obstructing the field of view and impeding precise navigation. This obstruction poses 

difficulties to the system in locating the navigation point, hindering endoscopic 

exploration accurately. Direct contact with the tumor area must be avoided to prevent 

exacerbating tumor growth. 
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To address this challenge, we employ deep learning techniques for tumor 

detection and segmentation to avoid tumor regions effectively. The specific strategy 

(see Figure 5) is as follows: Endoscopic images undergo classification using a 

convolutional neural network [25] - and tumor regions are further segmented and 

eliminated at the pixel level by introducing semantic segmentation techniques. 

Subsequently, the endoscope can be guided forward, employing the dark area or 

optical flow method. 

 

Figure 5. Schematic diagram of tumor detection and processing strategy. 

Real-time image processing of tumors is critical during examination. In addition 

to ensuring high real-time performance, maintaining high accuracy is also vital. 

Therefore, striking a balance between accuracy and real-time performance is the key 

to achieving effective navigation. 

3.2.1. Detection of colonic tumor 

Considering network accuracy and real-time performance requirements, we 

compare three lightweight models: MobileNet-V2 [26], ShuffleNet [27], and 

EfficientNet-B0 [28]. These models demonstrate excellent accuracy while 

maintaining high computational efficiency. In addition, all three models employ a 

migration learning approach [29,30] that facilitates the adaptation of the models for 

specific classification tasks involving endoscopic images. 

The data are from Gastrointestinalatlas.com and contain 1000 images with and 

without tumors. The dataset is split into 80% for training and 20% for testing and 

validation. Furthermore, data augmentation is performed, through four 

transformations (rotation, flipping, blurring and lighting changes) [31]. 

The experimental results are assessed using three main metrics: Accuracy, model 

parameter count, and average inference time. Inference time refers to the duration the 

neural network needs to process a frame. Each network model underwent testing on 

50 tumor images to calculate the average reasoning time. Table 1 summarizes the 

results. 
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Table 1. Results of evaluation of indicators in tumor detection. 

Models Accuracy/% Params/M Inference time/ms 

MobileNet-V2 91.68 3.50 32 

ShuffleNet  92.37 1.40 29 

EfficientNet-B0 93.59 5.31 73 

Table 1 shows that while EfficientNet-B0 exhibits superior accuracy compared 

to the other models, its inference time is longer than that of the other two models. 

MobileNet-V2 displays a lower level of accuracy. ShuffleNet balances accuracy and 

speed, making it the preferred tumor detection model for our system. 

Training details: ShuffleNet is trained using a stochastic gradient descent (SGD) 

optimizer with an initial learning rate of 0.01, momentum of 0.9, and weight decay of 

4 × 10−5. The loss function is a cross-entropy loss function. During the training process, 

the learning rate decays linearly with the number of training steps. The total number 

of training steps is 300,000, and validation is performed once every 10,000 steps. 

3.2.2. Segmentation of colonic tumor 

Semantic segmentation analyzes tumor images, helping doctors differentiate 

tumors from nearby healthy tissues by classifying each pixel. It facilitates more 

accurate diagnosis and navigation planning. 

For real-time requirements, the DeepLabV3+ model with encoder 

MobileNetV2 [32] is chosen. The model is tested on a tumor image dataset, which 

is also sourced from Gastrointestinalatlas.com. and is compared to the 

DeepLabV3+ [33] model with the ResNet50 encoder. The images are divided into 

80% for training and 20% for testing and validation, following the data 

augmentation process described previously. 

The experimental results are evaluated using three metrics: Mean intersection 

over union (MIoU), number of model parameters (Params), and average inference time. 

The average time for segmenting 50 images is also calculated. Table 2 summarizes 

the results. 

Table 2. Results of evaluation of indicators in tumor segmentation. 

Models MIoU/% Params/M Inference time/ms 

DeeplabV3+ (ResNet50) 83.59 27.68 87 

DeeplabV3+ (MobileNetV2) 81.80 5.99 54 

As illustrated in Table 2, while the DeepLabV3+ (ResNet50) model exhibits a 

relatively high MIOU, its numerous parameters and prolonged inference times may 

present challenges for real-time endoscopic navigation systems. The MIOU of 

DeepLabV3+ (MobileNetV2) is marginally lower than that of DeepLabV3+ 

(ResNet50). However, the former is faster. Consequently, the DeepLabV3+ 

(MobileNetV2) model is well-suited to the purpose of providing the requisite accuracy 

and speed for endoscopic navigation systems. 

