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Abstract: In this study, a Transformer-based video generation technique is proposed for 

accurately modelling biomechanical movement patterns, and its performance is systematically 

evaluated in walking, running, throwing and other movement tasks. The experimental results 

show that Transformer outperforms traditional methods (RNN, CNN, GAN) in terms of motion 

trajectory consistency, temporal synchronization, and video clarity, and is capable of 

generating high-quality motion videos that comply with biomechanical constraints. This study 

not only expands the application scope of Transformer in biomechanical analyses, but also 

provides high-precision solutions for tasks such as gait reconstruction, abnormality detection, 

rehabilitation training, and motion prediction. 

Keywords: biomechanical motion analysis; transformer; video generation; motion prediction 

1. Introduction 

Biomechanical motion analysis has important application value in the fields of 

sports science, rehabilitation medicine, and robot control, etc. Traditional motion 

analysis methods mainly rely on motion capture systems, inertial sensors (IMUs), and 

computer vision for data acquisition. However, these methods have limitations such 

as high cost of data annotation, high computational complexity, and strong dependence 

on the environment, making accurate motion prediction and reconstruction tasks 

challenging. In recent years, the rapid development of deep learning and computer 

vision technologies has pushed forward data-driven motion analysis methods, among 

which Transformer provides a new solution for biomechanical motion analysis due to 

its powerful spatio-temporal feature modelling capability, which is superior in long-

time dependent modelling, trajectory prediction and video generation. 

2. Relevant technological foundations 

2.1. Computer vision and video generation 

The rapid development of computer vision in the field of video generation has 

opened up new possibilities for modelling complex motion sequences and 

biomechanical motion analysis. Traditional video generation methods rely on 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 

where CNNs excel at spatial feature extraction, while RNNs and their variants (e.g., 

LSTMs) are used to model time-series information [1]. These methods have 

limitations in modelling long time-series dependencies, making it difficult to 

accurately capture the detailed variations in biomechanical motion. In recent years, 

generative methods based on autoregressive models (e.g., Video PixelCNN), 

generative adversarial networks (GANs), and variational autoencoders (VAEs) have 
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made significant progress in improving video quality, but still face the problems of 

coupled spatio-temporal information and insufficient long-distance-dependent 

capturing capability. 

With the introduction of the self-attention mechanism, Transformer-based video 

generation technology has become an important breakthrough in this field. Compared 

with traditional methods, the transformer’s global feature modelling capability enables 

it to effectively capture the long-term dependencies of motion trajectories, thus 

improving the spatio-temporal consistency and structural integrity of video generation. 

In biomechanical motion analysis, video generation techniques need to ensure not only 

the realism of the visual appearance, but also compliance with the laws of kinematics 

and dynamics [2]. Transformer-based video generation can establish global 

correlations between multiple time steps, and improve the modelling ability of 

complex motion patterns through motion state encoding and constraint learning, laying 

the foundation for accurate and efficient biomechanical motion analysis. 

2.2. Application of transformer model in video generation 

While Transformer models offer superior long-range dependency modelling 

capabilities, they come with increased computational complexity. Processing high-

dimensional video data with self-attention mechanisms requires substantial memory 

and processing power, making real-time applications challenging. To address this, 

several optimization strategies have been explored: 

Sparse Attention Mechanisms: Reducing the quadratic complexity of standard 

self-attention by focusing on local spatio-temporal dependencies. 

Factorized Space-Time Attention: Splitting attention computation into spatial and 

temporal components to reduce overhead [3]. 

Efficient Transformer Variants: Implementations such as Swin Transformer and 

Linformer introduce hierarchical structures and linearized attention to enhance 

efficiency. 

 

Figure 1. Comparison of video generation performance of transformer. 
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However, despite these optimizations, deploying Transformer-based video 

generation on edge devices or real-time applications remains a challenge, requiring 

future work on lightweight model architectures and hardware acceleration, such as 

Figure 1. 

While Transformer-based methods excel in long-term motion prediction and 

biomechanical consistency, they may struggle with short-duration rapid movements. 

Sudden, high-velocity changes, such as throwing or abrupt shifts in direction, 

introduce motion discontinuities that are difficult to model accurately with self-

attention mechanisms. Experimental results indicate that: Walking and Running 

Tasks: Transformer achieves high trajectory consistency due to its long-range feature 

modelling [4]. Throwing and Sudden Motion Tasks: GAN-based approaches tend to 

produce more natural and flexible motion sequences, although they may sacrifice 

biomechanical accuracy. Future work should explore hybrid models combining 

Transformer’s temporal modelling strength with GAN’s adaptability for short-term 

movements. 

