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Abstract: Sports fatigue represents a very important obstacle in athletic performance and it 

creates the movement inefficiencies, increased injury risk and longer recovery time. It puts 

forth an integrated fatigue monitoring framework using a biomechanical assessment, a 

physiological monitoring and a predictive modelling for optimizing fatigue management and 

training adaptations. The specific techniques utilized to quantify fatigue induced changes in 

movement efficiency, neuromuscular coordination, autonomic activity are 3D Motion Analysis 

Systems, Heart Rate Variability (HRV) monitoring, and Infrared Thermography (IRT). Using 

Bayesian inference, ARIMA time series forecasting and Dynamic Time Warping (DTW) 

analysis, fatigue thresholds are predicted to enable personalized fatigue management strategies. 

Throughout all experiments, fatigue led to a 10% decrease in stride length, a 15% increase in 

ground contact time and a reduction of 20% parasympathetic activity of the HRV, which 

coincides with a decreased biomechanical efficiency and autonomic system dysregulation. 

ARIMA predicts short term fatigue cycle with 91%, and Bayesian model estimates individual 

fatigue thresholds with 95% confidence (Table 1). IRT analysis also shows a fatigued muscle 

temperature increase of 1.15 C, which corroborates on thermal regulation monitoring of 

fatigue. Moreover, the DTW analysis shows up to 9% deviations in the movement patterns 

during fatigued conditions, which calls for real time fatigued tracking. These results verify that 

the combination of real-time biomechanical tracking with predictive analytics offers a more 

effective, safer and more fatigue resistance way of endurance training. The proposed 

framework provides an effective data driven approach to real time fatigue monitoring and has 

practical utilizations in the sports training, injury prevention, and athletic performance 

optimization. 

Keywords: sports fatigue; biomechanics; injury prevention; motion analysis; predictive 

modeling; endurance training; physiological monitoring; real-time fatigue assessment 

1. Introduction 

It should therefore come as no surprise that sports fatigue is a very important 

factor affecting athletic performance, injury risk, and recovery efficiency. The results 

show that this is a condition described by progressive loss of neuromuscular control 

with resulting impaired movement coordination and additional mechanical stress on 

joints and muscles (prieske et al.). Recent research suggests that fatigue accounts for 

approximately 70% of non-contact injuries of professional athletes, and the lower 

extremity injuries are the most common due to biomechanical changes in the 

movement patterns. For example, anterior cruciate ligament (ACL) injuries are highly 

associated with alterations in knee flexion and hip abduction mechanics that are caused 

by fatigue and decrease joint stability and increase risk of injury. However, the 
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assessment and optimization of fatigue training in sport science is still largely lacking 

due to biomechanical principles, and it is the need of the hour to blend the advanced 

monitoring and statistical modeling methods to improve the performance and reduce 

injury (chang). 

Accurate quantification of fatigue induced biomechanical change is one of the 

main problems in sports fatigue research (Aquino et al.). The extraction of the 

neuromuscular deviations requires traditional assessment methods such as the Rate of 

Perceived Exertion (RPE), which are subjective and not very precise. Thus, there are 

recent advancements of these 3D Motion Analysis Systems, Heart Rate Variability 

(HRV) Monitoring and Infrared Thermography (IRT) which offer objective tools to 

measure fatigue progression. It is known from studies that motion capture can detect 

when stride length decreases by 12% at peak fatigue and that HRV analysis shows a 

15% decline in autonomic nervous system recovery efficiency in fatigued athletes 

(Biro et al.). The introduction of these biomechanical insights into training program 

however, presents an insurmountable challenge due to the unique way in which fatigue 

influences performance among athletes and athletes alike. 

Another major problem with fatigue strategy is the lack of individualized training 

adaptation strategy. Generally individual variability in fatigue response and adaptation 

rates are ignored when current fatigue training programs apply generalized recovery 

models. Such inconsistency increases the risk of over training, and increases the 

recovery inefficiency (Pappas et al.). By using advanced statistical modeling 

techniques such as Bayesian Inference, Time Series Analysis (ARIMA), as well as 

Dynamic Time Warping (DTW) for real time fatigue estimation, with up to 89% 

accuracy, the developed solution offers a solution to the fatigue estimation problem. 

The result of these models is that they help to predict when peak fatigue will occur 

and then optimize training loads in order to avoid it. On the other hand, even though 

they have the potential, their use in practical sports training frameworks has been 

under developed. The treatment of these gaps can be accomplished using a unified 

approach of biomechanical assessment, physiological monitoring and statistical 

modeling (Asaeda et al.), which will not only support but also enhance the fatigue 

training and extended performance athletic. 

The first motivation of this research is to improve the accuracy of fatigue 

assessment and to optimize sports training method based on biomechanics, real-time 

physiological monitoring and predictive modeling. In all probability (Zhao) fatigue-

related injuries and performance decline in athletes are occurring at an alarming rate 

and they represent the urgency of devising real time intervention strategies to detect, 

forecast and alleviate the effects of fatigue before fatigue impinges on performance 

and safety. This research addresses the gap between traditional fatigue analysis and 

modern sports technology by integrating monitoring in developing an integrated 

monitoring framework to scientifically validate and data drive an optimal endurance 

training optimization and prevent injury (Chaeroni et al.). 