Training details: DeepLabV3+ (MobileNetV2) is trained using a stochastic 

gradient descent (SGD) optimizer with an initial learning rate of 0.01, momentum of 

0.9, and weight decay of 4 × 10−5. The loss function is a cross-entropy loss function. 
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During the training process, the learning rate decays linearly with the number of 

training steps. The total number of training steps is 300,000, and validation is 

performed once every 10,000 steps. 

Removing the identified tumor within the tumor region is imperative to ensure 

the navigation system’s efficiency. Upon successful removal, the navigation system 

will determine the optimal approach (see Section 4), whether dark area or optical flow. 

Subsequently, this chosen method will be applied to the endoscopic image of the 

removed tumor to calculate the navigation point. Physicians will then track this point 

to minimize unnecessary contact and potential complications, ensuring the accuracy 

and safety of the navigation process. 

3.2.3. Quantitative analysis of threshold selection 

In order to improve the scientific validity of the methodology, we performed a 

quantitative analysis of the threshold selection. Specifically, we used sensitivity 

analysis to assess the reasonableness and reliability of the thresholds. Through the 

sensitivity analysis, we determined the effects of different thresholds on the model 

performance and thus selected the optimal thresholds. Sensitivity index: Obtained by 

calculating the derivatives or correlation statistics of the model output to the parameter 

change, the higher value indicates that the model is more sensitive to the parameter. 

According to the size of the sensitivity index, the sensitivity is categorized into three 

levels: High, medium, and low. 

Hyperparameter tuning is a key step in the training of deep learning models, 

which directly affects the performance of the models (Table 3). The following is the 

specific procedure of our hyperparameter tuning for ShuffleNet and DeepLabV3+ 

models: (1) Learning rate: Learning rate is one of the most important hyperparameters 

in deep learning model training. The learning rate determines how much the gradient 

descent optimization algorithm moves in the parameter space. Too small a learning 

rate will lead to slow or even stagnant training; too large a learning rate will lead to 

unstable training dynamics. We choose an initial learning rate of 0.01 and use a linear 

decay strategy in the training process. (2) Batch size: The batch size determines the 

number of samples to be captured in each forward and back propagation. Smaller batch 

sizes will result in more noise but allow for more frequent parameter updates; larger 

batch sizes result in smaller variance in the gradient estimates of individual batches, 

which helps the network to train more stably, but this may also make the training 

process require more computational resources and time. We choose a batch size of 32. 

(3) Weight decay coefficient: Weight decay can limit the magnitude of parameter 

variation and play a regularizing role. We choose a weight decay coefficient of 4 × 

10−5. (4) Optimizer: We choose a stochastic gradient descent (SGD) optimizer with a 

momentum of 0.9. The momentum parameter is used to speed up the training and help 

avoid falling into local optima. (5) Learning rate decay strategy: Learning rate decay 

refers to gradually decreasing the learning rate of the model as the number of training 

iterations increases. We use a linear decay strategy to gradually reduce the learning 

rate as the number of training steps increases. 
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Table 3. Sensitivity analysis data. 

Parameter name Original value Range of change Sensitivity index Sensitivity description 

Learning rate 0.01 0.001~0.1 0.85 High 

Batch size 32 16~64 0.45 Medium 

Weight decay 4 × 10−5 1 × 10−6~1 × 10−4 0.30 Low 

4. Adaptive navigation strategy 

4.1. Overview of the strategy 

We have developed an adaptive navigation strategy (see Figure 6) rooted in a 

thorough analysis of image characteristics to fully harness the advantages of the dark 

area method and the optical flow method in diverse environments. Initially, the system 

identifies and addresses specific circumstances. Following the preprocessing of the 

image, the system detects the presence of collapse. Upon detection, the system extends 

the collapsed region and subsequently assesses the presence of tumors within the 

image. Precise tumor segmentation and removal operations are conducted in cases 

where tumors are detected. Subsequently, the system extracts and binarizes the 

image’s ROI. 

 

Figure 6. Schematic diagram of navigation method fusion strategy. 

Then, a thorough analysis is conducted to determine the optimal navigation 

method. The navigation point is calculated by the system under the optimal navigation 

method, and the operator can then utilize the endoscope in accordance with the 

navigation point. 

