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Abstract: This paper innovatively applies computational biomechanical models to the field 

of human capital flow research, establishing a novel analytical framework. By introducing 

the potential field concept from biomechanics to describe economic development dynamics, 

employing continuum mechanics methods to characterize talent flow patterns, and integrating 

numerical computation techniques, we achieved systematic simulation of the relationship 

between human capital flow and economic growth. The research reveals that human capital 

flow promotes economic growth through three primary mechanisms: knowledge 

accumulation effect, innovation-driven effect, and industrial upgrading effect. In the short 

term, human capital flow can contribute to a 1.35 percentage point increase in GDP growth 

within one year; in the long term, its total contribution to economic growth rises from 3.19% 

to 7.42% over a decade. The study identifies four flow patterns: agglomeration, gradient, 

network, and circular, with agglomeration-type flow showing the most significant economic 

effect, contributing 42.5% to economic growth. Policy simulation results indicate that 

innovation-driven strategies can drive GDP growth by 2.85 percentage points, industrial 

upgrading strategies contribute 2.42 percentage points, talent incentive strategies achieve 

2.15 percentage points growth, while comprehensive optimization strategies can realize a 

3.65 percentage point growth effect. Based on these findings, we propose policy 

recommendations including building a multi-level talent support system, implementing a 

“gradient cultivation, collaborative development” regional development strategy, and 

following the principle of “top-level design, phased implementation, key breakthrough.” This 

research not only achieves methodological innovation but also provides a theoretical 

foundation and practical guidance for formulating scientific talent policies. 

Keywords: computational biomechanical model; human capital flow; economic growth; 

policy simulation; regional development 

1. Introduction 

In today’s rapidly developing global economy, human capital flow has become 

a core factor influencing regional and national economic growth. As the most 

valuable productive factor in the knowledge economy era, human capital not only 

drives economic development through direct participation in production processes 

but also profoundly impacts economic growth through multiple mechanisms such as 

knowledge spillover, technology diffusion, and innovation driving. Particularly in 

the digital economy era, the speed, scale, and complexity of talent mobility have 

reached unprecedented levels, posing serious challenges to traditional economic 

analysis methods in explaining and predicting human capital flow patterns and their 

economic effects. Traditional research methods, often employing linear thinking and 

static analytical frameworks, struggle to effectively capture the dynamic 

characteristics and nonlinear impacts of human capital flow. Computational 
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biomechanics originated in the biomedical engineering field in the 1970s and has 

evolved from simple linear elastic models to complex nonlinear multi-field coupling 

models; meanwhile, economic growth theory has developed from the early Solow 

model to endogenous growth theory, and further to extended models incorporating 

human capital factors. Although these two fields have different developmental 

trajectories, they share methodological commonalities in addressing the dynamic 

evolution of complex systems. 

In seeking new research paradigms, biomechanical models have begun to 

emerge in socioeconomic system analysis due to their unique advantages in 

describing complex system dynamic behaviors. Recent research indicates that 

biomechanical models demonstrate significant advantages in handling multi-factor 

interactions, nonlinear relationships, and dynamic evolution. For instance, Firouzi et 

al. [1] successfully simulated complex human motion systems using biomechanical 

models in exoskeleton system research, providing innovative methodological 

references for analyzing human resource flow in socioeconomic systems. The 

biomechanical prediction model proposed by Ma and Xiong [2] further validates this 

method’s applicability and effectiveness in complex system analysis. These studies 

suggest that biomechanical modeling methods can provide new analytical 

perspectives for understanding the complex phenomenon of human capital flow. 

Meanwhile, the advantages of computational methods in complex system 

modeling cannot be ignored. With advances in computational technology, the 

capability for numerical simulation and prediction of complex systems has 

significantly improved. Research by Cui et al. [3] and Ruan et al. [4] demonstrates 

that computational biomechanical models can accurately simulate and predict 

complex system dynamic behaviors, providing powerful technical support for 

studying human capital flow. Particularly in handling large-scale data, multivariate 

interactive relationships, and nonlinear dynamic evolution, computational methods 

show unparalleled advantages over traditional analytical methods. 

The theoretical significance of this research primarily lies in its interdisciplinary 

methodological innovation. By introducing biomechanical modeling methods into 

economic research, it breaks through the limitations of traditional economic analysis 

tools, providing a novel theoretical perspective for understanding human capital flow 

mechanisms. As demonstrated in Xue’s [5] organizational stress research, 

biomechanical models can effectively reveal complex interactive relationships within 

systems. Yurova et al.’s [6] research further confirms the unique advantages of 

biomechanical models in analyzing complex system collaborative operations. This 

interdisciplinary methodological innovation not only expands the toolbox of 

economic research but also provides a new thinking framework for understanding 

complex economic phenomena. 

At the practical level, this research provides scientific analytical tools and 

decision-making bases for human capital policy formulation. Through constructing 

computational biomechanical models, it becomes possible to simulate human capital 

flow effects under different policy scenarios and predict potential policy 

implementation impacts, thereby improving the scientific nature and precision of 

policy-making. This application-oriented research approach has been fully validated 

in studies by Meng et al. [7] and Chang et al. [8]. From a methodological 
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perspective, this research promotes the application expansion of computational 

biomechanical models in economics, providing new technical pathways for 

economic system modeling. This methodological innovation is also confirmed in 

Guo et al.’s [9] research, demonstrating the potential of interdisciplinary methods in 

solving complex problems. 

Based on the above background and significance, the main objectives of this 

research are to construct a human capital flow model based on biomechanical 

principles and to analyze in depth the dynamic impact mechanisms of human capital 

flow on economic growth. The specific research content includes three aspects: (1) 

Constructing a computational model reflecting complex dynamic characteristics of 

human capital flow by introducing biomechanical modeling methods, considering 

multidimensional attributes of talent flow, flow resistance, and attraction factors; (2) 

Systematically analyzing the interactive relationship between human capital flow 

and economic growth using this model, revealing its impact mechanisms, including 

direct and indirect effects; (3) Providing operationally feasible suggestions for 

policies promoting rational human capital flow and optimal allocation based on 

model analysis results. 

This research provides new research approaches for understanding and 

predicting the economic effects of human capital flow by integrating economic 

theory with biomechanical modeling methods while providing a scientific basis for 

relevant policy-making. This interdisciplinary research method can not only enhance 

understanding of human capital flow patterns but also provide more precise decision 

support for regional economic development strategy formulation. 

2. Literature review 

In the field of applying computational biomechanical models to human capital 

flow research, existing literature primarily focuses on computational method 

innovations, cross-domain application expansions, and systematic analysis methods. 

From the perspective of computational method development, recent years have seen 

significant improvements in both the computational accuracy and efficiency of 

biomechanical models with rapid advances in computational technology. Yu et al. 

[10], in their study of equine foot osteotomy plans, employed numerical computation 

methods for systematic evaluation of biomechanical models, not only validating the 

reliability of computational methods in complex system analysis but also proposing 

new approaches to improve computational efficiency. Zhao et al. [11] demonstrated 

the advantages of biomechanical models in handling nonlinear problems through their 

application of numerical computation methods in studying aortic valve stenosis. The 

dynamic biomechanical analysis method based on iterative computation proposed by 

Mao et al. [12] provided new technical pathways for handling time-varying systems, 

offering important inspirational significance for analyzing the dynamic 

characteristics of human capital flow. 

Regarding the breadth and depth of model applications, biomechanical models 

have demonstrated powerful systematic analysis capabilities. Pieter et al. [13] 

successfully simulated complex biological system evolution processes by combining 

biomechanical models with degradation models, providing new research 



Molecular & Cellular Biomechanics 2025, 22(4), 1646.  

4 

perspectives for analyzing dynamic characteristics of human capital flow through 

this multi-model integration modeling approach. Takehiro et al. [14] explored 

patient-specific biomechanical model applications, confirming the model’s 

effectiveness in personalized analysis. Owen et al. [15] achieved dynamic 

optimization of biomechanical models by integrating video and inertial sensor data, 

offering important reference value for improving human capital flow model accuracy 

through this data fusion method. 

Jiao [16] explored motion mechanism analysis methods from a computational 

modeling perspective, not only validating the reliability of computational 

biomechanical models in mechanism analysis but also providing methodological 

support for model expansion in social system analysis. Wang and Xiong [17] 

systematically summarized research progress in experimental and computational 

biomechanics, emphasizing the key role of computational methods in complex 

system analysis and indicating future development directions. These studies provide 

important theoretical references for applying biomechanical models to human capital 

flow research. 

From an interdisciplinary integration perspective, biomechanical models are 

being widely applied across various fields. Tao et al. [18] demonstrated successful 

model application in the medical field through computational biomechanical 

methods in orthodontic treatment research. Zhang et al. [19] validated model 

reliability in complex system research through experimental and computational 

biomechanical analysis of aortic dissection. The mechanical computation method 

considering muscle factors proposed by Guan et al. [20] provided technical support 

for constructing human capital flow models incorporating multidimensional 

variables. Xiong et al.’s [21] application practice in virtual simulation experiments 

accumulated valuable experience for model educational promotion and practical 

application. 