Increased injury risk, reduced efficiency and impaired neuromuscular 

coordination are the effects of sports fatigue on athletic performance. During 

execution of a skillset, traditionally assessed physiological stress markers and real 

time, precise real time deviations from pristine function become important and are 

referred to as Biomechanical Operational Space (Alja et al.). Because no integrated 
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fatigue monitoring system is used, adaptations to training are futile and injuries are 

rare. Currently, the fatigue management effectiveness is addressed using current 

methods that do not involve real time predictive analytics, but rely only on 

biomechanical or physiological markers. In fact, in professional sports, more than 40 

per cent of all injuries are due to fatigue. A single such approach is to combine 

biomechanics with physiological monitoring and predictive modeling with a data 

driven approach to improve training personalization as well as to decrease injury risk 

(Llyod). In the real time, fatigue monitoring and predictive intervention model can be 

better applied to extend endurance training, prevent injuries and prolonging athlete 

longevity. This is bridging biomechanics, statistical modeling and optimization of 

fatigue across biomechanics and statistical modeling. For this reason, in this study we 

propose a high endurance training framework based on biomechanics outputs that 

optimize endurance training, reduce injury risks and facilitate online adaptation of 

fatigue in training and hence improve training methodology in a variety of sports 

disciplines. 

While some progress has been made in the fatigue assessment sphere, no single 

protocol is accepted upon by all sports disciplines. However, existing methods differ 

profoundly so that comparison across sports is very difficult and generalizability of 

results are limited. In order to improve consistency in research and practicality of an 

athletic training setting, a standardized fatigue assessment framework that 

incorporates physiological, biomechanical, and psychological markers is necessary. 

To optimize such framework, biomechanical analysis, physiological monitoring 

and prediction modeling are integrated into this study. The specific objectives are: 

1) Joint stability, neuromuscular coordination, and movement efficiency are 

analyzed with regard to the effect of fatigue on these aspects. 

2) Variables like HRV and muscle activation for evaluation of fatigue progression 

and recovery assessment. 

3) The development of a multi sensor framework for fatigue detection and 

intervention strategy as real time. 

4) In fact, to implement predictive models such as time series analysis for fatigue 

threshold forecasting. 

5) To contribute towards proposing fatigue training protocol based on data for injury 

prevention and endurance optimization. 

This study presents a novel approach for the optimization of the sports fatigue 

training by biomechanics, physiological monitoring and predictive modeling. The key 

contributions are: 

• The development of an integrated framework of the motion analysis, HRV 

assessment and neuromuscular evaluation. 

• The paper introduces a multi-sensor real-time fatigue detection system which 

serves as a design for training adaptation and injury prevention. 

• Implementation of predictive models like time-series analysis for accurate fatigue 

threshold estimation. 

• The paper discusses different protocols for fatigue training that use data as well 

as proposals for endurance and recovery-focused fatigue training methods. 

• Traditional fatigue evaluation methods need to link directly with current 

biomechanical assessment systems. 
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In this paper, Section 1 presents the research background, problem statement, 

motivation, objective and contribution. Second, Section 2 provides a comprehensive 

literature review on biomechanics, on fatigue monitoring and on predictive modelling 

techniques. Section 3 details the methodology, including biomechanical assessment, 

physiological monitoring, and statistical modeling approaches. Section 4 discusses 

experimental results, data analysis, and key findings. Finally, Section 5 concludes the 

study with contributions, limitations, and future research directions. 

2. Literature review 

2.1. Biomechanics and motion analysis in sports fatigue 

Fatigue-induced alterations in biomechanics have been extensively studied to 

understand their impact on athletic performance and injury risk. Research suggests 

that fatigue significantly affects joint range of motion (ROM), muscle activation 

patterns, and postural stability, leading to compensatory movement strategies that may 

predispose athletes to musculoskeletal injuries. A systematic review by (Chaeroni et 

al.) highlighted that fatigue in distance runners results in increased ground contact time 

and reduced stride length, indicating neuromuscular inefficiency. Similarly, a meta-

analysis conducted by (Zhao) revealed that fatigue contributes to increased knee 

valgus angles and decreased vertical jump performance, elevating the risk of lower 

extremity injuries. The utilization of inertial sensor-based motion analysis has 

provided objective insights into these biomechanical deviations, with studies 

confirming that fatigued athletes exhibit up to a 14% reduction in knee flexion angles 

and an 8-degree increase in hip abduction during landing tasks (Asaeda et al.). 

Furthermore, Cortes et al. demonstrated that short-term fatigue protocols induce a 12% 

decrease in stride length and a 9% increase in ground reaction forces, supporting the 

role of biomechanical assessment tools in fatigue monitoring. However, despite 

advancements in motion analysis techniques, challenges remain in translating 

laboratory-based findings into real-time sports applications due to the complexity of 

data interpretation and inter-athlete variability (Aquino et al.). 

The integration of time-series modeling and real-time biomechanical monitoring 

has been explored to enhance fatigue detection and optimize endurance training. 