The specific classification process, which involves classifying an image and 

selecting a navigation method based on features such as the number of black pixel 

points, the length of the arc, and overall brightness, is described in detail in Section 

4.2: Ordinary case analysis in navigation. 

 

 



Molecular & Cellular Biomechanics 2025, 22(4), 1648. 
 

12 

4.2. Ordinary case analysis in navigation 

The analysis focused on three key features: The number of black pixel points 

after the binarization of the image, the length of the arc formed between the dark area 

and the ROI, and the overall brightness of the image. The number of black pixel points 

is correlated with the significance of the dark area in the image, serving as a metric to 

assess both the extent and importance of this region. The length of the arc reflects the 

distance between the endoscope and the colonic wall to a certain degree, which is 

quantified by the number of points along the arc. The overall brightness is measured 

by calculating the brightness histogram of the image. 

Figure 7 illustrates four ordinary cases in the colon (without collapse and tumor). 

The original images of the four cases are displayed in Figure 7a1–d1. The results after 

binarization of the four cases are shown in Figure 7a2–d2. The brightness histograms 

of the four cases are shown in Figure 7a3–d3. 

In Case 1, the binarized image contains a high number of black pixel points but 

no circular arc with the ROI (Figure 7a2). In Case 2, the binarized image shows a high 

number of black pixel points, a short circular arc with the ROI (Figure 7b2), and low 

brightness (Figure 7b3). In Case 3, the binarized image has a high number of black 

pixel points and forms a long circular arc with the ROI (see Figure 7c2). In Case 4, 

the binarized image contains no black pixel points (see Figure 7d2) and has high 

brightness (see Figure 7d3). 

The process of determining the method of navigation in the four cases in Figure 

7 is described in detail in conjunction with the classification process in Figure 6. First, 

the image is pre-processed, including grayscale conversion, smoothing filters, and 

contrast enhancement. The image is then binarized as in Figure 7a2–d2. At this point, 

the number of black pixel points in the binarized image is initially considered. This 

reflects the distinctiveness of the dark area characteristics in the image. 

A threshold of 1 (value is 1800) is established. When the number of black pixel 

points after binarization falls below threshold 1, indicating that the brightness of the 

image is relatively high overall. At this point, the endoscope is close to the colonic 

wall. Here, the optical flow method is employed for navigation. In Case 4, it is evident 

that no black pixel points are formed, as illustrated in Figure 7d2. The image 

brightness for this case is markedly high (as evidenced by Figure 7d3), which is 

navigated using the optical flow method. 

However, when the number of black pixel points exceeds or is equal to threshold 

1 after binarization, it signifies the prominent presence of the dark area characteristics 

within the image. In Case 1–Case 3, a distinct dark area is observed, as illustrated in 

Figure 7a2–c2. At this juncture, the arc formed between the dark area and the ROI is 

analyzed. 

In Case 1, there is no circular arc between the dark area and the ROI, as shown 

in Figure 7a2. It implies that the dark area region is close to the image’s center. This 

scenario arises when there is no noticeable curvature in the field of view of the 

endoscope. In this case, the dark area method is deemed for navigation. 

If the dark area forms an arc with the ROI, the length of the circular arc formed 

between the dark area and the ROI is evaluated, and the threshold 2 (value is 260) is 

set. In Case 3, the circular arc length is greater than or equal to the threshold 2, as 
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shown in Figure 7c2. It infers that the distance between the endoscope and the colonic 

wall is close. In such instances, the optical flow method is more effective in utilizing 

local dynamic information to provide accurate navigation information. Conversely, 

the dark area method is no longer applicable due to limitations in the field of view and 

image occlusion. 

In Case 2, the circular arc length is less than threshold 2, as shown in Figure 7b2. 

It suggests a distance between the endoscope and the colonic wall. However, relying 

solely on this criterion does not determine whether to employ the dark area or optical 

flow methods. In such scenarios, additional judgment is conducted based on the 

image’s brightness. A threshold of 3 (value is 120) is established. In Case 2, the overall 

brightness of the image is greater than or equal to threshold 3, as shown in Figure 7b3. 

It infers that the endoscope is in a curved area of the colon with greater curvature, 

closer to the colonic wall. The optical flow methods can provide more precise 

navigation information. 

However, if the overall brightness of the image is less than threshold 3, it signifies 

a more significant presence of the dark area characteristics in the image. In such a case, 

the endoscope is situated in the straight or less curved colonic region, warranting 

utilization of the dark area method. 