2.3. Biomechanical motion analysis 

Biomechanical motion analysis aims to study the dynamics and kinematic 

properties of human motion, and to resolve the mechanical behavior of the motion 

system in different environments through mathematical modelling, experimental 

measurements and computer simulations [5]. With the support of computer vision and 

deep learning, biomechanical research has expanded from traditional motion capture 

techniques (e.g., optical marker points, inertial sensors) to video-based depth 

estimation methods, enabling contactless and non-invasive human motion analysis. In 

particular, in Transformer-based video generation tasks, biomechanical motion 

analysis is not only used for data annotation and motion pattern extraction, but also 

for improving the motion rationality and temporal consistency of the generated video 

through kinetic constraints. In terms of mathematical modelling, biomechanical 

motion analysis usually adopts the Inverse Dynamics method to calculate the joint 

forces with the following formula: 

𝜏 = 𝐽𝑇(𝐹𝑒𝑥𝑡 − 𝑚𝑔 − 𝑚�̈�) (1) 

where τ denotes the joint moment, J is the Jacobi matrix, 𝐹𝑒𝑥𝑡 is the external force, m 

is the body mass, g is the gravitational acceleration, and �̈� is the acceleration vector. 

This formulation is used to estimate the forces on an individual in different motion 

states and combined with Transformer for time-series modelling to improve the 

physical consistency of motion generation. Human motion can be modelled as a Multi-

body System (MBS) and its trajectory can be described by the Lagrangian Dynamics 

equations: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖 (2) 

where L = T − V is the Lagrangian quantity, 𝑞𝑖 is the generalized coordinate, T is the 

kinetic energy, V is the potential energy and 𝑄𝑖 is the generalized force. This equation 

can be used to calculate the energy conversion process under different motion modes 

and combined with Transformer to predict the motion state of future frames, thus 
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generating video sequences that conform to biomechanical laws. Combined with 

Transformer’s global temporal feature learning capability, biomechanical motion 

analysis can achieve more accurate motion prediction, anomaly detection and video 

generation, and promote the in-depth development of intelligent motion analysis and 

simulation [6]. 

3. Transformer-based video generation technology 

3.1. Transformer architecture for video generation 

The proposed method utilizes masked modelling and contrastive learning to 

improve motion sequence reconstruction [7]. However, large-scale datasets are 

essential for training robust Transformer models. The reliance on vast labeled data 

increases training costs, as biomechanical video datasets require precise annotation 

through motion capture systems or manually labeled skeletal sequences. The key to 

Transformer’s processing of video is how to efficiently decouple spatio-temporal 

information and reduce computational complexity. reduce computational complexity. 

Common methods include: 

(1) Factorized Space-Time Attention: In the Transformer structure, spatial and 

temporal attention are separated to reduce computational overhead: 

𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝑄𝑠𝐾𝑠

𝑇

√𝑑𝑘

) 𝑉𝑠 (3) 

𝐴𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝑄𝑡𝐾𝑡

𝑇

√𝑑𝑘

) 𝑉𝑡 (4) 

where Q, K, V denote Query, Key, Value matrices respectively, and dk is the 

dimensional scaling factor. 

(2) Divided Space-Time Attention: Divides the video sequence into different time 

windows, performs the attention computation in the local area, and effectively reduces 

the cost of Transformer computation: 

Z = SelfAttention (PatchEmbed(X)) (5) 

where X is the input video frame, PatchEmbed is the projection module for feature 

extraction, and Z represents the spatio-temporal features extracted by the Transformer. 

(3) Masked Video Modeling (Masked Video Modeling): Similar to BERT’s 

Masked Language Model (MLM), some video frames are randomly masked, and the 

model is required to speculate the missing content based on the known frames, which 

improves the model’s temporal modelling capability [8]. 

In specific implementations, ViViT (Video Vision Transformer) uses 

hierarchical spatio-temporal feature extraction, TimeSformer uses independent 

spatial-temporal attention, and VideoGPT uses an autoregressive video generation 

strategy. These methods perform well in biomechanical applications such as motion 

prediction, frame completion, and anomaly detection, such as Figure 2. 
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Figure 2. Overall architecture of the transformer in the video generation task. 

The Transformer-based video generation architecture achieves efficient video 

sequence modelling by decoupling spatial and temporal features. The input video is 

subjected to Patch Embedding for feature extraction, and spatial and temporal features 

are modelled by Spatial Attention and Temporal Attention, respectively. Multi-Head 

Self-Attention combines the information from different attention heads to enhance the 

spatio-temporal feature fusion capability [9]. Masked Video Modeling introduces 

frame-missing training to improve the motion prediction ability of the model. After 

Transformer Encoder encoding and Reconstruction Module processing, the video 

sequences are synthesized to conform to the physical constraints, providing accurate 

prediction and reconstruction capabilities for biomechanical motion analysis. 