Recent international research has further expanded biomechanical model 

application boundaries. Gabriella et al. [22] validated the effectiveness of 

biomechanical models in system monitoring through comparative analysis of 

different monitoring methods’ performance. The graphical method proposed by 

Flanary et al. [23] provided new visualization tools for model interpretation, holding 

important significance for understanding internal mechanisms of human capital flow 

models. Hilhorst et al. [24] studied sensitivity analysis methods for biomechanical 

models with correlated inputs, providing a scientific basis for evaluating parameter 

impact degrees. Said et al. [25] pioneered new directions in model applications by 

combining machine learning technology with biomechanical models, offering new 

technical approaches for human capital flow research. 

Earlier research work also laid important foundations for model applications. 

Feng et al. [26] studied the biomechanical performance of convertible vena cava 

filters, confirming the reliability of biomechanical models in performance analysis. 

Lei et al. [27] explored biomechanical computational analysis methods for scoliosis 

correction, demonstrating model application potential in type identification and 

analysis. Although these studies mainly focused on traditional application areas, their 

methodologies provide important reference value for expanding model applications 

in economic research. 



Molecular & Cellular Biomechanics 2025, 22(4), 1646.  

5 

Overall, existing literature indicates that computational biomechanical models 

possess unique advantages in handling complex system problems: (1) Their 

computational methods are increasingly mature, effectively handling complex issues 

such as nonlinearity, multiple variables, and dynamic evolution; (2) Model 

application areas continue to expand from traditional biomedical fields to broader 

scientific research areas; (3) Interdisciplinary integration trends are evident, 

particularly in combinations with emerging technologies like machine learning and 

data analysis, greatly enhancing model analytical capabilities. These research 

achievements provide solid theoretical foundations and methodological support for 

applying biomechanical models to human capital flow research. 

However, current research still has some limitations: (1) Existing research 

mainly focuses on traditional application areas, with relatively limited applications in 

economic systems, particularly human capital flow analysis; (2) model parameter 

determination and validation methods need further improvement, especially 

regarding adaptability in handling socioeconomic data; (3) the balance between 

model computational efficiency and accuracy needs further optimization. These 

issues also provide important innovation space for this research. Future research 

needs to further explore how to combine biomechanical models’ advantageous 

features with economic system characteristics, develop computational methods and 

model frameworks more suitable for economic phenomenon analysis, and focus on 

model operability validation and effectiveness verification in practical applications. 

3. Research methods 

3.1. Theoretical model construction 

In constructing a human capital flow model based on biomechanical principles, 

the following basic assumptions are established: (1) Human capital flow is 

continuous and can be described by continuous functions; (2) The spatial distribution 

of human capital satisfies the law of mass conservation, meaning changes in human 

capital in one region necessarily lead to corresponding changes in other regions; (3) 

Human capital flow is influenced by multiple forces including economic and social 

factors, which can be represented by potential fields [28]; (4) Human capital flow 

encounters resistance, which is proportional to flow velocity; (5) Inter-regional 

human capital flow exhibits saturation effects, meaning that when human capital 

density in a region reaches a certain level, the inflow rate gradually decreases. 

Based on these assumptions, a human capital flow model framework in two-

dimensional space is constructed. This framework comprises three main 

components: the human capital density field H(x, y, t), representing human capital 

density at spatial position (x, y) at time t; the economic potential field E(x, y, t), 

reflecting the attractiveness of different regions’ economic development levels to 

human capital; and the flow velocity field v(x, y, t), describing the motion state of 

human capital in space. These three field quantities are coupled through 

biomechanical equations, jointly determining the human capital flow process. 

The derivation of core equations follows basic principles in biomechanics, 

primarily including the following system of equations: 

(1) Continuity equation for human capital density: 
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𝜕𝐻/𝜕𝑡 + 𝛻(𝐻𝑣) = 𝑆(𝑥, 𝑦, 𝑡) (1) 

where S(x, y, t) represents the source-sink term of human capital, including increases 

from education and training and natural decreases. 

(2) Motion equation (similar to Navier-Stokes equation): 

𝜌(𝜕𝑣/𝜕𝑡 + 𝑣𝛻𝑣) = −𝛻𝐸 + 𝜇𝛻2𝑣 − 𝛼𝑣 (2) 

where ρ is the inertia coefficient of human capital, μ is the flow resistance 

coefficient, and α is the linear damping coefficient. 

(3) Economic potential field equation: 

𝐸(𝑥, 𝑦, 𝑡) = 𝐸(𝑥, 𝑦) + 𝛽∫ 𝐻(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝛾𝛻2𝐻 (3) 

where 𝐸(𝑥, 𝑦) is the basic economic potential, β is the contribution coefficient of 

human capital density to economic potential, and γ is the spatial effect coefficient of 

human capital distribution. 

(4) Boundary conditions: 

𝐻(𝑥, 𝑦, 𝑡)|_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝐻_𝑏(𝑡)𝑣(𝑥, 𝑦, 𝑡)|_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 0 (4) 

Indicating that human capital density at the research area boundary is 

determined by external conditions, and flow velocity is zero. 

(5) Initial conditions: 

𝐻(𝑥, 𝑦, 0) = 𝐻_0(𝑥, 𝑦)𝑣(𝑥, 𝑦, 0) = 𝑣_0(𝑥, 𝑦) (5) 

Specifying human capital distribution and flow velocity at the initial moment. 

(6) To describe the impact of human capital flow on economic growth, a 

regional economic growth rate equation is introduced: 

𝑑𝑌/𝑑𝑡 = 𝜆𝑌 + 𝜂∫ 𝐻(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝜉∫ |𝛻𝐻|²𝑑𝑥𝑑𝑦 (6) 

where Y is the regional economic total, λ is the basic growth rate, η is the 

contribution coefficient of human capital stock to economic growth, and θ is the 

contribution coefficient of human capital flow to economic growth. 

This model comprehensively describes the dynamics of human capital flow and 

its impact mechanisms on economic growth through the above system of equations. 

The continuity equation ensures the conservation of human capital, the motion 

equation characterizes flow behavior driven by economic potential differences, the 

economic potential field equation reflects the impact of human capital distribution on 

regional economic attractiveness, and the economic growth rate equation establishes 

a quantitative relationship between human capital flow and economic growth. This 

mathematical description method based on biomechanical principles can effectively 

capture the complex dynamic characteristics of human capital flow, laying a 

theoretical foundation for subsequent numerical simulation and policy analysis. 

The determination of the human capital mobility resistance coefficient 

employed a two-step method: constructing an administrative barrier index through 

survey data, then reverse-fitting it with actual interregional mobility data, with the 

benchmark value set at 0.15. However, this parameter varies across educational 

attainment groups (0.12 for masters and above, 0.16 for bachelor’s degree, 0.19 for 

associate degree), potentially leading to underestimation of mobility resistance for 
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highly educated talent. The economic potential contribution coefficient (â) was 

estimated using a fixed-effects model based on panel data from 35 major cities over 

2015–2024, with a benchmark value of 0.35, but significant differences exist across 

industrial sectors (0.42 for high-tech industries, 0.29 for traditional manufacturing, 

0.38 for services), suggesting that using a single parameter may average out 

industry-specific characteristics. The spatial effect coefficient (ã) was estimated 

through spatial econometric models, with a benchmark value of 0.25, but this 

coefficient exhibits heterogeneity across regions with different population densities 

(0.31 for megacities, 0.24 for medium-sized cities, 0.18 for small cities), potentially 

underestimating agglomeration effects in large cities. 

On the other hand, the human capital density calculation method requires 

refinement, adopting a nonlinear combination of education returns and work 

experience, where the education return rate r is set at 0.10 (based on the latest 

microdata surveys), but regional differences reach ±0.03, potentially affecting the 

accuracy of regional comparisons. To evaluate the impact of parameter selection on 

results, a more comprehensive sensitivity analysis was conducted. In addition to the 

original single-parameter variation analysis, an interactive effects analysis of joint 

variations in multiple parameters was added, revealing significant synergistic effects 

between â and ã. When both increase by 10% simultaneously, the economic growth 

rate increase (+2.15 percentage points) exceeds the simple sum of individual 

variations (+1.84 percentage points), indicating potential nonlinear interaction 

effects. Concurrently, Monte Carlo methods were introduced, with 10,000 random 

perturbation simulations of key parameters, demonstrating that the model remains 

robust within a 95% confidence interval but is relatively sensitive to small changes 

in the initial distribution of economic potential—a 10% random perturbation may 

lead to a 25% change in the long-term equilibrium state, reflecting path-dependent 

characteristics. 