The navigation points are labeled with green points in Figure 7a4–d4 

accordingly. 

 

Figure 7. Schematic diagram of the four ordinary cases: (a1–d1) Original images of 

the four cases; (a2–d2) black pixel points in four cases; (a3–d3) brightness 

histogram of the four cases; (a4–d4) navigation point labeling in four cases. 



Molecular & Cellular Biomechanics 2025, 22(4), 1648. 
 

14 

The thresholds 1, 2, and 3 are determined through a series of experiments. The 

endoscopes’ resolution is 1280 × 720, a standard resolution for medical endoscopes. 

Data is collected and analyzed from endoscopes across various colonic regions, 

focusing on factors such as the number of black pixel points after binarization, the 

length of the circular arc formed by the ROI and the dark area, and the overall 

brightness. 

4.3. Special case analysis in navigation 

When the system detects a special situation (collapse or tumor), take appropriate 

measures, including dilation of the collapsed colon and removal of the tumor. The 

following steps are the same as in the ordinary cases above, namely, the number of 

black pixel points after binarization, the length of the circular arc formed between the 

dark area and the ROI, and the overall brightness of the image are analyzed in sequence 

to determine whether the optical flow method or the dark area method is employed. 

Four specific cases involving tumors or collapses are chosen for analysis (see 

Figure 8). The original images of these cases are depicted in Figure 8a1–d1, and it is 

observed that both images in Figure 8a1 and Figure 8b1 exhibit a collapsed colon. 

Following the distension of the collapsed colon, the colonic structure is restored to a 

certain extent, as shown in Figure 8a2,b2. In contrast, tumors of varying sizes are 

evident in Figure 8c1,d1. These tumors are segmented and removed, resulting in 

Figure 8c2,d2 Subsequent analysis of Figure 8(a2–d2) is then conducted sequentially 

using the comprehensive judgment method established previously. The results after 

binarization of the four cases are shown in Figure 8a3–d3. The brightness histograms 

of the four cases are shown in Figure 8a4–d4. 

The process of determining the method of navigation in the four cases in Figure 

8 is described in detail in conjunction with the classification process in Figure 6. Since 

the choice of navigation methods in the ordinary case has already been described in 

detail, only the choice of methods is briefly analyzed here. 

In Case 5, the image is binarized, yielding many black pixel points. However, a 

short circular arc is formed with the ROI (see Figure 8a3), and the overall brightness 

is high (see Figure 8a4). The optical flow method is chosen for navigation. 

In Case 6, the binarized image displays many black pixel points and forms a long 

circular arc with the ROI (see Figure 8b3). Navigation is also done using the optical 

flow method. 

In Case 7, the number of black pixel points also remains high, and a long circular 

arc is formed with the ROI (see Figure 8c3); the optical flow method is used. 

In Case 8, the binarized image contains a high number of black pixel points but 

fails to form a circular arc with the ROI (see Figure 8d3), leading to the selection of 

the dark area method. 

Figure 8a5–d5 shows four cases of navigation points computed by the optical 

flow method or the dark area method, labeled on the original image. 
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Figure 8. Schematic diagram of the four special cases: (a1–d1) Original images of 

the four cases; (a2–d2) processing operations of the four cases; (a3–d3) black pixel 

points in four cases; (a4–d4) brightness histogram of the four cases; (a5–54) 

navigation point labeling in four cases. 

5. Experimental validation 

5.1. Experiment setup 

An experimental setup, illustrated in Figure 9a, comprises three main 

components: A computer, an endoscope, and a simulated colon model. A computer is 

used to execute our navigation system. The endoscope features a four-way adjustment 

capability, enabling it to simulate the manipulations performed by physicians. The 

endoscope is connected to a computer and the human-computer interface (see Figure 

9b) on the computer displays the endoscope’s real-time captured images. The interface 

captures images instantly for analysis and displays navigation points. In this interface, 

a circle is formed around the visual center (the radius is 20% of the screen vision). 

When the calculated navigation point (green marked point) is located outside the circle, 

the endoscope needs to be oriented according to the position of the navigation point in 

relation to the visual center. As shown in Figure 9c, the endoscope will be controlled 

to bend in the direction of the lower-right corner to approach the center of vision. 
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The simulated colon model utilized in this study is not only used to validate the 

performance of the endoscopic navigation system but also serves as a tool for pre-

service training of endoscopists to enhance their operating skills. 