(Gefen) emphasized the biomechanical mechanisms of fatigue-related foot injuries, 

identifying increased plantar pressure and altered load distribution as primary 

contributors to stress fractures during prolonged physical activity. Motion capture 

technology has further revealed that gender differences influence fatigue adaptation, 

with female athletes exhibiting greater knee valgus angles and reduced knee flexion 

upon landing, increasing ACL injury susceptibility (Pappas et al.). Moreover, 

visualization techniques using Citespace V have allowed for the identification of 

critical fatigue markers in sports biomechanics, providing a framework for advanced 

fatigue monitoring systems (Liu et al.). Despite these advancements, limitations exist 

in standardizing fatigue protocols across sports disciplines, as individual variability in 

neuromuscular fatigue remains a significant challenge (Brazen et al.). (Santamaria and 

Webster) further noted that fatigue disproportionately affects lower-limb stability, 

increasing the risk of improper landing mechanics and non-contact injuries. Although 

motion analysis and predictive modeling techniques show promise in fatigue 
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assessment, further research is required to develop real-time intervention strategies 

that integrate biomechanical, physiological, and statistical insights for injury 

prevention and performance optimization. 

2.2. Time-series modeling and physiological monitoring for endurance 

training 

The application of time-series modeling and physiological monitoring has played 

a critical role in understanding fatigue progression and optimizing endurance training 

strategies. Studies investigating heart rate variability (HRV) analysis have provided 

significant insights into autonomic nervous system function during fatigue states. Gan 

et al. demonstrated that HRV parasympathetic activity declined by 15% under 

prolonged exertion, indicating reduced recovery capacity and heightened fatigue 

susceptibility. Similarly, infrared thermal radiation imaging has been employed to 

assess muscular heat dissipation patterns, with findings suggesting that fatigued 

muscle regions exhibit a 10% increase in thermal output, as confirmed by (Li et al.). 

In addition, wearable sensors and AI-driven monitoring systems have enabled real-

time tracking of fatigue markers, such as stride asymmetry and muscle tremors, 

offering novel predictive capabilities for sports training applications. The study by 

(Chalitsios et al.) further confirmed that stride variability increased by 8% in high-

intensity endurance exercises, highlighting the impact of fatigue on mechanical 

deviations. Despite these advancements, limitations persist in standardizing real-time 

monitoring due to inter-individual variations in physiological responses and the 

complexity of integrating multiple fatigue indicators in a single analytical framework. 

In addition to direct physiological monitoring, predictive modeling techniques 

have been utilized to estimate fatigue thresholds and optimize training intensity. 

(Boeker et al.) developed a fatigue prediction model in climbing athletes, achieving 

an accuracy rate of 86% by integrating electromyography (EMG) and kinematic data. 

Similarly, computer vision-based fatigue monitoring during resistance training was 

explored by (Albert and Arnrich), who demonstrated that automated movement 

tracking systems detected muscle fatigue indicators with 92% precision. (Stojanac) 

investigated running-induced fatigue using inertial measurement units (IMUs) and 

smartwatch data, concluding that fatigue markers could be detected up to 20 min 

before performance decline. However, real-world applicability remains constrained by 

sensor calibration inconsistencies and variability in environmental conditions. 

(Carvalho) examined fatigue and recovery processes in swimmers using 

biomechanical, ergo metric, and perceptual parameters, revealing that recovery times 

varied significantly based on stroke techniques and training intensities. (Barua) 

emphasized the importance of biomechanics in fatigue adaptation, suggesting that 

integrating AI-driven physiological monitoring with biomechanical analysis could 

improve endurance training outcomes. While these advancements present promising 

applications in sports training, further research is required to refine multi-sensor data 

fusion techniques and enhance real-time fatigue prediction accuracy to support 

individualized training regimens. 
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Table 1. Comparative analysis of sports fatigue training optimization studies. 

Reference Technique Results Limitations Findings 

(Chaeroni et al.) 

Systematic review and 

meta-analysis of ROM 

changes due to fatigue 

Fatigue significantly reduced ROM 

in badminton players, particularly in 

knee flexion. 

Limited to badminton; 

lacks applicability to other 

sports. 

Biomechanical interventions 

should focus on ROM 

preservation strategies. 

(McConnochie 

et al.) 

Scoping review of inertial 

sensor-based 

biomechanical outcomes 

Fatigue increased ground contact 

time and reduced stride length in 

distance runners. 

Inconsistent assessment 

conditions across studies. 

Inertial sensor-based 

monitoring can aid real-time 

fatigue assessment. 

(Zhao) 

Biomechanical assessment 

of jumping mechanics 

under fatigue 

Jumping mechanics deteriorated, 

increasing knee valgus angles and 

ACL injury risk. 

Findings limited to 

basketball; not generalized 

to other sports. 

Landing mechanics should 

be emphasized in training to 

prevent ACL injuries. 

(Asaeda et al.) 

Lower-limb biomechanics 

analysis during single-leg 

landing with fatigue 

Fatigue reduced knee flexion angles 

and increased hip abduction, 

elevating landing instability. 

Peripheral fatigue tasks 

may not reflect real-world 

training conditions. 

Fatigue-aware landing 

techniques can reduce injury 

risks in sports. 

(Cortes et al.) 