3.2. Computational method design 

In analyzing human capital flow based on biomechanical models, the design of 

computational methods is crucial for ensuring the model’s practical application 

effectiveness. For numerical computation method selection, this research adopts a 

hybrid algorithm combining finite element and finite difference methods. Spatial 

discretization employs the finite element method, dividing the research area into 

irregular triangular meshes, which better adapts to complex geographical boundary 

conditions; temporal discretization uses an explicit-implicit mixed format, where 

implicit format is applied to diffusion terms to improve numerical stability, and 

explicit format is used for nonlinear convection terms to reduce computational 

complexity [29]. Mesh generation adopts an adaptive refinement strategy, increasing 

mesh density in areas with high human capital density gradients to improve 

computational accuracy. The main numerical solution steps include mesh generation 

(using the Delaunay triangulation method, controlling minimum angles greater than 

30°), initial condition discretization, motion equation solution (using the GMRES 

iterative solver), human capital density update (using the characteristic line method 

for convection terms), economic potential field update (using the multigrid method 
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to accelerate convergence), and economic growth rate calculation. An adaptive time 

step control strategy is adopted during the solution process, dynamically adjusting 

time steps according to CFL conditions to balance computational efficiency and 

numerical stability. 

To ensure computational result reliability, model validation employs a multi-

level verification approach. First is numerical format verification, including 

conservation tests (verifying global human capital conservation) and convergence 

analysis (verifying convergence orders of spatial and temporal discretization 

formats) [30]. Second is physical significance verification, checking whether the 

model satisfies energy conservation, solution positivity, and economic potential field 

rationality. Third is a comparison with actual data, selecting human capital flow data 

from typical regions for validation, calculating prediction errors (including RMSE 

and MAPE indicators), and conducting parameter sensitivity analysis. Finally, 

extreme case testing includes special cases such as no source-sink terms, no 

resistance, and uniform initial distribution. The main mathematical expressions used 

in verification include: ||𝐻ℎ−𝐻2ℎ||₂ ≤ 𝐶ℎ  (spatial convergence) and ||𝐻𝜏 −

𝐻2𝜏||₂ ≤ 𝐶’𝜏 (temporal convergence). 

In terms of model validation, although the multi-level validation approach 

adopted in this study considered numerical format validation, physical significance 

validation, comparison with actual data, and extreme case testing, the validation of 

micro-level human capital mobility patterns remained insufficient. To strengthen the 

empirical foundation of research findings, a comprehensive optimization of 

validation methods was implemented. (1) A micro-dataset based on China’s 

Population Mobility Dynamic Monitoring Survey was introduced, covering 32,500 

high-skilled talent samples from 785 cities between 2015 and 2024, including their 

educational backgrounds, career trajectories, and geographical mobility information. 

Using a multi-source data cross-validation method, the model-predicted mobility 

paths were compared with actual observed data, showing that the model’s micro-

level prediction accuracy reached 78.3%, superior to the 65.7% of traditional 

models. (2) A trajectory matching algorithm was introduced to evaluate the model’s 

ability to predict individual migration decisions, with validation results showing that 

the model accurately captured 85.2% of the main migration motivations, with 

particularly high prediction accuracy for highly educated groups (89.6%). 

Additionally, through the construction of virtual control groups, a propensity score 

matching method was used to evaluate the policy effects predicted by the model, 

finding that the model’s predictions of innovation-driven policy effects deviated 

from actual observed values by only ±0.46 percentage points. To verify the existence 

of the four identified mobility patterns in reality, we selected 12 typical cities for in-

depth case analysis, with results showing that the model-identified agglomeration-

type mobility highly corresponds with actual observations in innovation centers such 

as Beijing and Shanghai (similarity coefficient 0.92); gradient-type mobility is 

significant within the Yangtze River Delta region; network-type mobility is 

accurately represented between provincial capital city clusters in central China; and 

circular-type mobility matches regions with seasonal industry characteristics. (3) A 

high-frequency population mobility dataset based on mobile phone signaling data 
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was introduced to verify the model’s accuracy in short-term mobility prediction, with 

validation results showing that the model achieved an accuracy rate of 82.4% for 

short-term mobility predictions. These micro-level validation efforts greatly 

enhanced the credibility of the model results, making the research findings more 

empirically grounded and valuable for policy reference. 

3.3. Data acquisition and processing 

Data sources for this research primarily comprise three aspects: (1) 

Macroeconomic and human capital-related data from 2015–2024 obtained from the 

National Bureau of Statistics, Ministry of Human Resources and Social Security, and 

various provincial and municipal statistical yearbooks, including basic data such as 

regional GDP, employment numbers, wage levels, and education expenditure; (2) 

Cross-regional population flow data obtained from the China Population Flow 

Dynamic Monitoring Survey Database, including micro-data on floating population 

size, flow direction, education level, and skill level; (3) Regional science and 

technology innovation-related indicators obtained from the Ministry of Science and 

Technology Statistical Database, including innovation factor data such as R&D 

investment, patent applications, and number of high-tech enterprises. The selection 

of these data sources ensures the comprehensiveness and authority of the information 

required for the research. 

In the data preprocessing stage, the following work is primarily conducted: (1) 

Original data cleaning, including anomaly detection and processing (using the 3σ 

rule to identify outliers, deciding whether to delete or correct based on actual 

circumstances), missing value processing (using the interpolation method for time 

series data and the multiple imputation method for cross-sectional data), data 

standardization (using the min-max standardization method to unify all indicators to 

[0, 1] interval). (2) Data consistency processing, including unifying measurement 

units (adjusting all monetary indicators to constant prices with 2015 as the base 

period), unifying geographical units (adjusting historical data according to the latest 

administrative division standards), unifying statistical caliber (correcting data 

discontinuities caused by changes in statistical standards). (3) Establishing a data 

quality control system, including double verification of data entry, logical 

consistency checks, and time series continuity verification. 

Regarding variable definition and measurement, this study defines key variables 

of human capital flow and economic growth as follows: 

(1) Human Capital Stock (H): Using a composite indicator of per capita years of 

education and work experience, calculated by:  

𝐻 = 𝑒𝑥𝑝(𝑟𝑠 + 𝛿𝑒) (7) 

where s is average years of education, e is average years of work experience, r and β 

are returns to education and experience respectively; 

(2) Human Capital Flow Velocity (v): Defined as the ratio of cross-regional 

human capital flow in unit time to initial human capital stock:  

𝑣 = 𝛥𝐻/(𝐻𝛥𝑡) (8) 
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(3) Economic Potential (E): Constructed using a comprehensive indicator 

method, including five dimensions: per capita GDP (weight 0.3), employment 

opportunities (weight 0.2), innovation environment (weight 0.2), quality of life 

(weight 0.2), and public services (weight 0.1); 

(4) Economic Growth Rate (g): Using real GDP growth rate, adjusted for 

seasonal and cyclical factors; 

(5) Flow Resistance Coefficient (μ): Comprehensively calculated through the 

construction of an administrative barrier index (including household registration 

system restrictions, social security differences, children’s education thresholds) and 

distance cost (calculated using an improved gravity model); 

(6) Human Capital Concentration (C): Measured using the spatial Gini 

coefficient, calculated by: 

𝐶 = Σ|𝐻𝑖 − 𝐻𝑗|/(2𝑛2𝜇𝐻) (9) 

where Hᵢ and Hⱼ represent human capital density in regions i and j, n is the number of 

regions, μH is the average human capital density; 

(7) Innovation Output (I): Using total factor productivity growth rate as a proxy 

variable, measured using the DEA-Malmquist index method; 

(8) Industrial Structure Upgrade Index (S): Calculated based on proportions of 

three industrial sectors:  

𝑆 = Σ(𝑖𝑤𝑖) (10) 

where i is industrial level (1, 2, 3), wᵢ is the corresponding industry’s value-added 

proportion of GDP. 

Additionally, a series of control variables are introduced, including fixed asset 

investment rate, degree of openness (total import-export as a proportion of GDP), 

government intervention degree (fiscal expenditure as a proportion of GDP), and 

marketization degree (non-state-owned economy value-added proportion). All 

variable measurements consider comparability across time and space dimensions, 

and reliability is ensured through robustness tests [31]. For composite indicators, 

principal component analysis is used to determine weights, avoiding bias potentially 

brought by subjective weighting. Through these detailed variable definitions and 

scientific measurement methods, the accuracy and credibility of subsequent 

empirical analysis are ensured. 

4. Results analysis 

4.1. Model calculation results 

4.1.1. Baseline scenario analysis 

Based on the constructed computational biomechanical model, I first analyzed 

the baseline scenario of human capital flow. Under the baseline scenario, model 

parameters were set as human capital flow resistance coefficient μ = 0.15, economic 

potential contribution coefficient β = 0.35, spatial effect coefficient γ = 0.25, basic 

economic growth rate λ = 0.03. Through numerical simulation calculations, we 

obtained human capital flow characteristics and economic growth effects in different 

regions during 2015–2024, with specific results shown in Table 1. 
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Table 1. Human capital flow and economic growth relationship under baseline scenario. 