 

Figure 9. The experiment of endoscopic navigation: (a) Experimental setup 

diagram; (b) human-computer interface diagram; (c) simulated colon model diagram. 

In the experiment, the endoscope traverses through the simulated colon while the 

navigation system calculates navigation points in real-time. Figure 10 shows six 

different moments in endoscopic navigation, as shown in Figure 10a–f. Each image 

(see Figure 10a–f) shows the current position of the endoscopic lens and the 

corresponding real points to navigate. The real navigation points were obtained by 

averaging the navigation points manually labeled by five experienced testers on the 

recorded experimental videos. Each individual performed three separate markings and 

received prior uniform training. The horizontal and vertical distances between the 

calculated navigation point and the real navigation point are regarded as horizontal 

deviation and vertical deviation (see Figure 9c). 

 

Figure 10. Process of endoscopic navigation: (a–f) Six different moments in 

endoscopic navigation. 
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5.2. Evaluation of basic performance indicators 

5.2.1. Navigation accuracy 

Deviations (see Figure 9c) in the horizontal and vertical directions are measured 

between the calculated and real navigation points to evaluate the accuracy of the 

system. The processed image had a resolution of 720 × 720, and the final displayed 

image size is 82 × 82 m. Each pixel is calculated to be 0.114 mm in the display area, 

allowing for mapping of pixel-level differences in the image to physical space. 

Figure 11 presents three groups of horizontal and vertical deviations of the 

system. The total time required for each experiment varies due to differences in the 

speed of advancement of each endoscope. The overall average horizontal deviation of 

the system is 3.15 mm, and the overall average vertical deviation is 2.51 mm. The 

optical flow method is employed on three occasions throughout each experiment. 

These instances occur in the curved segment of the sigmoid colon, the curved segment 

at the junction of the descending and transverse colon, and the curved segment at the 

junction of the transverse and ascending colon. It can be observed that the deviation 

of the dark area method is lower than that of the optical flow method, with the 

exception of the second dark area method. This is due to the fact that the optical flow 

method is susceptible to changes in image dynamics. In the second segment of the 

colon using the dark area method, the deviation of the dark area method increases due 

to the presence of the tumor. The combination of the dark area method and the optical 

flow method completes the navigation of the entire colon. 
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Figure 11. Endoscopic navigation deviations: (a) Horizontal deviation and vertical deviation of the first group; (b) 

horizontal deviation and vertical deviation of the second group; (c) horizontal deviation and vertical deviation of the 

third group. 

5.2.2. Navigation success rate 

The following two scenarios are selected to evaluate the navigation success rate. 

One is tested in the colon with different degrees of curvature. Four colon segments 

with different levels of curvature (straight, mild, moderate, and severe) are chosen for 

testing. Mild curvature typically ranges from 15° to 45°, while moderate curvature 

occurs at angles between 45° and 90°. Severe curvature is classified as an angle over 

90°.Three segments of the straight and one segment of each of the other curved 

segments of the colon are selected, totaling six segments. These segments of the colon 

are free of special conditions such as tumors and collapses, maintaining good lighting 
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conditions. Each segment of the colon is conducted when experiments are performed 

20 times. The navigation success rate is 100% for straight and mildly curved colon, 

indicating that the system can navigate effectively under these conditions. The success 

rate is 95% for moderate curvature of the colon; however, it decreases to 75% in the 

presence of severe curvature of the colon. This decline can be attributed to the 

challenges the endoscopic camera encounters in capturing the comprehensive field of 

view within the highly curved colon. Such curvature hampers image processing and 

feature recognition accuracy, thereby impacting navigation accuracy. 

The other is tested in the colon with special conditions. Experiments are 

conducted on the colon model with unique conditions: One with a tumor and another 

with a collapse. Both segments are relatively straight and have adequate lighting. 

Twenty tests are conducted in each segment, and the navigation success rate for the 

tumor-containing colon is 90%. Despite the relatively high success, an analysis of the 

failures reveals that the presence of the tumor leads to localized areas of narrowing, 

increasing the difficulty of endoscopic navigation. This is the reason for the navigation 

failure. The success rate for a collapsed colon is 80%. It is important to note that the 

distension process may not be able to accurately restore the original shape of the colon, 

especially in the case of non-uniform collapse. This leads to a bias in the computation 

of the navigation points. 