3.2. Temporal feature modelling for motion analysis 

Temporal feature modelling for motion analysis mainly involves dynamics 

modelling of human motion sequences, temporal dependency capturing and non-linear 

motion pattern learning. In the video generation task, the timing information 

determines the coherence of the movements and also affects the reasonableness of the 

motion trajectories [10]. Traditional sequence modelling methods such as Long Short-

Term Memory Networks (LSTMs) and Temporal Convolutional Networks (TCNs) are 

able to extract temporal features to a certain extent, but they are difficult to model 

long-distance dependencies and do not make full use of the global information. The 

Transformer’s Self-Attention mechanism enables the model to learn motion patterns 
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throughout the entire video sequence by associating global features. video sequences 

to learn motion patterns, thus improving the quality of motion prediction and video 

generation. In terms of mathematical modelling, human motion can be represented as 

a discrete time sequence 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} , where 𝑥𝑡 represents the motion state at 

time t. Usually, we need to model the dynamic changes of the motion state in the time 

dimension, i.e., to solve the state transfer function: 

𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑢𝑡) + 𝜀𝑡 (6) 

where 𝑓(𝑥𝑡 , 𝑢𝑡) denotes the state transfer function, 𝑢𝑡 is a control input, and 𝜀𝑡 is a 

perturbation term. In the deep learning model, this state transfer function can be 

modelled by Transformer, where the self-attention mechanism is calculated as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉(7) (7) 

where Q, K, V denote the Query, Key and Value matrices respectively and 𝑑𝑘 is the 

dimensional scaling factor. The mechanism is able to compute the weighting 

relationship between different time steps to capture complex motion dependency 

patterns. 

(1) Motion Feature Encoding and Temporal Dependency Modelling 

In the Transformer structure, temporal features are usually augmented by 

Positional Encoding (Positional Encoding) to compensate for the lack of time-

awareness of the self-attention mechanism. Positional encoding is defined as follows: 

𝑃𝐸(𝑖, 2𝑖) = 𝑠𝑖𝑛 (
𝑡

100002𝑖/𝑑
) ,  𝑃𝐸(𝑡, 2𝑖 + 1) = 𝑐𝑜𝑠 (

𝑡

100002𝑖/𝑑
) (8) 

where t is the time step, d is the feature dimension, and i is the index. This encoding 

enables the Transformer to identify the relative positions between time steps so that 

temporal information is not lost when modelling temporal dependencies. 

(2) Motion trajectory prediction and time series regression 

Motion trajectory prediction is an important part of biomechanical motion 

analysis, with the goal of predicting future motion states based on information from 

past frames. Mathematically, trajectory prediction can be expressed as a sequence 

regression problem, i.e., predicting a future trajectory when the past trajectory 

{𝑥1, … , 𝑥𝑇} is known {𝑥𝑇+1, … , 𝑥𝑇+𝐻}. This task can be modelled by the Transformer 

decoder, and the objective optimization function is usually a mean square error (MSE): 

𝐿𝑀𝐴𝐸 =
1

𝐻
∑‖𝑥𝑇+ℎ − 𝑥𝑇+ℎ‖2

𝐻

ℎ=1

 (9) 

where 𝑥𝑇+ℎ is the true trajectory point and 𝑥𝑇+ℎ is the predicted trajectory point. This 

loss function measures the prediction trajectory and true trajectory error and can 

optimise the motion sequence generated by Transformer to be more physically correct. 

(3) Modelling of Motion Constraints and Kinetic Consistency 

In biomechanical motion analysis, motion must be consistent with kinetic 

constraints such as velocity, acceleration, joint forces and other physical rules. 

Physical constraint-based loss functions can be introduced in the Transformer 

structure, for example: 
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𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = ∑‖𝑀�̈�𝑡 − 𝐹𝑡‖2

𝑇

𝑡=1

 (10) 

where M is the mass matrix, �̈�𝑡is the acceleration, and 𝐹𝑡  is the force vector. This 

constraint ensures that the generated video motion trajectory conforms to the laws of 

physics and improves the realism of the motion prediction. 

(4) Multimodal motion fusion and long time series modelling 

Human motion analysis usually involves multiple modal data, such as video 

frames, skeletal points, electromyographic data (EMG), ground reaction force (GRF), 

and so on. In order to integrate these data, Multimodal Transformer (MT) can be used, 

whose core calculation formula is as follows: 

𝐻 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝑣𝑖𝑑𝑒𝑜,𝐻𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛,𝐻𝐸𝑀𝐺,𝐻𝐺𝑅𝐹) (11) 

𝑀𝑢𝑙𝑡𝑖𝑀𝑜𝑑𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (12) 

where 𝐻𝑣𝑖𝑑𝑒𝑜, 𝐻𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 , 𝐻𝐸𝑀𝐺 , 𝐻𝐺𝑅𝐹 denotes video, skeletal, EMG and ground 

reaction force features, respectively, and MultiModal Attention calculates cross-modal 

correlations between them to improve motion prediction accuracy. 

Modelling temporal features for motion analysis is a core aspect of video 

generation, which is crucial to capture temporal dependencies, optimize trajectory 

prediction and ensure physical consistency. Transformer models long-range motion 

dependencies through a self-attention mechanism and combine positional coding, 

lossy trajectory prediction and kinetic constraints to make the generated video 

sequences more accurate. 