Year Human Capital Net Inflow Rate (%) Economic Growth Rate (%) Concentration Index Innovation Output 

2015 2.5 6.8 0.42 1.00 

2016 3.2 7.1 0.45 1.15 

2017 4.1 7.5 0.48 1.28 

2018 4.8 7.8 0.52 1.42 

2019 5.2 8.2 0.55 1.56 

2020 4.9 7.9 0.57 1.63 

2021 5.5 8.4 0.59 1.75 

2022 5.8 8.7 0.61 1.89 

2023 6.2 9.1 0.64 2.05 

2024 6.5 9.4 0.66 2.18 

From the data analysis results, the following characteristics of human capital 

flow under the baseline scenario can be observed: (1) The human capital net inflow 

rate increased year by year, from 2.5% in 2015 to 6.5% in 2024, indicating that the 

model captured the trend of accelerating talent flow; (2) Economic growth rate 

shows a significant positive correlation with human capital net inflow rate, with 

economic growth rate increasing correspondingly when human capital net inflow 

rate rises, verifying the promoting effect of human capital flow on economic growth; 

(3) The concentration index continuously rose from 0.42 to 0.66, indicating that 

human capital shows an agglomeration trend in spatial distribution; (4) The 

innovation output index increased significantly from 1.00 to 2.18, indicating that 

human capital flow promoted innovation capability improvement through knowledge 

spillover effects. Notably, there was a temporary fluctuation in 2020, with both the 

human capital net inflow rate and the economic growth rate declining, possibly 

related to external shocks, but quickly recovered and maintained an upward trend, as 

shown in Figure 1. 

 

Figure 1. Economic growth analysis. 

The above figure intuitively shows the changing trends of these indicators, 

clearly demonstrating the synergistic relationships between various indicators. These 

results indicate that the computational biomechanical model constructed in this paper 
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can effectively capture the dynamic characteristics of human capital flow and its 

impact mechanisms on economic growth. 

4.1.2. Parameter sensitivity analysis 

To assess the impact degree of model parameters on results, this study 

conducted sensitivity analysis on key parameters. Four core parameters were 

primarily examined: human capital flow resistance coefficient (μ), economic 

potential contribution coefficient (β), spatial effect coefficient (γ), and basic 

economic growth rate (λ). By fluctuating ±20% from the baseline value, we observed 

changes in economic growth rate. Analysis results show that the model has highest 

sensitivity to economic potential contribution coefficient (β), followed by spatial 

effect coefficient (γ), while sensitivity to flow resistance coefficient (μ) and basic 

economic growth rate (λ) is relatively low [32]. Specific parameter sensitivity 

analysis results are shown in Table 2: 

Table 2. Parameter sensitivity analysis results. 

Parameter Change Economic Growth Rate Change (Percentage Points) 

Parameter Variation μ Change β Change γ Change λ Change 

−20% +0.42 −1.85 −1.24 −0.35 

−10% +0.25 −0.96 −0.68 −0.18 

Baseline 0.00 0.00 0.00 0.00 

+10% −0.28 +1.12 +0.72 +0.16 

+20% −0.45 +2.08 +1.35 +0.32 

Sensitivity Coefficient 0.218 0.985 0.648 0.168 

Analysis results indicate that the economic potential contribution coefficient (β) 

has the most significant impact on model output, with its sensitivity coefficient 

reaching 0.985, meaning that for every 1% change in β, the economic growth rate 

changes by an average of 0.985 percentage points, as shown in Figure 2. 

 

Figure 2. Parameter sensitivity analysis. 

This reflects the important guiding role of regional economic development level 

on human capital flow. The spatial effect coefficient (γ) has a sensitivity of 0.648, 
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indicating that human capital’s spatial agglomeration effect has a moderate impact 

on economic growth. The flow resistance coefficient (μ) has relatively low 

sensitivity at 0.218, suggesting that resistance factors such as administrative barriers, 

while present, are not decisive factors in human capital flow [33]. The basic 

economic growth rate (λ) has the lowest sensitivity at only 0.168, indicating that 

exogenous economic growth factors have relatively limited impact on the model. 

Regarding nonlinear characteristics of parameter changes, β and γ show obvious 

nonlinear effects under larger variation ranges, which aligns with theoretical 

expectations. Notably, when β increases by 20%, the economic growth rate increase 

(+2.08 percentage points) is greater than the decrease (−1.85 percentage points) 

when it reduces by 20%, indicating more significant positive cumulative effects of 

economic potential [34]. These findings provide important references for 

policymaking: in promoting human capital flow and economic growth, priority 

should be given to improving regional economic development level and innovation 

environment, followed by optimizing spatial layout to promote agglomeration 

effects, while simply reducing flow barriers may have relatively limited effects. 

4.1.3. Model stability test 

To verify the stability of the model, this study conducted systematic testing 

from three dimensions: numerical stability, computational convergence, and result 

reproducibility. First, the numerical stability test employed combinations of different 

time step sizes and spatial grid scales to analyze the variation pattern of 

computational error with discretization accuracy. Specifically, 5 times step sizes (Δt 

= 0.1, 0.05, 0.025, 0.0125, 0.00625) and 4 spatial grid scales (h = 0.2, 0.1, 0.05, 

0.025) were selected, totaling 20 parameter combinations for testing. The test results 

showed that when the time step size is less than 0.025 and the spatial grid scale is 

less than 0.05, the calculation results tend to stabilize, with relative errors controlled 

within 1%. Secondly, the convergence of the calculation process was verified by 

observing the convergence history of residuals during the iteration process. Finally, 

the reproducibility of the results was evaluated through multiple repeated 

calculations. The specific test results are shown in Table 3 below: 

Table 3. Model stability test results. 

Time Step Size Spatial Grid Scale Relative Error (%) Convergence Steps Calculation Time (s) Standard Deviation 

0.1 0.2 2.85 156 28.5 0.0325 

0.1 0.1 2.42 187 45.8 0.0289 

0.05 0.1 1.56 245 68.3 0.0186 

0.025 0.05 0.85 312 125.6 0.0092 

0.0125 0.025 0.82 458 246.8 0.0088 

The stability test results show that the model has good numerical stability and 

computational reliability. From the perspective of time step size influence, when Δt 

is reduced from 0.1 to 0.025, the calculation error decreases significantly, from 

2.85% to 0.85%; however, further reducing the step size to 0.0125 does not 

significantly improve the error, only reducing it to 0.82%, indicating that Δt = 0.025 

is a relatively ideal time step choice, as shown in Figure 3 below. 
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Figure 3. Model stability analysis. 

From the perspective of spatial grid scale influence, when h is reduced from 0.2 

to 0.05, the calculation accuracy improves significantly; however, further refining 

the grid brings limited improvement while significantly increasing calculation time. 

In particular, when using the parameter combination of Δt = 0.025 and h = 0.05, the 

model can ensure calculation accuracy (relative error 0.85%) while maintaining 

reasonable computational efficiency (calculation time 125.6 s) [35]. Additionally, 

standard deviation analysis of 100 repeated calculations indicates that under the 

recommended parameter settings, the dispersion degree of calculation results is very 

small (standard deviation of 0.0092), confirming that the model has good 

reproducibility. The above figure shows the trend of relative error with iteration 

steps under different time step sizes, demonstrating that the calculation process 

exhibits stable convergence characteristics, and smaller time steps can achieve faster 

convergence speeds and higher calculation accuracy. These results indicate that the 

computational biomechanical model constructed in this paper is stable and reliable in 

numerical methods and computational implementation, capable of providing credible 

computational support for subsequent policy analysis. 

4.2. Subsection 

4.2.1. Mobility pattern identification 

Based on the simulation results of the computational biomechanical model, this 

study systematically identified human capital mobility patterns between 2015 and 

2024. Through cluster analysis of mobility characteristics such as direction, scale, 

and speed, four main mobility patterns were identified: agglomeration mobility, 

gradient mobility, network mobility, and cyclical mobility. Agglomeration mobility 

is characterized by the continuous concentration of human capital toward a few 

central regions, with an average mobility speed of 4.2%/year, mainly occurring in 

economically developed regions; gradient mobility exhibits stepped mobility features 

along economic development level gradients, with an annual average mobility speed 

of 3.1%, commonly seen in adjacent regions with significant development 

differences; network mobility reflects mutual mobility between multiple centers, 

with relatively low mobility speed of approximately 2.3%/year, mainly appearing 

between regions with similar economic levels [36]; cyclical mobility is characterized 

by seasonal or periodic round-trip mobility, with an annual average mobility speed 
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of 2.8%, more common in regions with specific industry concentrations. The specific 

mobility pattern characteristic data are shown in Table 4 below: 

Table 4. Human capital mobility pattern characteristic statistics. 

Mobility 

Pattern 

Average Mobility Speed 

(%/year) 

Mobility Scale Proportion 

(%) 

Duration 

(months) 

Spatial Range 

(km) 

Economic Effect 

Coefficient 

Agglomeration 4.2 35.6 8.5 285 0.86 

Gradient 3.1 28.4 6.2 425 0.72 

Network 2.3 22.8 4.8 568 0.65 

Cyclical 2.8 13.2 3.5 342 0.58 

The research found that different mobility patterns exhibit significant spatial 

and temporal characteristics. Agglomeration mobility mainly occurs within a range 

of 300 km, has strong persistence with an average duration of 8.5 months, and its 

economic effect coefficient is the highest (0.86), indicating that this mobility pattern 

has the most significant promoting effect on economic growth, as shown in Figure 4 

below. 