Kinematic and kinetic 

analysis under short-term 

fatigue protocol 

Short-term fatigue led to a 12% 

decrease in stride length and a 9% 

increase in ground reaction forces. 

Short-term protocol may 

not capture chronic fatigue 

adaptations. 

Biomechanical monitoring 

can enhance injury 

prevention programs. 

(Aquino et al.) 

Narrative review on fatigue 

and biomechanical 

variables 

Fatigue decreased movement 

efficiency, increasing 

neuromuscular compensation 

strategies. 

Lack of quantitative 

validation for 

biomechanical changes. 

Fatigue impairs 

neuromuscular control, 

requiring adaptive training 

regimens. 

(Gan et al.) 

Heart rate variability 

(HRV) analysis for fatigue 

monitoring 

HRV parasympathetic activity 

declined by 15% in fatigued 

athletes, indicating reduced 

recovery efficiency. 

HRV variations influenced 

by external factors 

(hydration, temperature). 

HRV monitoring can 

optimize endurance training 

and recovery strategies. 

2.3. Research gap 

Despite significant advancements in biomechanics and sports fatigue analysis, 

current methodologies primarily focus on isolated assessments of fatigue-induced 

biomechanical deviations, such as joint kinematics, muscle activation patterns, and 

heart rate variability (HRV). However, these methods fail to depict the real time and 

the thorough integrated approach of motion analysis, physiological responses and 

modeling that will help in further training regimens. An exhaustive multi sensor 

framework for the quantification of fatigue effects in different sports disciplines and 

experimental variations in individuals does not exist to date. Additionally, reactive 

fatigue training protocol of the present study’s relevance, on the basis of strategies 

used during post fatigue recovery rather than real time fatigue prediction and proactive 

intervention, is current. Consequently, the establishment of an integrated, 

biomechanically driven and statistically trained framework of a fatigue management 

model aimed at maximizing endurance training, minimizing injury risk and enhancing 

real time fatigue adaptation approaches is severely restricted. 

3. Methodology 

This study, conducted in a structured experimental design, assessed the effects of 

fatigue on movement efficiency, neuromuscular response and to train adaptations to 

one of most diverse training populations on the planet. To enhance the applicability of 

findings from such an experiment, the group of athletes was expanded to include 

athletes from many different sports disciplines, competition levels and training 

backgrounds. Recruitment was done in cooperation with sport organizations, football 



Molecular & Cellular Biomechanics 2025, 22(5), 1561.  

7 

clubs, tennis associations, swimming federations, etc. in order to get a more 

representative sample of athletes. The final participant selection included: 

• Endurance Athletes (e.g., long-distance runners, cyclists, triathletes, and 

swimmers) 

• Power-Based Athletes (e.g., weightlifters, sprinters, and strength-based 

competitors) 

• Mixed-Sport Athletes (e.g., footballers, basketball players, and combat sports 

athletes) 

• Diverse Competition Levels (amateur, semi-professional, and professional 

athletes) 

• Different Age Groups and Genders (ensuring inclusivity and broader 

physiological analysis) 

By having an expanded selection of players, this is able to enable the evaluation 

of fatigue responses and catching mechanisms in greater detail in order to utilize 

fatigue assessment models such as Bayesian inference or ARIMA forecasting with a 

broader athletic population. 

During all training sessions motion capture systems, heart rate variability (HRV) 

sensors and infrared thermography (IRT) equipment were worn to record fatigue 

markers in real time. In this method of assessment, these tools gave important 

information into biomechanical and physiological fatigue indicators, including: 

movement efficiency, postural stability, force production, and cardiovascular stress 

under fatigue conditions. 

Seven fundamental biomechanical principles were incorporated into the study in 

order to assess performance alterations resulting from fatigue in a comprehensive 

manner: 

• Stability: Evaluation of postural control and balance under fatigued conditions. 

• Maximum Effort: Measurement of force production decline over time. 

• Maximum Velocity: Tracking of speed variations as fatigue accumulates. 

• Impulse: Analysis of force output efficiency over movement duration. 

• Reaction: Assessment of neuromuscular response delays caused by fatigue. 

• Torque: Measurement of movement efficiency at joints and muscular workload. 

• Angular Momentum: Observation of rotational mechanics and energy 

conservation in fatigued states. 

The data from these performance metrics were used to perform statistical 

modeling over the role that these metrics have in identifying movement inefficiencies, 

fatigue thresholds, and the development of an optimized fatigue resistant training 

regimen. 

3.1. Biomechanical assessment techniques 

In the second part, these techniques were then used to assess movement efficiency 

and neuromuscular coordination alterations and increased injury susceptibility due to 

fatigue. Nevertheless, these approaches provided objective progression of fatigue, as 

well as its influence on athletic performance: 

• 3D Motion Analysis Systems: It has been used to monitor joint kinematics, stride 

patterns, and gait deviations to high precision for fatigue monitoring. Stride 
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length was reduced by 10%, and ground contact time was increased by 15% 

which resulted in compromise in movement efficiency and subsequently the 

delayed reaction times. 

• Heart Rate Variability (HRV) Analysis: HRV fluctuations were assessed as 

autonomic nervous system responses. Analyzing the results, progressive 

cardiovascular fatigue was seen with a 20% reduction in parasympathetic activity 

(RMSSD: 59.62 ms, LF/HF Ratio: 2.35). 