3.3. Motion data and transformer input mapping 

Motion data usually includes a variety of modal information such as raw video 

frames, skeletal keypoints, electromyographic data (EMG), accelerometer data, and 

ground reaction force (GRF). These data need to be processed through feature 

extraction, embedding representation, and temporal modelling to fit the input 

requirements of the Transformer structure [11]. Mathematically, the motion data are 

assumed to be a time series𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} where 𝑥𝑡 represents the motion state 

vector at time t. The goal is to map them to the Transformer’s high-dimensional input 

representation H. This process consists of the following main steps: 

(1) Motion Data Feature Extraction and Coding 

Motion data usually come from multiple sensors or computer vision systems, and 

need to be preprocessed to extract effective features. For example, a sequence of 

skeletal keypoints based on attitude estimation can be used to capture human motion 

trajectories, and its state vector is defined as follows: 

𝑥𝑡 = {𝑝𝑡
1, 𝑝𝑡

2, … , 𝑝𝑡
𝐽
} (13) 

where 𝑝𝑡
𝑖 = {𝑥𝑡

𝑗
, 𝑦𝑡

𝑗
, 𝑧𝑡

𝑗
} denotes the spatial coordinates of the j-th skeletal joint point, 

and there are a total of J key points. In order to unify the data format, a linear 

transformation is often used to normalize the data: 
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�̃�𝑡
𝑗

=
𝑥𝑡

𝑗
− 𝜇

𝜎
,  �̃�𝑡

𝑗
=

𝑦𝑡
𝑗

− 𝜇

𝜎
,  �̃�𝑡

𝑗
=

𝑧𝑡
𝑗

− 𝜇

𝜎
 (14) 

where μ, σ are the mean and standard deviation of the data, respectively, to ensure 

stable data distribution and improve the convergence of model training. For 

electromyography data (EMG) or acceleration data (IMU), wavelet transform or 

Fourier transform can be used to extract the frequency domain features, so that they 

contain richer time series information: 

𝑋𝑓𝑟𝑒𝑞 = 𝐹(𝑋) (15) 

where F(⋅) denotes the Fourier transform, which is used to convert the signal to the 

frequency domain, enabling the Transformer to learn the time-frequency 

characteristics of the motion pattern. 

(2) Motion Data Embedding and Transformer Input Mapping 

After feature extraction, the raw motion data needs to be mapped into the input 

space of the Transformer. Since the Transformer uses a fixed dimension input format, 

we need to perform Linear Projection on the motion sequence to adjust the dimension: 

𝐻𝑡 = 𝑊𝑋𝑡 + 𝑏(16)
 

(16) 

where 𝑊 ∈ 𝑅𝑑ℎ×𝑑𝑥  is the learnable weight matrix, b is the bias, 𝐻𝑡  is the high-

dimensional feature representation of time step t, 𝑑𝑥  is the dimension of the input 

motion data, and 𝑑ℎ is the input dimension expected by the Transformer. In practice, 

a Patch Embedding method can be used to divide the long-time motion sequence into 

multiple time windows 𝑃𝑡 and then project it: 

𝐻 = 𝑊 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝑃1, 𝑃2, … , 𝑃𝑇) (17) 

This improves the model’s ability to learn local motion patterns and reduces 

computational complexity. 

(3) Positional Encoding and Timing Information Enhancement 

Since the Transformer structure is not time-aware, Positional Encoding needs to 

be introduced to embed timing information. Common encoding methods include 

Sinusoidal Encoding and Learnable Embedding. The mathematical expression for 

Sinusoidal-Cosine Encoding is as follows: 

𝑃𝐸(𝑖, 2𝑖) = 𝑠𝑖𝑛 (
𝑡

100002𝑖/𝑑
) ,  𝑃𝐸(𝑡, 2𝑖 + 1) = 𝑐𝑜𝑠 (

𝑡

100002𝑖/𝑑
)

 
(18) 

where t is the time step, d is the feature dimension, and i is the channel index. This 

method enables the model to learn the relative relationship between time steps, 

ensuring the continuity of the motion trajectory. For more complex motion data, such 

as multimodal sensor data fusion, learnable positional embedding, i.e., learning a 

separate vector for each time step, can be used: 

𝐻𝑡
𝑖𝑛𝑝𝑢𝑡

= 𝐻𝑡 + 𝑃𝐸𝑡

 

(19) 

where 𝑃𝐸𝑡 is a learnable parameter that can be optimized for different tasks to improve 

the adaptability of timing modelling. 

(4) Motion Data Time Windowing and Transformer Input Optimization 
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In order to improve the computational efficiency, the long time series data is 

usually processed by Sliding Window, i.e., the original data is divided into multiple 

sub-sequences and the attention computation is performed in a local window. Let the 

window size be W, then the input data of each window is: 

𝑋𝑤𝑖𝑛 = {𝑥𝑡, 𝑥𝑡+1, … , 𝑥𝑡+𝑊} (20) 

The Transformer performs Self-Attention computation only on the data within 

the window to reduce the computational complexity and improve the learning ability 

of local motion features. A Factorized Attention approach can be used to split the 

temporal and spatial attention processing: 

𝐴𝑠𝑝𝑎𝑐𝑒−𝑡𝑖𝑚𝑒 = 𝐴𝑠𝑝𝑎𝑐𝑒 ⋅ 𝐴𝑡𝑖𝑚𝑒 (21) 

Among them, 𝐴𝑠𝑝𝑎𝑐𝑒 calculates the feature relationships in the spatial dimension 

and 𝐴𝑡𝑖𝑚𝑒  calculates the feature relationships in the temporal dimension, and this 

approach effectively reduces the computational cost and improves the scalability of 

the model. 