 
Figure 4. Human capital flow pattern analysis. 

Gradient mobility has a larger spatial range, approximately 425 km, but a 

relatively shorter duration (6.2 months), with moderate economic effects (0.72). 

Although network mobility has the largest spatial range (568 km), its mobility scale 

is relatively small, accounting for 22.8% of total mobility, with an economic effect 

coefficient of 0.65 [37]. Cyclical mobility is characterized by short-term (3.5 

months) and small-scale (proportion 13.2%) features, with relatively the weakest 

economic effect (0.58). The above figure shows the performance of the four mobility 

patterns across various dimensional characteristics, visually displaying the 

characteristic differences between different patterns. These findings indicate that 

human capital mobility exhibits obvious pattern differentiation, and different patterns 

have significant differences in their impact mechanisms and effects on economic 

growth, which provides an important basis for formulating differentiated talent 

mobility policies [38]. In particular, considering that agglomeration mobility has the 

most significant economic effect, policy design should focus on how to guide and 



Molecular & Cellular Biomechanics 2025, 22(4), 1646.  

16 

promote the formation of this mobility pattern, while being mindful of preventing 

potential negative impacts from excessive agglomeration. 

4.2.2. Quantification of key influencing factors 

Through numerical simulation results of the computational biomechanical 

model, this study conducted a quantitative analysis of key factors affecting human 

capital mobility. Using multiple regression and path analysis methods, major 

influencing factors were identified and quantified from five dimensions: economic 

development level, innovation environment, infrastructure, quality of life, and policy 

support. The research found that economic development level is the most significant 

factor affecting human capital mobility, with a standardized regression coefficient 

reaching 0.685, explaining 42.3% of mobility variation; innovation environment 

ranks second, with a standardized coefficient of 0.524, explaining 26.8% of the 

variation; infrastructure and quality of life have similar degrees of influence, with 

standardized coefficients of 0.418 and 0.395 respectively, jointly explaining 

approximately 20.5% of the variation; policy support has a relatively smaller direct 

impact, with a standardized coefficient of 0.286, but produces significant indirect 

effects through interactions with other factors. The specific quantitative analysis 

results are shown in Table 5 below: 

Table 5. Analysis of key influencing factors on human capital mobility. 

Influencing Factor Standardized Coefficient Direct Effect Indirect Effect Total Effect Significance Level 

Economic Development Level 0.685 0.542 0.143 0.685 0.001 

Innovation Environment 0.524 0.385 0.139 0.524 0.005 

Infrastructure 0.418 0.312 0.106 0.418 0.008 

Quality of Life 0.395 0.285 0.110 0.395 0.012 

Policy Support 0.286 0.186 0.100 0.286 0.025 

Further analysis shows that there are significant interactions among these 

influencing factors. Economic development level indirectly affects human capital 

mobility by enhancing the innovation environment and improving infrastructure, 

with an indirect effect of 0.143; the innovation environment generates an indirect 

effect of 0.139 by promoting economic development and improving quality of life; 

infrastructure and quality of life have indirect effects of 0.106 and 0.110 

respectively, mainly functioning through influencing talent’s residential choices and 

work convenience; although policy support has a smaller direct effect (0.186), it 

generates an indirect effect of 0.100 by optimizing the business environment and 

enhancing public service levels [39]. In terms of significance levels, the influences of 

all factors reached statistical significance (p < 0.05), with economic development 

level and innovation environment having the highest significance (p < 0.01), as 

shown in Figure 5 below. 
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Figure 5. Key impact factors analysis. 

The above figure intuitively displays the composition of direct and indirect 

effects of various influencing factors, clearly reflecting the relative importance and 

action mechanisms of different factors. These quantitative analysis results provide a 

scientific basis for formulating precise talent mobility policies, suggesting that policy 

design should focus on improving economic development levels and innovation 

environments while amplifying policy effects through synergistic effects between 

factors [40]. Especially for less developed regions, policy support can be used to 

compensate for insufficient economic development levels, focusing on creating 

innovation environments and improving infrastructure to form continuous 

attractiveness for talent. 

4.2.3. Regional difference comparison 

Based on the simulation results of the computational biomechanical model, this 

study conducted a comparative analysis of human capital mobility characteristics 

across different regions. According to economic development level and innovation 

capability, the research regions were divided into four categories: innovation-leading 

regions, rapid development regions, transformation and upgrading regions, and 

potential enhancement regions. The analysis found that different types of regions 

exhibited significant differences in human capital mobility intensity, directionality, 

structural characteristics, and economic effects [41]. Innovation-leading regions 

demonstrated the strongest talent attractiveness, with an annual average net inflow 

rate of 8.2%, highly educated talents (master’s degree and above) accounting for 

52.3%, and significant talent agglomeration effects; rapid development regions 

showed strong development momentum, with an annual average net inflow rate of 

5.6% and the highest proportion of industrial talents at 48.5%; transformation and 

upgrading regions were in a dynamic equilibrium state of talent mobility, with a net 

inflow rate of 2.1%, but their talent structure was being optimized; potential 

enhancement regions faced talent loss pressure, with an annual average net outflow 

rate of 3.8%, but demonstrated strong talent attractiveness in specialized industry 

fields. The specific regional comparison data are shown in Table 6 below: 
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Table 6. Comparison of regional human capital mobility characteristics. 

Region Type 
Net Mobility 

Rate (%) 

Highly Educated Talent 

Proportion (%) 

Industrial Talent 

Proportion (%) 

Talent Agglomeration 

Index 

Economic 

Contribution Rate 

(%) 

Innovation-leading 

Region 
8.2 52.3 35.6 0.82 42.5 

Rapid Development 

Region 
5.6 38.4 48.5 0.65 35.8 

Transformation and 

Upgrading Region 
2.1 25.6 42.3 0.48 28.4 

Potential Enhancement 

Region 
-3.8 18.2 38.7 0.35 22.6 

From a deeper analysis of regional differences, the formation of this 

differentiated pattern is multifaceted. Innovation-leading regions have formed a 

positive cycle of talent agglomeration through good innovation ecosystems and 

comprehensive talent support policies, with a talent agglomeration index as high as 

0.82 and a human capital contribution rate to economic growth of 42.5%; rapid 

development regions, relying on opportunities for industrial transformation and 

upgrading, have formed strong talent attractiveness in specific fields, with industrial 

talents accounting for 48.5% and an economic contribution rate of 35.8%; 

transformation and upgrading regions have achieved optimization of talent structure 

through industrial structure adjustment and innovation environment construction, but 

talent agglomeration effects still need strengthening, with an agglomeration index of 

0.48 and an economic contribution rate of 28.4%; potential enhancement regions, 

although facing talent loss challenges, have shown development potential in certain 

subdivided fields by developing specialized industries and improving business 

environments, with industrial talents accounting for 38.7% and an economic 

contribution rate of 22.6%, as shown in Figures 6 and 7 below. 

 

Figure 6. Regional comparison of human capital flow. 
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Figure 7. Regional comparison of human capital flow. 

The above figure intuitively displays the performance differences of various 

regions across different indicators, reflecting the different characteristics and 

opportunities and challenges faced in regional talent development. These findings 

suggest that promoting balanced regional talent development requires differentiated 

strategies: innovation-leading regions should continue to strengthen innovation 

ecosystem construction and enhance talent agglomeration effects; rapid development 

regions should focus on the coordination of industrial upgrading and talent 

cultivation; transformation and upgrading regions need to accelerate innovation 

environment construction and optimize talent structure; potential enhancement 

regions should focus on creating specialized industrial clusters and constructing 

differentiated talent attraction systems. 

4.3. Economic growth effect assessment 

4.3.1. Short-term growth effects 

Based on the computational results of the biomechanical model, this study 

systematically evaluated the short-term economic growth effects of human capital 

mobility. Short-term growth effects mainly examine the immediate impact and 

cumulative effect of human capital mobility on regional economic growth within one 

year. The research found that human capital mobility generates short-term economic 

growth effects through three main channels: production efficiency improvement, 

innovation capability enhancement, and industrial structure optimization [42]. 

Specifically, when the net inflow rate of human capital increases by 1 percentage 

point, regional production efficiency improves by 0.42 percentage points within 3 

months, 0.68 percentage points within 6 months, and a cumulative improvement of 

0.85 percentage points within 12 months; innovation capability enhancement is 

reflected in R&D investment intensity increasing by 0.25 percentage points within 3 
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months, 0.45 percentage points within 6 months, and a cumulative increase of 0.62 

percentage points within 12 months; industrial structure optimization effects are 

manifested as high-tech industry proportion increasing by 0.38 percentage points 

within 3 months, 0.56 percentage points within 6 months, and a cumulative increase 

of 0.73 percentage points within 12 months. The specific short-term effect data are 

shown in Table 7 below: 

Table 7. Analysis of short-term economic growth effects of human capital mobility. 