• Infrared Thermography (IRT): Muscle surface temperature variations were 

analyzed to detect the localized muscle fatigue and metabolic stress. Such 

thermoregulation impairment is indicated by surface temperature elevation of 

37.73 ℃, and an average thermal gradient of 1.15 ℃ in fatigued athletes due to 

prolonged exertion. 

Real time nutrition tracking, fatigue tracking (and the mechanisms thereof), 

physiological stress responses and identification of movement inefficiencies was 

enabled by these biomechanical tools as these are modelled as a means of fatigue 

tracking during high intensity endurance training. 

An additional set of physiological and biomechanical markers was supplemented 

by a psychological measure of fatigue using standardized tools of emotional state, 

cognitive load and motivation levels. Fluctuations in tension, depression, vigor, and 

fatigue were monitored with the Profile of Mood States (POMS) questionnaire before 

and after exercise sessions. 

Additionally, the Rating of Perceived Exertion (RPE) scale showed the subjective 

fatigue and compared with physiological measures. The reaction time analysis of a 

Stroop Test was done to assess the declines in mental processing speed and 

concentration under physical exhaustion to assess cognitive fatigue. 

Making use of these psychological assessment tools enabled a complete 

evaluation of fatigue, including both physical strain and mental exhaustion. 

3.2. Statistical and predictive modeling techniques 

The authors employed statistical modeling methods which matched 

biomechanical concepts for measuring fatigue advancement and designing optimal 

endurance training methods. The following methodologies were used: 

• Bayesian Inference: It provided estimates of individual fatigue thresholds that are 

provided probabilistically, and predicted performance deterioration trends and 

injury risk with 95% confidence. Injury probability above the fatigue threshold 

was increased by 20 percent compared to below the threshold, and the average 

time to fatigue onset was found to be 32 min. 

• Time-Series Analysis (ARIMA): Trends of fatigue accumulation calculated from 

the forecasts and training adaptation responses. It was shown that in the case of 

short term fatigue prediction, the ARIMA model was able to predict with 91% 

accuracy and estimated optimal recovery period in the range of 24–36 h. 

• Dynamic Time Warping (DTW): It is used for the detection of movement pattern 

deviations and postural imbalance due to fatigue. Under fatigued conditions, the 

study of the neuromuscular inefficiencies, recorded a 9% deviation in movement 

pattern and a 12 per cent increase in step length variability. 
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The study achieved the integration of these statistical approaches in order to 

quantify the fatigue thresholds, optimize the recovery strategies, and come up with 

data-driven training interventions. 

Real-world validation of fatigue monitoring 

To ensure the effectiveness of fatigue monitoring systems under real-world stress 

conditions, the study included an additional validation phase where endurance 

athletes, including long-distance runners and sprinters, wore wearable fatigue 

monitoring devices during actual competitions. Data collected from these races was 

analyzed in comparison with pre-race fatigue predictions to assess the alignment 

between modeled fatigue thresholds and real-world exertion patterns. 

3.3. Comparative analysis of fatigue assessment methods 

As a way to ensure consistency in the fatigue assessment, a standardized protocol 

was developed in order to be used with the various sports disciplines. In summary, the 

protocol provides four key stages: (1) baseline physiological and biomechanical 

testing to determine each individual’s fatigue thresholds, (2) controlled fatiguing based 

upon an endurance and power based current tiring sport, (3) real time fatigue being 

monitored via sensor based systems, and (4) recovery period testing based on HRV 

normalization, movement efficiency, and perceived exertion. The proposed protocol 

is achieving this through integrating these components and offering a unified approach 

to fatigue assessment, so that reliable comparisons can be made across different sports. 

A biomechanical tracking, physiological monitoring, and statistical modeling 

unification was performed in a single data processing platform for synchronized 

measurements. Motion analysis, real time HRV metrics, infrared thermography, and 

predictive modelling are integrated into this platform to allow for a more complete and 

dynamic assessment of fatigue. 

Thus, through the use of real time sensor fusion techniques, the data from several 

sources of neuromuscular, autonomic and metabolic fatigue markers are continually 

analyzed to provide smooth integration of data for clinical analysis. Machine learning 

algorithms such as ARIMA usage for time series prediction and DTW usage for 

movement pattern recognition is used by the system to improve the accuracy of fatigue 

detection as well as to extract individual training response optimization. 

In order to obtain a comprehensive evaluation, this study evaluated several 

fatigue assessment techniques through the biomechanical, physiological, and 

statistical domains. Table 2 summarizes the key findings: 

Table 2. Comparative analysis of fatigue tracking techniques. 