The key to mapping motion data to Transformer inputs lies in multimodal feature 

extraction, feature embedding, position encoding and time windowing. Motion data 

usually includes video frames, skeletal keypoints, EMG signals, accelerometer data, 

etc., which need to be normalized and frequency domain transformed to ensure the 

resolvability of the data [12]. Subsequently, the motion data is mapped to a high-

dimensional input representation of the Transformer by means of linear projection and 

Patch Embedding. In order to enhance the time-dependent modelling capability, 

position coding and time windowing mechanisms are introduced to optimize the long 

sequence modelling effect. 

4. Applications in biomechanical motion analysis 

4.1. Motion prediction and reconstruction 

Motion prediction and reconstruction is of great importance in biomechanical 

research and is widely used in the fields of sports rehabilitation, ergonomics, robot 

control and computer animation [13]. The core goal of this task is to analyze and learn 

human motion patterns, predict future trajectories from historical motion data, and 

reconstruct accurately in the presence of missing data or noise interference. With the 

support of Transformer and deep learning technologies, the accuracy and stability of 

motion prediction and reconstruction have been significantly improved, especially in 

the long time-series dependent modelling and high-dimensional motion data 

processing. 

The core of motion prediction lies in the speculation of future states based on 

existing motion trajectories, which is crucial in tasks such as gait analysis, motion 

planning, and posture correction. Traditional prediction methods, such as Kalman 

Filtering, Markov Models and Dynamic Time Warping (DTW), mainly rely on linear 

extrapolation or probabilistic modelling, which are limited when facing complex 

biomechanical movement patterns. In recent years, deep learning methods (e.g., 

Transformer, LSTM, TCN) have been able to effectively extract long-term 

dependencies in motion sequences with the help of the global attention mechanism 
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(Self-Attention) to improve the accuracy and stability of motion prediction. Motion 

prediction input data usually include joint angles, velocities, accelerations, muscle 

activation signals, etc., which can be captured by inertial measurement units (IMUs), 

motion capture systems (MoCap), and video pose estimation (Pose Estimation). 

Compared with traditional methods, the advantages of the Transformer structure in 

motion prediction are: (1) Global information modelling, which improves the 

understanding of complex motion patterns by learning long-time dependencies 

through the self-attention mechanism; (2) adaptive learning, which improves 

prediction accuracy by personalizing the modelling for different individuals; and (3) 

non-linear modelling capability, which can effectively deal with irregular motion 

patterns and avoid the limitations of linear methods [14]. 

The core challenges of motion reconstruction include: (1) Spatial consistency to 

ensure that the reconstructed motion data conforms to biomechanical constraints, such 

as joint angle ranges, velocity stability, and muscle mechanical properties; (2) 

temporal continuity to avoid abrupt or unreasonable state jumps in the reconstructed 

motion sequences; and (3) multimodal fusion, which integrates the information 

between different data sources (IMUs, videos, force sensors, etc.) , to improve the 

accuracy of motion reconstruction. Modern deep learning techniques, such as 

Generative Adversarial Networks (GANs), Autoregressive Models (ARs), Variational 

Autocoders (VAEs), etc., are able to efficiently fill in the missing motion trajectories 

through nonlinear modelling. Transformer combines sequential modelling and self-

supervised learning approaches to demonstrate higher stability and generalization 

capabilities in motion reconstruction tasks. 

 
Figure 3. Comparative analysis plot of motion prediction and reconstruction. 

In order to evaluate the performance of Transformer in motion prediction and 

reconstruction tasks, we conduct experimental analyses based on public datasets such 

as Human3.6M and CMU MoCap. The experiments use LSTM, TCN, GAN, and 

Transformer to compare and evaluate the performance of different models in motion 

prediction and reconstruction tasks. The main evaluation metrics include (1) 

Prediction Error, which calculates the average Euclidean distance between the 

predicted trajectory and the true trajectory; (2) Temporal Consistency, which measures 

the smoothness of the predicted sequence and avoids abrupt changes or non-physically 

reasonable motion states; (3) Biomechanical Constraint Compliance (Biomechanical 
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Constraint Compliance), which ensures that the predicted trajectories conform to the 

rules of kinematics and dynamics. Figure 3 shows the performance of the different 

methods in the motion prediction and reconstruction task, including the trend of 

prediction error over time and the comparison of the motion trajectories generated by 

the different methods with the real motion trajectories. 

4.2. Exercise abnormality detection and rehabilitation training 

Movement abnormality detection and rehabilitation training are important in 

biomechanical analyses and are widely used in the fields of medical rehabilitation, 

sports science and ergonomics. The core goal of movement abnormality detection is 

to automatically identify abnormal patterns based on human movement data for early 

diagnosis of potential movement injuries or neurological disorders such as Parkinson’s 

disease and post-stroke movement disorders. Rehabilitation training, on the other 

hand, relies on a personalized movement trajectory reconstruction and assessment 

system to provide an optimized treatment plan to help patients regain normal 

movement ability [15]. 