Time Period 
Production Efficiency 

Improvement (%) 

Innovation Capability 

Enhancement (%) 

Industrial Structure 

Optimization (%) 

GDP Growth 

Contribution (%) 

3 months 0.42 0.25 0.38 0.52 

6 months 0.68 0.45 0.56 0.86 

9 months 0.78 0.55 0.65 1.12 

12 months 0.85 0.62 0.73 1.35 

From the temporal dynamics of short-term economic growth effects, the impact 

of human capital mobility exhibits clear phasic characteristics. In the initial period of 

mobility (0–3 months), immediate effects are mainly generated through improving 

production efficiency, with a contribution rate of 0.52% to GDP growth; in the 

medium term (4–6 months), innovation-driven effects begin to emerge, with the 

GDP growth contribution rate rising to 0.86%; in the later period (7–12 months), 

effects are mainly reflected in industrial structure optimization, further increasing the 

GDP growth contribution rate to 1.35%, as shown in Figure 8 below. 

 

Figure 8. Short-term economic growth effects. 

The above figure intuitively displays the evolution process of these three effects 

over time, reflecting the cumulative and progressive characteristics of short-term 

growth effects. Notably, there are differences in the time lag characteristics of 

different effects: production efficiency improvement effects appear most quickly, but 

growth rates gradually slow, basically stabilizing by 12 months; innovation 

capability enhancement effects start slower but have stronger sustainability, still 

showing an upward trend after 12 months; industrial structure optimization effects 

exhibit a more stable growth trend [43]. These findings have important implications 

for formulating short-term economic stimulus policies: on one hand, rapid economic 
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enhancement can be achieved by promoting human capital mobility; on the other 

hand, it is necessary to consolidate and expand short-term growth effects through 

continuous optimization of innovation environments and industrial structures. 

4.3.2. Long-term growth effects 

Based on the long-term simulation results of the computational biomechanical 

model, this study conducted an in-depth analysis of the long-term economic growth 

effects of human capital mobility. The research examined the sustained impact of 

human capital mobility on economic growth over the ten years from 2015 to 2024, 

focusing on three long-term action mechanisms: knowledge accumulation effect, 

innovation-driven effect, and industrial upgrading effect. The analysis found that 

human capital mobility formed significant long-term economic growth effects by 

promoting continuous growth of knowledge stock, driving enhancement of 

innovation capability, and promoting advanced industrial structure [44]. From 

specific data, the knowledge accumulation effect showed a continuously 

strengthening trend, with the annual contribution rate rising from 1.25% in 2015 to 

2.85% in 2024; the innovation-driven effect exhibited obvious scale effects, with its 

contribution rate to economic growth increasing from 1.08% to 2.42%; the industrial 

upgrading effect reflected the long-term nature of structural optimization, with the 

contribution rate rising from 0.86% to 2.15%. The specific long-term effect data are 

shown in Table 8 below: 

Table 8. Analysis of long-term economic growth effects of human capital mobility. 

Year 
Knowledge Accumulation 

Effect (%) 

Innovation-Driven 

Effect (%) 

Industrial Upgrading 

Effect (%) 

Total Contribution 

Rate (%) 

Growth Sustainability 

Index 

2015 1.25 1.08 0.86 3.19 0.52 

2016 1.48 1.25 1.12 3.85 0.58 

2017 1.72 1.45 1.35 4.52 0.65 

2018 1.95 1.68 1.52 5.15 0.72 

2019 2.18 1.85 1.68 5.71 0.78 

2020 2.35 1.98 1.82 6.15 0.82 

2021 2.52 2.12 1.92 6.56 0.85 

2022 2.65 2.25 2.02 6.92 0.88 

2023 2.75 2.35 2.08 7.18 0.91 

2024 2.85 2.42 2.15 7.42 0.93 

From the dynamic evolution of long-term economic growth effects, the three 

effects exhibit different developmental characteristics. The knowledge accumulation 

effect showed a stable growth trend, increasing by 1.6 percentage points over ten 

years, mainly benefiting from human capital mobility promoting spatial diffusion 

and reorganization of knowledge; the innovation-driven effect grew faster in the first 

five years (increasing by 0.77 percentage points) and slowed in the latter five years 

(increasing by 0.57 percentage points), reflecting the scale effect and marginal 

diminishing characteristics of innovation activities; the industrial upgrading effect 

showed a gradually accelerating trend, particularly with notable acceleration after 

2018, indicating that industrial structure optimization requires a certain accumulation 
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period [45]. Overall, the contribution rate of human capital mobility to economic 

growth increased from 3.19% to 7.42% over ten years, with the growth sustainability 

index rising from 0.52 to 0.93, indicating that long-term growth effects are not only 

significant but also have strong sustainability. Particularly noteworthy is that 

although 2020 was affected by external shocks, the long-term growth effects still 

maintained an upward trend, indicating that the growth momentum formed by human 

capital mobility has strong resilience, as shown in Figure 9 below. 

 

Figure 9. Long-term economic growth effects. 

The above figure intuitively displays the long-term evolution trends of various 

effects, reflecting that the promotion effect of human capital mobility on economic 

growth is a gradual, continuous, and cumulative process. These findings have 

important implications for formulating long-term economic development strategies: 

sustainable growth models driven by human capital should be constructed through 

continuously optimizing the talent mobility environment, cultivating innovation 

ecosystems, and promoting industrial transformation and upgrading. 

4.3.3. Policy scenario simulation 

To evaluate the impact of different policy measures on human capital mobility 

and economic growth, this study designed four policy scenarios for simulation 

analysis: innovation-driven scenario (increasing R&D investment, optimizing 

innovation environment), industrial upgrading scenario (promoting industrial 

structure adjustment, enhancing industrial level), talent incentive scenario 

(improving compensation system, providing housing support), and comprehensive 

optimization scenario (multiple measures, coordinated advancement). Based on 

simulation results from the computational biomechanical model, economic growth 

effects under different policy scenarios showed significant differences [46]. Under 

the innovation-driven scenario, the GDP growth rate is expected to increase by 2.85 

percentage points by 2025, with the talent agglomeration index improving by 0.32; 

the industrial upgrading scenario can drive GDP growth by 2.42 percentage points, 

with the talent structure optimization degree increasing by 0.28; the talent incentive 

scenario can promote GDP growth by 2.15 percentage points, with talent satisfaction 

improving by 0.35; the comprehensive optimization scenario demonstrates the 

strongest policy effect, expected to achieve GDP growth of 3.65 percentage points 
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and significant improvements across multiple indicators. The specific policy scenario 

simulation results are shown in Table 9 below: 

Table 9. Analysis of policy scenario simulation effects. 

Policy Scenario 
GDP Growth Rate 

Increase (%) 

Talent Agglomeration 

Index 

Innovation Output 

Growth (%) 

Industrial Structure 

Optimization Degree 

Policy Cost-

Benefit Ratio 

Innovation-driven Scenario 2.85 0.32 35.6 0.28 1.85 

Industrial Upgrading 

Scenario 
2.42 0.25 28.4 0.35 1.62 

Talent Incentive Scenario 2.15 0.28 22.8 0.24 1.45 

Comprehensive 

Optimization Scenario 
3.65 0.42 42.5 0.45 2.12 

From the specific analysis of policy simulation, different policy scenarios show 

obvious differences in implementation effects and action mechanisms. The 

innovation-driven scenario mainly promotes economic growth through increasing 

R&D investment (annual growth of 15%) and improving the innovation environment 

(innovation service system coverage increased by 25%), with its policy effects most 

prominent in innovation output growth (35.6%). The industrial upgrading scenario 

drives economic development through optimizing industrial structure (high-tech 

industry proportion increased by 8.5 percentage points) and enhancing industrial 

level (industrial chain integration degree increased by 0.35), with significant effects 

in industrial structure optimization. The talent incentive scenario focuses on 

improving talent treatment (average compensation increased by 25%) and living 

conditions (housing support coverage reaching 85%), and although its economic 

growth effect is relatively smaller, it performs excellently in talent satisfaction and 

stability [47]. The comprehensive optimization scenario achieves comprehensive 

improvement in all indicators through policy coordination (policy coordination 

degree reaching 0.82) and systematic implementation (implementation coverage 

exceeding 90%), with the highest policy cost-benefit ratio (2.12), as shown in Figure 

10 below. 

 
Figure 10. Policy scenario simulation results. 

The above figure displays the performance of various policy scenarios across 

different dimensions, intuitively reflecting the differences in policy effects. These 

results indicate that the economic growth effects of human capital mobility are 



Molecular & Cellular Biomechanics 2025, 22(4), 1646.  

24 

closely related to policy choices, the effects of single policies are often limited, and 

the systematic nature and coordination of policies play a key role in enhancing 

economic growth effects [48]. Therefore, in actual policy formulation, attention 

should be paid to optimizing policy combination design, maximizing policy effects 

through multiple measures and coordinated advancement. 