Method Key Metric Evaluated Measurement Outcome 

Biomechanical Analysis Kinematic Deviations Stride length −10%, Ground Contact +15% 

3D Biomechanical Modeling Fatigue-Induced Stability Stability Index: 0.78, Max Effort: 297.78 N 

Bayesian Inference Analysis Fatigue Threshold Estimation Fatigue Threshold: 95% confidence, 32 min avg fatigue time 

HRV Analysis Autonomic Nervous System Response Avg RMSSD: 59.62 ms, LF/HF Ratio: 2.35 

ARIMA Model Analysis Fatigue Progression Forecasting Short-term accuracy: 91%, Recovery Time: 24–36 h 

Infrared Thermography (IRT) Thermal Stress Fatigued Muscle Temp: 37.73 ℃, Gradient: 1.15 ℃ 

Dynamic Time Warping (DTW) Movement Pattern Deviations Step Length Variability: 12%, DTW Deviation: 10%–15% 
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By integrating these methodologies, the study provides a multi-dimensional 

fatigue tracking framework that enables real-time monitoring, predictive modeling, 

and adaptive training interventions. These findings provide essential knowledge for 

athletes’ success to endurance training programs and reduction of fatigue-related 

injuries. 

4. Results and discussion 

4.1. Biomechanical analysis 

Researchers need detailed knowledge about fatigue-related biomechanical effects 

because this comprehension allows them to enhance endurance training methods and 

create better injury prevention techniques. Athletic performance declines significantly 

when fatigue disrupts body movement control and stability as well as neuromuscular 

coordination. The next part of this analysis delivers a detailed biomechanical 

evaluation that uses study measurement data for performance assessment. 

Table 3. Biomechanical analysis of fatigue effects. 

Factor Feature Measured Result 

Stride Length Reduction Movement efficiency 10% reduction 

Ground Contact Time Increase Stability and reaction time 15% increase 

Knee Flexion Decrease Lower limb stability 12-degree decrease 

Muscle Surface Temperature Increase Metabolic stress and fatigue 1.8 ℃ increase 

HRV Parasympathetic Activity Decline Autonomic nervous system recovery 20% decline 

Peak Vertical Ground Reaction Force Impact absorption 8% decrease 

Muscle Activation Delay Neuromuscular coordination 18 ms delay 

Gait Symmetry Reduction Bilateral movement efficiency 
7% asymmetry 

increase 

Fatigue is shown to have a huge effect on movement mechanics and physiological 

response. An inefficient stride pattern can be measured as a 10% reduction in the stride 

length which results in increased energy expenditure. The additional ground contact 

time of 15% implies delayed reaction and deteriorating postural stability resulting in 

the increased probability of improper force distribution. 

It’s troublesome that the knee flexion was 12 degrees lower than observed, which 

means the athletes put more stress on their lower extremities, making them more prone 

to ligament injuries, such as ACL strains. In addition, muscle surface temperature 

increase by 1.8 ℃ is indicative of metabolic fatigue and calls for the implementation 

of targeted recovery strategies. 

It is indicated by a decline of 20% in HRV parasympathetic activity with a rise 

in cardiovascular stress and a delay in recovery following the exertion. The reduction 

of impact absorption capacity with diminished peak vertical ground reaction force 

(239 Newton; 8%) can increase joint stress and should be investigated. Neuromuscular 

fatigue indicated by the 18 ms delay in muscle activation may result in inefficient 

muscle coordination. The last of which, the 7% increase in gait asymmetry shows that 
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fatigue has biomechanical imbalances which further increase the risk of overuse 

injuries. 

 
Figure 1. Scatter plot representation of biomechanical findings. 

3D modeling of biomechanical principles in fatigue progression 

Thus, principles of stability, force production, velocity changes, along with 

neuromuscular responses, were included with a 3D biomechanical modeling technique 

to assess the effect of fatigue on key performance metrics. 

Table 4. 3D Biomechanical modeling of fatigue effects. 

Biomechanical Principle Fatigue-Induced Effect Measurement Outcome 

Stability Reduced postural control Avg Stability Index: 0.78 

Maximum Effort Decreased force production over time Avg Force: 297.78 N 

Maximum Velocity Decline in peak speed with fatigue Avg Velocity: 5.83 m/s 

Impulse Lower efficiency in force application Avg Impulse: 153.47 ns 

Reaction Increased neuromuscular delay Avg Reaction Time: 0.46 s 

Torque Reduced joint torque output Avg Torque: 168.25 nm 

Angular Momentum Reduced rotational energy conservation Avg Angular Momentum: 1.46 kg·m2/s 

Fatigue induced movement inefficiencies are significant throughout the 3D 

biomechanical analysis: 

• Postural Control Reduction: Stability is reduced by fatigue to an average of 0.78 

stability index. 

• Force Production Decline: Fatigue causes force output to drop, averaging 297.78 

N. 

• Peak Speed Reduction: Athletes experience speed loss in fatigued states, 

averaging 5.83 m/s. 

• Reaction Time Increase: It is found that delays in neuromuscular response occur, 

averaging 0.46 s. 

• Rotational Energy Reduction: Decreased joint torque efficiency and angular 

momentum occurs due to fatigue. 
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Figure 2. 3D biomechanical modeling of fatigue progression. 

A statistical approach is mandatory for the quantification of fatigue thresholds, 

necessary to quantify fatigue thresholds, but without biomechanical analysis, there is 

no focus on movement inefficiencies. By integrating Bayesian inference into training, 

educators have a probabilistic means of estimating fatigue onset, as well as to predict 

injury risk and to maximize training loads to minimize exercise load exposures. 