The key to the detection of movement abnormalities is to distinguish between 

normal and abnormal movement patterns, such as gait abnormalities, joint movement 

abnormalities, and movement incoordination. This task requires the construction of 

standardised movement databases and the use of spatio-temporal feature modelling 

methods to classify human movement patterns. Traditional methods such as Dynamic 

Time Warping (DTW), Support Vector Machine (SVM), and Principal Component 

Analysis (PCA) are mainly used for feature extraction and anomaly detection, but 

these methods often have limitations when dealing with complex temporal 

dependencies. The Transformer-based time-series modelling approach can learn the 

global features of individual motion patterns more effectively and improve the 

recognition of anomalous patterns by combining with Self-Supervised Learning 

(SSL). 

In anomaly detection, systems often use multimodal data sources such as gait 

video, skeletal point data, electromyography (EMG), accelerometers, and ground 

reaction forces (GRFs) to construct a complete motion model. Transformer’s Multi-

Head Attention enables the model to focus on spatio-temporal features of different 

sensor inputs, thus improving the accuracy of anomaly detection. features, thereby 

improving the accuracy of anomaly detection. For example, in the gait analysis of 

Parkinson’s disease patients, Transformer can effectively differentiate between 

normal and pathological gaits by learning the global information of the gait sequence 

and detecting abnormal gait patterns at an early stage, so that the patients can receive 

intervention treatment as early as possible. 

The goal of rehabilitation training is to provide targeted training programs based 

on the assessment of an individual’s motor ability and to monitor the patient’s recovery 

progress in real time. While traditional rehabilitation methods rely on the experience 

of the physiotherapist, the Transformer-based data-driven approach allows for a more 

personalized approach to rehabilitation and provides quantitative assessment metrics. 

Motion rehabilitation systems usually include human motion capture systems 

(MoCap), force feedback devices, virtual reality (VR) environments, etc., which 
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provide precise training guidance by monitoring the patient’s movement status in real 

time. The Transformer’s application in rehabilitation training is mainly reflected in: 

(1) Adaptive training program: Based on the patient’s historical exercise data and 

current state, the model can generate optimized training trajectories to reduce 

repetitive injuries and improve the efficiency of exercise recovery. 

(2) Real-time feedback system: Combined with biomechanical sensors, it 

provides real-time feedback on rehabilitation training, such as posture adjustment, 

joint force analysis, etc., to ensure that the training process complies with 

biomechanical constraints. 

(3) Multi-modal fusion analysis: Integrates data such as gait, joint angle, and 

EMG signals to improve understanding of the patient’s movement status and 

automatically adjust the training difficulty. 

In intelligent rehabilitation training, Transformer can learn the patient’s exercise 

habits and optimize the exercise trajectory based on historical training data, making 

the rehabilitation process more efficient. For example, in the exercise recovery task of 

stroke rehabilitation patients, Transformer combines EMG signals and joint angle data 

to accurately predict the patient’s recovery trend, and dynamically adjusts the intensity 

and frequency of rehabilitation training to improve the personalization of the training. 

In order to verify the performance of Transformer in motion abnormality 

detection and rehabilitation training, we conducted experiments based on human 

motion databases (e.g., Human3.6M, CMU MoCap, MGH Gait Database). The 

experiments use LSTM, TCN, GAN, and Transformer to compare and evaluate the 

performance of the models in different tasks. The main evaluation metrics include: 

(1) Classification Accuracy (CA): measures the correct recognition ability of the 

anomaly detection system. 

(2) Temporal Consistency: Measures how well the rehabilitation training 

program matches the real movement patterns. 

(3) Rehabilitation Prediction Error: measures the deviation between the 

rehabilitation trajectory predicted by the model and the actual recovery trajectory of 

the patient. 

Figure 4 shows the performance of different methods in the motor abnormality 

detection and rehabilitation training tasks, including the comparison of the accuracy 

of different methods in the abnormal gait recognition task, and the trend of the 

Transformer’s error changes in the optimization of rehabilitation training programs. 

 

Figure 4. Comparison of experiments in motor abnormality detection and 

rehabilitation training tasks. 
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Left graph (classification accuracy of abnormal gait detection): Comparing the 

accuracy of different methods in the gait abnormality detection task, the Transformer 

model (purple) performs the best with a classification accuracy of 95%, which is 

significantly better than traditional methods (e.g., SVM and PCA). 

Right (Rehabilitation training error trend): The Transformer model’s prediction 

error decreases faster than that of LSTM and GAN in the rehabilitation training task, 

which shows a stronger ability to model movement patterns and helps to improve the 

optimization of personalized rehabilitation programs. 

4.3. Motion data enhancement and synthesis 

Motion data enhancement and synthesis is crucial in biomechanical research, 

especially when data collection is costly and the number of samples is limited. The 

main goal of data enhancement is to improve the generalization ability of the model 

by extending the diversity of the dataset, leading to more stable performance in tasks 

such as gait analysis, exercise prediction, and rehabilitation training. Traditional data 

enhancement methods include noise perturbation, time series interpolation, symmetric 

transformations, etc. Deep learning-based methods, such as Generative Adversarial 

Networks (GANs) and Variational Auto-Encoders (VAEs), are able to synthesize 

realistic motion sequences, providing a richer data source for motion analysis. 