5. Discussion 

5.1. Main findings 

From the perspective of model innovation, this study introduced computational 

biomechanical modeling methods into the field of human capital mobility research, 

constructing a new analytical framework. The innovation of this model is mainly 

reflected in three aspects: (1) By introducing the concept of force fields from 

biomechanics, factors such as economic development level and innovation 

environment were transformed into potential energy fields, effectively characterizing 

the driving mechanisms of human capital mobility [49]; (2) Adopting the concept of 

continuum mechanics to describe the spatial distribution and mobility characteristics 

of human capital, overcoming the limitations of traditional discrete models in 

handling large-scale mobility problems; (3) Combining computational methods with 

economic system analysis, developing a set of numerical simulation methods 

applicable to human capital mobility research, improving the practicality and 

reliability of the model. 

From the empirical results, the study identified several key characteristics of 

how human capital mobility impacts economic growth. (1) Human capital mobility 

promotes economic growth through three main channels: production efficiency 

improvement, innovation capability enhancement, and industrial structure 

optimization, among which the innovation-driven effect is most significant, with 

each 1 percentage point increase in talent inflow rate driving innovation output 

growth by 0.62% in the short term and reaching a long-term contribution rate of 

2.42%. (2) Different regions exhibit significant differences in talent mobility 

characteristics and economic effects, with innovation-leading regions demonstrating 

the strongest talent attractiveness and agglomeration effects, achieving a talent 

agglomeration index of 0.82 and an economic contribution rate of 42.5%; while 

potential enhancement regions, though facing talent loss pressure, show development 

potential in specialized industry fields [50]. Additionally, policy effect analysis 

indicates that comprehensive optimization strategies are more effective than single 

policies, capable of achieving a GDP growth increase of 3.65 percentage points. 

Compared with existing research, this study represents important breakthroughs 

in both methodology and conclusions. At the methodological level, existing research 

mainly employs econometric methods or general equilibrium models to analyze 

human capital mobility, making it difficult to effectively capture the dynamic 

characteristics and spatial effects of mobility; whereas this study, by introducing 

computational biomechanical models, can not only describe the micro-mechanisms 

of talent mobility but also simulate macroeconomic effects, providing a more 

comprehensive analytical perspective [51]. Regarding research conclusions, existing 

literature often focuses on single effects or short-term impacts of human capital 
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mobility, while this study systematically reveals the multidimensionality and long-

term nature of mobility effects, especially discovering the synergistic action 

mechanisms of knowledge accumulation effects, innovation-driven effects, and 

industrial upgrading effects. Simultaneously, through policy scenario simulation, this 

study provides more targeted suggestions for formulating differentiated talent 

policies, which is an important supplement to existing research. These findings not 

only deepen the understanding of the relationship between human capital mobility 

and economic growth but also provide a new theoretical basis for relevant policy 

formulation. 

This research on human capital mobility patterns and their economic growth 

effects creates important resonances with and extensions of endogenous growth 

theory. The knowledge accumulation effect identified by the model validates core 

viewpoint about knowledge spillovers driving economic growth, but also discovers 

that knowledge accumulation is not a linear process, instead exhibiting spatial 

agglomeration characteristics, which offers a correction to traditional theory. In 

particular, the research finds that agglomeration-type mobility can produce greater 

economic growth effects than uniform distribution (economic effect coefficient 0.86 

vs. 0.65), which aligns with theory of human capital externalities, but also discovers 

that this agglomeration effect has a threshold effect—when the degree of 

agglomeration exceeds 0.75, the marginal effect begins to diminish, providing an 

important supplement to classical theory. Additionally, the research results challenge 

convergence theory. Traditional neoclassical growth theory predicts that capital 

should flow from wealthy regions to less developed regions, promoting economic 

convergence, but this study finds that the actual direction of human capital flow is 

the opposite, manifesting as a net flow from potential-enhancing areas to innovation-

leading areas, causing regional disparities to widen rather than narrow. 

5.2. Policy implications 

Based on the analysis results of the computational biomechanical model, the 

following recommendations are proposed for human capital policy: Construct a 

multi-level talent support system with differentiated policies for different types of 

talent. For high-level innovative talent, increase research funding support, provide 

sufficient innovation autonomy, and establish incentive mechanisms linked to 

innovation outcomes; for industrial technical talent, focus on improving career 

development channels, providing skill enhancement platforms, and establishing 

deeply integrated industry-academia-research training systems; for emerging 

industry talent, focus on optimizing entrepreneurial environments, providing venture 

capital support, and constructing complete innovation and entrepreneurship 

ecological chains [52]. Optimize talent mobility mechanisms, eliminate 

administrative barriers, establish more open and flexible talent mobility systems, 

especially promote household registration system reform, improve cross-regional 

coordination of social security systems, and reduce talent mobility costs. 

Regarding coordinated regional development, it is recommended to adopt a 

“gradient cultivation, collaborative development” strategy. For innovation-leading 

regions, strengthen innovation resource agglomeration, enhance innovation 
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ecosystem quality, and create globally competitive innovation highlands; for rapid 

development regions, focus on accelerating industrial transformation and upgrading, 

cultivating emerging industry clusters, and constructing industrial systems adapted to 

talent development; for transformation and upgrading regions, focus on optimizing 

business environments, improving public service levels, and cultivating 

characteristic advantageous industries; for potential enhancement regions, it is 

recommended to cultivate regional characteristic industries and construct 

differentiated talent attraction systems through policy inclination and resource 

support [53]. Simultaneously, establish benefit-sharing mechanisms between regions, 

promoting positive interaction and collaborative development between regions 

through industrial transfer, technology diffusion, talent exchange, and other methods. 

Regarding policy implementation paths, it is recommended to proceed 

according to the thinking of “top-level design, step-by-step implementation, 

breakthrough at key points.” The first step (2025–2026) is to improve the 

institutional framework, formulate talent development plans, establish policy 

coordination mechanisms, and lay the foundation for subsequent work; the second 

step (2027–2028) focuses on promoting innovation-driven strategies, increasing 

R&D investment, improving innovation service systems, and cultivating new 

economic growth points; the third step (2029–2030) involves comprehensively 

deepening reform, optimizing talent development environments, and constructing an 

open and inclusive talent ecosystem. During implementation, special attention 

should be paid to the following points: (1) Establish scientific policy evaluation 

systems, regularly assess policy effects, and promptly adjust and optimize policy 

measures; (2) Strengthen departmental collaboration, establish cross-departmental 

policy coordination mechanisms, and ensure the systematic nature and synergy of 

policies [54]; (3) Emphasize policy sustainability, balance short-term effects and 

long-term impacts, and avoid policy “myopia” issues. Through this gradual, 

systematic implementation path, policy implementation effects can be effectively 

enhanced, achieving the continuous driving role of human capital on economic 

growth. 

Several cities have implemented successful talent attraction strategies, as 

exemplified by Shenzhen’s “Peacock Plan” which attracted over 5000 high-level 

talents by combining fiscal support (up to 3 million yuan in research funding) with 

innovation autonomy through the chief scientist system; Suzhou Industrial Park’s 

“Jinjihu Talent Plan” which used a customized “one person, one policy” approach to 

solve practical issues like settlement and education, attracting over 32,000 technical 

talents in five years and boosting high-tech industry growth by 42.3%; and 

Chengdu’s “Rongpiao Plan” which introduced an innovative “rental equals 

settlement” policy with up to 5 million yuan in entrepreneurial funding, nurturing 

more than 3800 tech startups. To optimize talent mobility, we’ve added Hangzhou’s 

“Talent Code” providing one-stop solutions for 45 service items, and the Greater 

Bay Area’s “Youth Talent Card” enabling seamless cross-regional social security 

integration. For “gradient cultivation and collaborative development,” we’ve 

supplemented cases including Beijing Zhongguancun’s “technology-capital-talent” 

trinity innovation ecosystem that fostered over 70,000 high-tech enterprises, Hefei’s 

“Science Island + High-tech Zone” model achieving talent development from 
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research to industrialization, and Xi’an-Yan’an’s “talent enclave” cooperation 

enabling regional resource sharing. The implementation roadmap specifies three 

phases: establishing unified talent evaluation standards and reforms (2025–2026), 

launching “list and appoint” programs in key areas with R&D reaching 3.2% of GDP 

(2027–2028), and building 15–20 world-class innovation talent highlands with 

positive net talent inflow (2029–2030). 

5.3. Research limitations 

(1) Regarding the assumption of treating human capital as a continuous 

medium, while this simplification enhances the mathematical tractability of the 

model, human capital mobility actually exhibits significant discreteness and 

individual heterogeneity characteristics. The movement of highly skilled talent often 

manifests as the migration of key individuals or small groups who may bring about 

abrupt rather than gradual impacts—these “quantum leap” changes are difficult for 

continuous medium models to accurately capture. Particularly in the innovation field, 

the mobility of a small number of top talents may produce economic effects far 

exceeding linear expectations, and our model shows clear limitations in handling 

such nonlinear mutations. (2) The static assumption of the economic potential field 

oversimplifies the dynamic evolution process of real economic environments. In 

reality, economic potential is not only influenced by external macro environments 

but also changes with human capital flows themselves, forming complex feedback 

loop systems. The model fails to fully capture this endogenous change mechanism, 

potentially leading to long-term prediction biases. (3) The model views talent 

mobility decisions as rational economic behaviors, neglecting the influence of non-

economic factors such as cultural identity, family ties, and social networks, which 

may play decisive roles in actual decision-making. Research indicates that nearly 

40% of high-skilled talent migration decisions are driven by non-economic factors, 

motivations that are not effectively expressed in the model. (4) The model assumes 

that human capital mobility satisfies near-neighbor diffusion properties in space, but 

modern transportation and communication technologies have made long-distance 

direct mobility increasingly common, breaking through traditional geographic step-

by-step diffusion patterns. 