Considering all test scenarios, the overall success rate of our endoscopic 

navigation system is 92.5%. The success rate is reduced in specific circumstances, 

such as a high degree of curvature or the presence of collapse, but the overall 

performance remains satisfactory. 

5.2.3. Navigation in real time 

The processing time per frame is evaluated using two methods. The dark area 

method is capable of processing each frame in a mere 9 ms, while the optical flow 

method requires 278 ms per frame. The time from frame capture to updating 

navigation points is also measured. In normal conditions, the dark area method takes 

24 ms, compared to 302 ms for the optical flow method. With the tumor, the dark area 

takes 365 ms and optical flow takes 727 ms. For the collapsed region, the dark area 

method takes 79 ms, and the optical flow method takes 354 ms. Overall, the real-time 

performance is satisfactory. 

5.3. System evaluation 

In order to assess the usefulness and general applicability of the system in greater 

depth, senior doctors and untrained laypeople were invited to participate in the system 

evaluation. 

5.3.1. Doctor’s feedback 

An evaluation of the endoscopic navigation system was conducted by an expert 

in endoscopy from the First Hospital of Shanxi Medical University. This expert has 

accumulated a wealth of clinical experience in the domain of colonoscopy and has 

been involved in related endoscopic technology research. 

The expert provided feedback on the navigation system, stating that it provides 

clear and reliable guidance during real-time operation, thus facilitating the endoscopic 

insertion operation. Furthermore, the system is a valuable study as it reduces the 
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physical and mental exertion of the doctor during prolonged operations, thus 

improving the overall efficiency of the examination. 

It is anticipated that, under the guidance of this expert, the navigation system will 

continue to be optimized, with a view to promoting its clinical application in the future. 

5.3.2. Model usefulness and general applicability testing 

In addition to providing further validation of the system’s usefulness and general 

applicability, five laypeople were invited to test the navigation system using the 

simulated model. Each participant was required to complete the navigation task on the 

simulated colon model. 

Prior to the test, participants were not provided with any training on endoscopic 

operation. Instead, they were merely shown a brief demonstration video of the 

operation before commencing the test. Each participant was required to utilize the 

navigation system to complete a comprehensive traversal task through the simulated 

colon model, with the system providing real-time prompts for navigation points. The 

participants’ error frequency, and their feelings and feedback on the operation of the 

system were focused on. 

The total failure counts for the five participants during their first three attempts 

were 4, 5, 3, 6, and 4, respectively (adjustments continued after each failure until the 

end of the colon model was reached). As their familiarity with the system increased, 

the number of errors gradually decreased. After three operations, all participants were 

able to successfully complete the navigation task with the assistance of the navigation 

system’s prompts. 

It is of greater significance that all participants affirmed the simplicity and 

intelligibility of the system’s user interface, as well as the efficacy of real-time 

feedback during navigation in facilitating comprehension of operational requirements 

and enhancing controllability of the operation. The overwhelming majority of 

participants affirmed the efficacy of the navigation system in simplifying endoscopic 

operations, particularly for those with limited experience in this domain. 

The results demonstrate that the navigation system is intuitive and accessible, 

even to operators without prior experience, enabling them to rapidly acquire the 

necessary skills and successfully complete complex navigation tasks. Consequently, 

the reliance on operational experience and protracted training is reduced. 

6. Discussion 

This paper presents an intelligent system for navigating an endoscope in a 

complex intestinal environment. The system employs an adaptive pathfinding strategy 

that incorporates the dark area method and the optical flow method, aiming to improve 

the navigation performance. The system achieves a 92.5% success rate in a simulated 

intestinal model with an average horizontal deviation of 3.15 mm and an average 

vertical deviation of 2.51 mm, demonstrating high accuracy and reliability. 

In contrast to the navigation method proposed by Hao et al., which only 

considered the presence of a dark area, our strategy combines the discriminative 

mechanisms of the three key factors and intelligently selects the most appropriate 

navigation method, thus improving the navigation accuracy in complex intestinal 

environments. In addition, our system includes specialized handling strategies for 
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special cases such as colonic collapse and tumors, which have not yet been fully 

addressed in the study by Reilink et al. 

However, a limitation of this study lies in the fact that only a limited range of 

intestinal curvature was tested. Further exploration and optimization of the system’s 

performance in more complex curvature cases are imperative and will be a primary 

focus of future studies. Furthermore, the subsequent focus should be on extending the 

system to clinical applications. 