Motion data synthesis can not only be used to generate realistic gait sequences, 

joint angle trajectories, and electromyographic signals (EMGs), but also introduce data 

balancing strategies during training to improve the accuracy of anomaly detection 

tasks. Combined with the spatio-temporal feature modelling capability of the 

Transformer structure, highly accurate simulated data can be generated by learning 

historical motion patterns, making the data augmentation more compatible with 

biomechanical constraints. Figure 5 demonstrates the effects of different data 

enhancement methods on the distribution of motion data and the comparison between 

synthetic and real data in terms of gait patterns. 

 

Figure 5. Gait pattern comparison between synthetic and real data. 

5. Experimental design and analysis of results 

5.1. Datasets 

To improve the robustness and clarity of experimental findings, we provide 

additional visual comparisons of generated motion trajectories. Figure 1 illustrates the 

trajectory alignment between real and generated motions, demonstrating the 
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effectiveness of our approach in preserving biomechanical consistency. We also 

improve image clarity by using high-resolution renderings of skeletal motion 

sequences. Additionally, comparative heatmaps (Figure 2) highlight the differences 

in spatial accuracy across different motion types. These visual results reinforce the 

quantitative performance improvements presented in Tables 1 and 2. 

During data preprocessing, the motion trajectories are first spatio-temporally 

aligned to remove temporal deviations between different data sources. In addition, 

normalization, signal filtering and feature dimensionality reduction are used to ensure 

the stability and consistency of the input data. For incomplete motion sequences, a 

Transformer-based motion reconstruction model is used to make up for the missing 

data, thus enhancing the completeness of the training data. With these optimization 

strategies, the dataset can not only be used for supervised learning tasks, but also 

support self-supervised learning and multimodal fusion modelling, further increasing 

the value of Transformer’s application in motion analysis. 

5.2. Experimental method 

In this study, a Transformer-based video generation architecture is used to 

construct a high-precision motion prediction and analysis model by combining 

multimodal motion data. The experimental process includes data preprocessing, 

feature extraction, temporal modelling, video generation, and motion reconstruction. 

Skeletal point extraction, EMG signal analysis, and ground reaction force 

measurement are used to obtain human motion features, and the data representation is 

optimized through normalization and dimensionality reduction. A Factorized 

Attention structure is adopted to enable the model to learn the motion patterns 

independently in the spatio-temporal dimension and to improve the modelling ability 

of long time sequences. 

In the model training phase, a self-supervised learning strategy is adopted to 

predict missing frames by Masked Motion Modeling to improve the generalization 

ability of the model. In order to verify the effectiveness of different methods, the 

experiments compare the video generation effects based on Transformer, LSTM, TCN 

and GAN, and evaluate them by the metrics of motion trajectory consistency, video 

clarity, and motion biomechanical constraint matching. The experiments adopt an end-

to-end optimization strategy to ensure that the model can learn efficiently from raw 

data to video generation, and is suitable for a variety of application scenarios, such as 

motion prediction, anomaly detection and rehabilitation training. 

5.3. Comparison of transformer’s performance in different motor tasks 

(Walking, Running, Throwing, etc.) 

In this study, the performance of the Transformer in different motion tasks 

(walking, running, throwing) is systematically evaluated and compared with LSTM, 

TCN and GAN. The experiments focus on key metrics such as Prediction Accuracy, 

Trajectory Consistency and Biomechanical Compliance. In the walking task, 

Transformer is able to accurately predict the gait cycle and outperforms LSTM and 

TCN in long time-series dependency modelling, avoiding the common gait drift 

problem of traditional methods. In the running task, Transformer can capture subtle 
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changes in high-speed motion due to the global attention mechanism, resulting in 

smoother and more consistent trajectories than other methods. In the throwing task, 

Transformer has higher stability in predicting the arm trajectory and throwing angle, 

which can effectively reduce the prediction error and improve the realism of motion 

generation. Experimental results show that Transformer performs superiorly in long 

time-dependent tasks (e.g., walking, running), while GAN-generated motion 

trajectories are more flexible when it comes to short-time drastically changing motions 

(e.g., throwing). Table 1 shows the comparative results of the different approaches in 

various motion tasks: 

Table 1. Comparison of the performance of different methods in motor tasks (in %). 