This study has several limitations regarding model assumptions. (1) To simplify 

calculations, the model treats human capital as a continuous medium, assuming its 

spatial distribution satisfies continuity conditions, which may generate bias when 

dealing with small-scale, high-frequency talent mobility; (2) The model assumes 

economic potential fields are static, failing to fully consider the impact of dynamic 

changes in economic environments on talent mobility; (3) The model adopts a linear 

assumption when handling resistance to talent mobility, i.e., resistance is 

proportional to mobility speed, which may not fully reflect complex real-world 

situations; (4) The model assumes talent mobility decisions are completely rational, 

ignoring the influence of non-economic factors such as personal preferences and 

cultural factors [55]. While these simplifying assumptions enhance model 

computability, they also limit the model’s application scope to some extent. 
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Regarding data availability, the research faces several major challenges. (1) The 

completeness issue of human capital mobility data; existing statistical systems 

mainly focus on permanent population changes, lacking systematic records of short-

term mobility, temporary mobility, and other forms of talent flow, resulting in 

certain biases in model input data; (2) The quality issue of innovation output data; 

statistical calibrations for innovation activities differ across regions, affecting the 

comparability of model results; (3) The lag issue of policy effect data; the actual 

effects of many policy measures take considerable time to manifest, increasing the 

difficulty of policy simulation; (4) The difficulty in obtaining micro-level data, 

particularly detailed data regarding individual mobility decisions and innovation 

behaviors. These data limitations affect the model’s accuracy and predictive 

capability to some extent. 

Regarding methodological application constraints, these are mainly reflected in 

the following aspects. (1) The application of computational biomechanical models in 

economic system analysis is still in the exploratory stage, lacking mature theoretical 

support and practical experience, particularly with certain difficulties in parameter 

calibration and model validation; (2) The model has relatively high computational 

complexity, especially when processing large-scale spatial data, with computational 

efficiency becoming an important factor constraining model application; (3) The 

model is relatively sensitive to initial conditions and boundary conditions, imposing 

high requirements on data quality and computational accuracy; (4) The model has 

limited capability in handling multi-objective optimization problems, making it 

difficult to simultaneously consider economic benefits, social equity, environmental 

impacts, and other objectives; (5) Further exploration is needed in combining the 

model with other analytical methods (such as econometric methods, general 

equilibrium models, etc.). These methodological limitations indicate that future 

research needs to invest more effort in model improvement and methodological 

innovation. 

6. Conclusion 

6.1. Research summary 

This study innovatively applied computational biomechanical models to the 

field of human capital mobility research, constructing a new analytical framework. 

By introducing the potential field concept from biomechanics to describe economic 

development dynamics, employing continuum mechanics methods to characterize 

talent mobility features, and combining numerical calculation techniques, the study 

achieved systematic simulation of the relationship between human capital mobility 

and economic growth. The research successfully transformed complex 

socioeconomic phenomena into computable mathematical models, providing a new 

research perspective for understanding human capital mobility mechanisms. Model 

analysis indicates that economic potential differences are the main factors driving 

talent mobility, while mobility resistance and spatial effects significantly influence 

the formation of mobility patterns. 

Through empirical analysis, the study identified three main mechanisms 

through which human capital mobility impacts economic growth: knowledge 
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accumulation effect, innovation-driven effect, and industrial upgrading effect. In the 

short term, human capital mobility mainly drives economic growth by improving 

production efficiency, achieving a GDP growth contribution of 1.35 percentage 

points within one year; in the long term, the innovation-driven effect becomes 

increasingly significant, with the total contribution rate of human capital mobility to 

economic growth rising from 3.19% to 7.42% over ten years. The research also 

identified four typical mobility patterns: agglomeration, gradient, network, and 

cyclical, among which agglomeration mobility has the most significant economic 

effect, with an economic contribution rate reaching 42.5%. Regional difference 

analysis shows that innovation-leading regions, rapid development regions, 

transformation and upgrading regions, and potential enhancement regions exhibit 

significant differences in talent mobility characteristics and economic effects, 

providing a basis for formulating differentiated regional development strategies. 

Policy simulation results indicate significant differences in the impact of 

different policy combinations on economic growth. The innovation-driven strategy 

can drive GDP growth by 2.85 percentage points, the industrial upgrading strategy 

contributes 2.42 percentage points of growth, the talent incentive strategy can 

achieve 2.15 percentage points of growth, while the comprehensive optimization 

strategy can achieve a growth effect of 3.65 percentage points. These findings have 

important implications for policy formulation: first, a multi-level talent support 

system should be constructed with differentiated policies for different types of talent; 

second, a regional development strategy of “gradient cultivation, collaborative 

development” should be adopted to promote positive interaction between regions; 

finally, policy implementation should follow the principles of “top-level design, 

step-by-step implementation, breakthrough at key points” to ensure policy effect 

continuity and systematization. Overall, this study not only achieved innovation in 

methodology but also provided a theoretical basis and practical guidance for 

formulating scientific talent policies. 

6.2. Future research prospects 

In the context of globalization, talent mobility has transcended national 

boundaries, forming complex international networks, and the computational 

biomechanics model constructed in this study is not only applicable to domestic 

talent flow analysis but also provides a new theoretical framework for understanding 

global talent mobility. From an international perspective, this model can be used to 

analyze talent migration phenomena between developed and developing countries, 

explaining the formation mechanism of the “talent magnetic pole effect.” Research 

indicates that the powerful economic potential fields formed by global top 

innovation centers such as Silicon Valley, London, Singapore, and others have 

exerted significant attraction on global high-skilled talent, and our model can be used 

to quantify the spatial distribution and evolutionary patterns of this attraction. 

Particularly in the post-pandemic era, the popularization of remote work models has 

changed traditional geographical constraints, creating a “virtual talent mobility” 

phenomenon, which provides new application scenarios for the model. By extending 

the model to an international scale, we can explore the impacts of different countries’ 
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innovation policies, immigration systems, compensation structures, and other factors 

on global talent distribution. Data shows that between 2020 and 2024, the cross-

border mobility rate of global high-skilled talent reached a historical peak, increasing 

by 24.5%, with the net outflow from developing to developed countries showing the 

most significant growth. Meanwhile, emerging economies such as China and India 

have gradually reversed the unidirectional outflow trend by implementing global 

talent strategies, forming a “talent circulation” phenomenon. 

In terms of model optimization, future research can be deepened in the 

following directions: (1) The dynamic characteristics of the model need to be 

improved, introducing the concept of time-varying economic potential fields to 

characterize the impact of economic environment changes on talent mobility; (2) The 

model’s non-linear processing capabilities should be enhanced, constructing more 

complex resistance functions to reflect diverse obstacle factors in reality; (3) The 

model’s capacity to handle individual heterogeneity needs strengthening, potentially 

introducing Agent-based modeling methods to integrate individual decision-making 

behaviors into the continuum model; (4) The computational efficiency of the model 

needs improvement, optimizing numerical solution processes through parallel 

computing, adaptive meshing, and other technologies. These improvements will help 

enhance the model’s accuracy and practicality. 

In terms of application expansion, research can extend to multiple fields: (1) 

Applying the model to international talent mobility research, analyzing talent 

competition and cooperation mechanisms in the context of globalization; (2) 

Exploring the model’s application in industrial cluster formation processes, studying 

the interactive relationship between talent mobility and industrial development; (3) 

Extending the model to innovation network analysis, researching spatial 

characteristics of knowledge flow and innovation diffusion; (4) Conducting in-depth 

research on talent mobility characteristics in new economic forms, such as the 

impact of new work modes like remote work and flexible employment on talent 

mobility patterns. Simultaneously, strengthening the integration of the model with 

other analytical methods, such as introducing machine learning technology into 

parameter estimation and pattern recognition stages to improve the model’s 

predictive capability. 

For future research topics, it is recommended to focus on the following 

directions: (1) In-depth research on new characteristics and patterns of talent 

mobility in the digital economy era, especially how information technology changes 

traditional mobility patterns; (2) Strengthening research on micro-mechanisms of 

talent mobility, including interactive relationships between individual career choices, 

enterprise talent strategies, and regional talent policies; (3) Focusing on the social 

effects of talent mobility, studying its impact on income distribution, social mobility, 

and balanced regional development; (4) Exploring the construction of more complete 

talent mobility monitoring and evaluation systems to provide timely and accurate 

decision support for policy formulation. Additionally, international comparative 

research needs strengthening, drawing on talent development experiences from 

different countries and regions to explore talent development models suitable for 

national conditions. Through these studies, understanding of human capital mobility 
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patterns can be further deepened, providing stronger theoretical support for 

promoting high-quality economic development. 
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