4.2. Bayesian inference analysis 

Fatigue thresholds were estimated using Bayesian inference, performance 

deterioration trend was analyzed, and variability in individual’s response to fatigue 

accumulation was assessed. It enables quantitative thinking about fatigue progression 

that gives predictions of injury risks and recovery strategies that improve safety. 

Table 5. Bayesian inference analysis of fatigue and performance metrics. 

Feature Measured Outcome Result 

Fatigue Threshold Estimation Confidence interval estimation 95% confidence 

Time to Fatigue Duration before performance decline 
32 min (average), 14% longer for endurance 

athletes 

Performance Decline Rate Rate of performance drop due to fatigue 5% decrease per 10 min of exertion 

Individual Variability in Fatigue Response Variation in fatigue onset across individuals ±8 min threshold deviation 

Probability of Injury Risk Likelihood of injury beyond fatigue threshold 20% increase 

Recovery Time Estimation Time required for full physiological recovery 24 h for complete HRV restoration 

Analysis of Bayesian inference offers important information on individual 

fatigue pattern and training adaptation strategy. Fatigue threshold predictions are made 

in the estimated 95% confidence interval. Notably, endurance trained individuals 

require 14% longer resistance to fatigue compared to the power athletes with an 

average time to fatigue of 32 min. 

A performance decline rate of 5% per 10 min is a strong indicator that measuring 

fatigue accumulation during training sessions is critical. ±8 min variability in fatigue 
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response is observed between individuals, and in consequence, personalized fatigue 

management protocols are required. 

Early intervention strategies are necessary as those exhibiting a 20% increased 

injury risk were found when athletes continued beyond their fatigue threshold. Lastly, 

the 24-h estimated time it takes to restore complete HRV indicates that long time 

performance deficits would be mitigated through the proper recovery protocols. 

 
Figure 3. Bayesian inference analysis: Fatigue and performance metrics. 

The scientific approach in this ensures that fatigue tracking is reactive, but also 

predictive, and therefore adaptive and real time training modifications is possible. 

Heart Rate Variability (HRV) analysis 

Heart Rate Variability (HRV) is an important physiological marker of the 

autonomic nervous system function that has been used as an indicator of fatigue 

induced stress responses. Three major HRV parameters were analyzed to assess 

progression of fatigue in this study. 

Table 6. Heart Rate Variability (HRV) analysis of fatigue progression. 

HRV Metric Fatigue Impact Measurement Outcome 

RMSSD (Root Mean Square of 

Successive Differences) 

Decreased RMSSD values indicate reduced parasympathetic activity and 

increased fatigue 
Avg RMSSD: 59.62 ms 

SDNN (Standard Deviation of NN 

Intervals) 

Lower SDNN values suggest higher physiological stress and diminished 

recovery capacity 
Avg SDNN: 99.64 ms 

LF/HF Ratio (Low-Frequency to High-

Frequency Ratio) 

Increased LF/HF ratio reflects dominance of sympathetic activation, 

indicating elevated fatigue 
Avg LF/HF Ratio: 2.35 

Critical insights into fatigue induced autonomic system dysregulation are given 

by the HRV analysis: 

• Reduced RMSSD: Diminished parasympathetic activation is supposed to suggest 

impaired recovery efficiency. 

• Decreased SDNN: It indicates that the physiological stress is increased which 

reduces the resilience to fatigue accumulation. 

• Elevated LF/HF Ratio: It represents an increased sympathetic response that 

points to prolonged exertion induced fatigue. 
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This confirms that HRV based fatigue monitoring can deliver quantifiable 

information on an athlete’s recovery capacity and the physiological adaptation to 

endurance training. 

 
Figure 4. Heart Rate Variability (HRV) trends in fatigue progression. 

The findings of the HRV confirm the highly individual endurance training 

adaptation. The accumulation of fatigue can be tracked using HRV, which can be used 

to predict when to recover, and when to send athletes back. 

 
Figure 5. Heart Rate Variability (HRV) trend over time. 

Heart Rate Variability (HRV) is a critical marker of autonomic fatigue and 

recovery efficiency. The observed trend indicates that HRV declines as fatigue 

accumulates, signifying increased physiological stress. A stabilized or improving 

HRV trend suggests effective recovery, making this analysis crucial for optimizing 

training loads and rest periods to prevent overtraining. 
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Figure 6. Biomechanical efficiency trend over time. 

Biomechanical efficiency declines as fatigue sets in, leading to movement 

inefficiencies and increased risk of injury. The trend analysis reveals that 

neuromuscular fatigue impacts coordination, balance, and force output over time. 

Tracking these variations enables targeted strength training and movement correction 

strategies, ensuring sustainable athletic performance. 

 
Figure 7. Fatigue levels over time. 

The visualization 7, called heatmap, represents the fatigue intensity in different 

time intervals in a color coded manner. They also allow areas of high fatigue intensity 

to be identified quickly to respond at the early stage with the quick adjustment of 

distribution of workload and the recovery intervention. With this approach, energy 

will be managed efficiently and help with long term athlete endurance. 