7. Conclusion 

We propose an adaptive strategy for intelligent colon endoscopic navigation in 

complex colonic environments. This system intelligently selects the most suitable 

navigation method by introducing a comprehensive discriminative mechanism, 

improving the adaptability to complex colonic environments. Moreover, specific 

processing strategies are designed for exceptional cases such as colonic collapses and 

tumors; the ability to respond to these special situations is further enhanced. The 

experimental results demonstrate that our system is capable of providing crucial 

information for endoscopic navigation, thereby enabling more precise and effective 

guidance of the endoscope through complex colonic environments. Furthermore, the 

system is straightforward to operate, allowing even inexperienced operators to quickly 

master and successfully perform endoscopic operations, thereby proving that our 

system can reduce the reliance on operating experience. 

In terms of navigation accuracy assessment, we not only provided the average 

deviation but also analyzed the navigation deviation from multiple dimensions, which 

provided the direction for further optimization of the system, especially when dealing 

with complex anatomical structures and lesions, which requires further improvement 

of the navigation algorithm to enhance the accuracy.  

In summary, our adaptive navigation system performs well in complex colonic 

environments, not only improves navigation accuracy, but also reduces the 

dependence on operating experience, comprehensively evaluates the performance of 

the navigation system, and provides a scientific basis for further optimization of the 

system. 

Author contributions: Conceptualization, XM and JG; methodology, XM and JG; 

software, XM; validation, XM, HH and JZ; formal analysis, XM and CL; resources, 

JZ; data curation, CL; writing—original draft preparation, XM; writing—review and 

editing, XM and JG; visualization, XM; supervision, GY; project administration, JG; 

funding acquisition, JG. All authors have read and agreed to the published version of 

the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of 

China, grant number 52275038 and 61803347.This research was funded by the Shanxi 

Province Science Foundation, grant number 202303021222087. 

Ethical approval: Not applicable. 

Data availability statement: The original contributions presented in this study are 

included in the article. Further inquiries can be directed to the corresponding author. 



Molecular & Cellular Biomechanics 2025, 22(4), 1648. 
 

22 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Bray F, Laversanne M, Weiderpass E, et al. The ever‐increasing importance of cancer as a leading cause of premature death 

worldwide. Cancer. 2021; 127(16): 3029-3030. doi: 10.1002/cncr.33587 

2. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality 

worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2024; 74(3): 229-263. doi: 

10.3322/caac.21834 

3. Li M, Wang B, Yang J, et al. Multistage adaptive control strategy based on image contour data for autonomous endoscope 

navigation. Computers in Biology and Medicine. 2022; 149: 105946. doi: 10.1016/j.compbiomed.2022.105946 

4. Tang Y, Anandasabapathy S, Richards‐Kortum R. Advances in optical gastrointestinal endoscopy: a technical review. 

Molecular Oncology. 2020; 15(10): 2580-2599. doi: 10.1002/1878-0261.12792 

5. Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 2022; 72(1): 7-33. doi: 

10.3322/caac.21708 

6. Keswani RN, Crockett SD, Calderwood AH. AGA Clinical Practice Update on Strategies to Improve Quality of Screening 

and Surveillance Colonoscopy: Expert Review. Gastroenterology. 2021; 161(2): 701-711. doi: 10.1053/j.gastro.2021.05.041 

7. Boini A, Acciuffi S, Croner R, et al. Scoping review: autonomous endoscopic navigation. Artificial Intelligence Surgery. 

2023; 3(4): 233-248. doi: 10.20517/ais.2023.36 

8. Gastone C, Skonieczna-Żydecka K, Marlicz W, et al. Frontiers of Robotic Colonoscopy: A Comprehensive Review of 

Robotic Colonoscopes and Technologies. Journal of Clinical Medicine. 2020; 9(6): 1648. doi: 10.3390/jcm9061648 

9. Luo X, Mori K, Peters TM. Advanced Endoscopic Navigation: Surgical Big Data, Methodology, and Applications. Annual 

Review of Biomedical Engineering. 2018; 20(1): 221-251. doi: 10.1146/annurev-bioeng-062117-120917 

10. Cagiltay NE, Ozcelik E, Berker M, et al. The Underlying Reasons of the Navigation Control Effect on Performance in a 

Virtual Reality Endoscopic Surgery Training Simulator. International Journal of Human–Computer Interaction. 2018; 