Campaign mandate Predictive accuracy (↑) trajectory consistency (↑) Biomechanical rationality (↑) 

Walking 92.1 90.4 94.3 

Running 89.7 87.6 91.8 

Throwing 85.3 83.2 88.9 

5.4. Analysis of the impact of motion data on the quality of generated 

video 

The quality of motion data directly determines the effect of Transformer-based 

video generation, especially in terms of motion trajectory accuracy, spatio-temporal 

consistency and biomechanical rationality. This study compares the effects of different 

data acquisition methods (optical motion capture, inertial measurement unit (IMU), 

depth camera) on the quality of the generated video, focusing on the assessment of 

peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and temporal 

consistency. The experimental results show that the high-precision optical motion 

capture data provides the optimal video generation quality with the highest PSNR and 

SSIM scores, resulting in clear details and smooth motion trajectories. In contrast, 

IMU sensor-based data suffers from noise interference, resulting in slight trajectory 

drift and affecting timing consistency. Depth camera data Although it can capture 

human motion without marker points, the biomechanical plausibility of its generated 

video is low due to pose estimation errors. Table 2 demonstrates the effect of different 

data sources on the quality of video generated by Transformer: 

Table 2. Effect of different motion data on the quality of generated video (in %). 

Campaign data sources PSNR (↑) SSIM (↑) timing consistency (↑) 

MoCap 34.8 91.2 93.5 

IMU 29.5 84.7 86.3 

Depth Camera 27.2 79.4 81.7 

5.5. Alignment assessment of generated video to real motion data 

The alignment of the generated video with the real motion data is a key indicator 

of the effectiveness of Transformer in biomechanical motion analysis. The alignment 

assessment mainly focuses on the matching of motion trajectories, time 

synchronization, and biomechanical consistency to ensure that the generated videos 

are not only visually realistic, but also conform to the human dynamics constraints. In 
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this study, Dynamic Time Warping (DTW), Mean Square Error (MSE), and Motion 

Constraints Matching Ratio (MCR) are used for the assessment to measure the fit 

between the spatio-temporal accuracy of video synthesis and real motion data. 

Experimental results show that Transformer-generated videos perform superiorly 

in terms of trajectory matching and biomechanical consistency, with both DTW and 

MSE scores outperforming GAN- and LSTM-based methods. In highly dynamic 

motion (e.g., throwing) tasks, short periods of drastically changing trajectories may 

result in slight offsets that affect temporal synchronization. Table 3 shows the results 

of the comparison of the different methods in terms of the alignment of the generated 

video with the real motion data: 

Table 3. Comparison of different methods in terms of alignment of generated video 

with real motion data (in %). 

Assessment of indicators LSTM GAN Transformer (Ours) 

DTW 82.4 86.9 93.2 

MSE 78.5 83.7 91.4 

MCR 81.2 85.5 94.1 

5.6. Comparison experiments between transformer and traditional 

methods such as GAN, RNN, and CNN 

This study systematically compares the performance of Transformer, GAN, RNN 

(LSTM), and CNN in the task of motion video generation, focusing on evaluating the 

key metrics of video quality (PSNR, SSIM), motion trajectory alignment (DTW), and 

computational efficiency (FLOPs). The experimental results show that Transformer 

outperforms other methods in terms of long time-series motion prediction, trajectory 

alignment and video quality, especially in modelling remote dependencies and spatio-

temporal feature extraction. 

In terms of video clarity, the videos generated by Transformer are significantly 

better than RNN and CNN in terms of PSNR and SSIM scores, while GAN can 

generate highly realistic videos in some complex motion scenes, but suffers from 

unstable motion trajectories. In terms of computational efficiency, the Transformer 

has higher computational complexity due to the self-attention mechanism, but its 

performance is still high after optimization by sparse attention and factorization 

strategies. Table 4 shows the experimental comparison results of different methods in 

the motion video generation task: 

Table 4. Comparative experiments of different methods in motion video generation 

task (in %). 

Assessment of indicators RNN (LSTM) CNN GAN Transformer (Ours) 

(PSNR ↑) 28.3 29.7 30.5 34.8 

(SSIM ↑) 82.1 85.4 87.3 91.2 

(DTW ↑) 79.8 84.2 86.9 93.2 

(FLOPs ↓) 1.2G 1.5G 2.8G 3.2G 
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6. Conclusion 

This study explores the application of Transformer-based video generation 

technology in biomechanical motion analysis and compares its performance with 

traditional methods (RNN, CNN, GAN) in tasks such as motion prediction, anomaly 

detection, rehabilitation training, data enhancement and video generation. The 

experimental results show that Transformer, due to its global attention mechanism and 

spatio-temporal feature modelling capability, has significant advantages in long-time 

dependency capturing, trajectory consistency optimization, and biomechanical 

reasonableness guarantee, and is capable of generating high-quality, physically 

constrained motion videos. 

The results show that the quality of motion data has a significant impact on the 

videos generated by Transformer, with high-precision motion capture data (e.g., 

MoCap) enhancing the clarity and biomechanical consistency of the videos, whereas 

lower-quality data may lead to an increase in motion prediction errors. Compared with 

traditional methods, Transformer performs better in PSNR, SSIM, and trajectory 

matching (DTW), and is suitable for gait analysis, rehabilitation training, sports 

modelling, and virtual simulation. 

In the future, we can further optimize the computational complexity, real-time 

performance, and combine it with physical constraint modelling to enhance the 

application value of Transformer in biomechanical analysis, and provide high-

precision solutions for the fields of intelligent motion analysis, medical rehabilitation, 

and robot motion prediction. 
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