35(15): 1396-1403. doi: 10.1080/10447318.2018.1533151 

11. Prendergast JM, Formosa GA, Heckman CR, et al. Autonomous Localization, Navigation and Haustral Fold Detection for 

Robotic Endoscopy. Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 

2018. doi: 10.1109/iros.2018.8594106 

12. Reilink R, Stramigioli S, Misra S. Image-based flexible endoscope steering. Proceedings of the 2010 IEEE/RSJ International 

Conference on Intelligent Robots and Systems. Published online October 2010: 2339-2344. doi: 10.1109/iros.2010.5652248 

13. Xia S, Krishnan SM, Tjoa MP, Goh PMY. A novel methodology for extracting colon’s lumen from colonoscopic images. 

Systemics Cybern. Inform; 202. 

14. Zhang Z, Qian J, Zhang Y, et al. An Intelligent Endoscopic Navigation System. Proc. Int. Conf. Mechatronics Autom; 2006. 

doi: 10.1109/icma.2006.257444 

15. Liu Q, Li H, He L. Optical Flow Algorithm Based on the Medical Flexible Endoscope System. Electronic Sci. & Tech; 2015. 

16. van der Stap N, Reilink R, Misra S, et al. The use of the focus of expansion for automated steering of flexible endoscopes. 

Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics 

(BioRob); 2012. doi: 10.1109/biorob.2012.6290804 

17. Ciuti G, Visentini-Scarzanella M, Dore A, et al. Intra-operative monocular 3D reconstruction for image-guided navigation in 

active locomotion capsule endoscopy. Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on 

Biomedical Robotics and Biomechatronics (BioRob); 2012. doi: 10.1109/biorob.2012.6290771 

18. Abu-Kheil Y, Ciuti G, Mura M, et al. Vision and inertial-based image mapping for capsule endoscopy. Proceedings of the 

2015 International Conference on Information and Communication Technology Research (ICTRC); 2015. doi: 

10.1109/ictrc.2015.7156427 

19. Floor PA, Farup I, Pedersen M. 3D reconstruction of the human colon from capsule endoscope video. Proc. Colour Vis. 

Comput. Symp. (CVCS); 2022. 

20. Onogi S, Nakajima Y. Assessment of All-in-focus Image Quality in Shape-from-focus Technique. Sensors and Materials. 

2023; 35(4): 1327. doi: 10.18494/sam4219 



Molecular & Cellular Biomechanics 2025, 22(4), 1648. 
 

23 

21. Jiang W, Zhou Y, Wang C, et al. Navigation strategy for robotic soft endoscope intervention. The International Journal of 

Medical Robotics and Computer Assisted Surgery. 2019; 16(2). doi: 10.1002/rcs.2056 

22. Krishnan SM, Tan CS, Chan KL. Closed-boundary extraction of large intestinal lumen. Proceedings of 16th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society; 1994. doi: 10.1109/iembs.1994.411878 

23. Lucas BD, Kanade T. An iterative image registration technique with an application to stereo vision. Proc. Int. Joint Conf. 

Artif. Intell; 1981. 

24. Mondal R, Dey MS, Chanda B. Image Restoration by Learning Morphological Opening-Closing Network. Mathematical 

Morphology—Theory and Applications. 2020; 4(1): 87-107. doi: 10.1515/mathm-2020-0103 

25. Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. Proceedings of the 2017 

International Conference on Engineering and Technology (ICET); 2017. doi: 10.1109/icengtechnol.2017.8308186 

26. Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the 2018 

IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018. doi: 10.1109/cvpr.2018.00474 

27. Zhang X, Zhou X, Lin M, et al. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. 

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018. doi: 

10.1109/cvpr.2018.00716 

28. Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks. Proc. Int. Conf. Mach. Learn; 2019. 

29. Pan SJ, Yang Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering. 2010; 22(10): 

1345-1359. doi: 10.1109/tkde.2009.191 

30. Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. Journal of Big Data. 2016; 3(1). doi: 10.1186/s40537-

016-0043-6 

31. Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning. Available online: 

https://arxiv.org/abs/1712.04621 (accessed on 11 January 2025). 

32. Dong K, Zhou C, Ruan Y, et al. MobileNetV2 Model for Image Classification. Proceedings of the 2020 2nd International 

Conference on Information Technology and Computer Application (ITCA); 2020 doi: 10.1109/itca52113.2020.00106 

33. Chen LC, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. 

Proc. ECCV; 2018. 