Finally, we have a summary of the insights that can be gained from those 3 

visualizations as shown in the following table: HRV Trend Over Time, Biomechanical 

Efficiency Trend Over Time, Heatmap of Fatigue Levels Over Time. The visualization 

of these progression, recovery and training optimization is more meaningful. 
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Table 7 

Visualization Type Key Observations Practical Application 

HRV Trend Over Time 
HRV declines as fatigue increases, indicating autonomic 

stress. Stabilization suggests recovery. 

Helps optimize recovery and adjust training 

loads to prevent overtraining. 

Biomechanical Efficiency 

Trend Over Time 

Biomechanical efficiency decreases over time, reflecting 

neuromuscular fatigue and movement inefficiencies. 

Allows for neuromuscular fatigue analysis and 

injury prevention strategies. 

Heatmap of Fatigue Levels 

Over Time 

Heatmap shows high fatigue intensity at specific time 

intervals, providing quick fatigue trend detection. 

Facilitates real-time fatigue assessment and 

workload distribution adjustments. 

The integration of these advanced visualizations significantly improves fatigue 

monitoring, training adjustments, and injury prevention strategies. Specifically: 

HRV trend analysis assists in determining optimal recovery windows and 

preventing excessive fatigue buildup. 

Biomechanical efficiency tracking provides insights into movement deterioration 

and facilitates neuromuscular training interventions. 

Fatigue heatmaps enable quick assessments of fatigue intensity, aiding in 

workload distribution and real-time decision-making. 

By implementing interactive dashboards, AI-driven pattern detection, and real-

time monitoring, these visualizations bridge the gap between raw data and actionable 

insights, enhancing training efficiency and athletic longevity. 

4.3. ARIMA model analysis with sensor-fusion enhancements 

The Autoregressive Integrated Moving Average (ARIMA) model was employed 

to analyze fatigue progression trends, predict fatigue accumulation over time, and 

provide reliable short-term and long-term fatigue forecasting. However, ARIMA 

relies primarily on historical data, making it less effective for real-time fatigue 

assessment. To overcome this limitation, an advanced sensor-fusion framework is 

proposed, integrating real-time motion tracking, continuous glucose monitoring, and 

machine learning algorithms to enhance the accuracy and responsiveness of fatigue 

predictions. 

Table 8. ARIMA model analysis of fatigue with sensor fusion. 

Feature Measured Outcome Result 

Fatigue Trend Identification 
Detecting consistency in fatigue progression over 

training sessions 
Confirmed increasing trend 

Short-Term Fatigue Prediction Forecasting fatigue over short intervals 91% accuracy in short-term predictions 

Long-Term Fatigue Forecast Predicting fatigue accumulation over multiple sessions Forecasted next 10 training sessions reliably 

Real-Time Fatigue Monitoring Using sensor fusion for instant fatigue assessment 
Integrated IMU + glucose data for enhanced 

detection 

Peak Fatigue Prediction Accuracy Identifying high-risk fatigue phases Successfully detected peak fatigue zones 

Recovery Time Estimation Time required for full physiological recovery Estimated between 24–36 h post-exertion 

Performance Variability Analysis Identifying differences in fatigue adaptation Detected fluctuations across athlete groups 

Fatigue trends are effectively identified by the ARIMA model for predicting short 

term and long term variations in training induced fatigue accumulation. Further, the 
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accuracy of the model is 91% for short term fatigue predictions and training loads may 

be optimized dynamically. 

Results of the long term forecasting show that fatigue accumulates steadily over 

more training sessions and consequently suggests that structured recovery periods are 

important. Furthermore, the model correctly identifies fatigue phase peaks, that are 

key to avoid overtraining and reduce risk of injury. 

Physiological balance is restored only in 24–36 h after high exertion activities, 

and recovery estimations indicate that athletes need this long to get back to normal. 

The analysis of performance variability also demonstrates that differences in 

individual fatigue adaptation have a significant effect on training responses, and 

therefore the need for the personalized fatigue management protocols. 

 
Figure 8. ARIMA model prediction of fatigue progression. 

This graph illustrates fatigue progression trends over 30 training sessions, 

highlighting the difference between actual fatigue levels and short-term fatigue 

predictions. The enhanced ARIMA model demonstrates high accuracy (91%) in 

predicting short-term fatigue variations, allowing for better training load adjustments. 

 
Figure 9 
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This graph shows recovery time estimations for athletes across 30 training 

sessions. The data reveals fluctuations in recovery times, ranging between 24–36 h’ 

post-exertion, emphasizing the importance of structured recovery periods to prevent 

overtraining and optimize performance. 

Training programs can be dynamically adjusted and iteration rate can be 

controlled by implementing ARIMA driven fatigue monitoring so as to decelerate the 

pace of chronic fatigue and overuse injuries. 

Infrared Thermography (IRT) analysis 

Changes in muscle surface temperature were used as fatigue progression 

indicators using infrared thermography (IRT). Metabolic stress and microcirculatory 

inefficiency can be seen with fatigued subjects vs. non-fatigued subjects. 

Table 9. Infrared thermography (IRT) analysis of fatigue progression. 

IRT Parameter Fatigue Impact Measurement Outcome 

Muscle Surface Temperature (Non-Fatigued) Stable thermal regulation Avg Non-Fatigued Temp: 36.58 ℃ 

Muscle Surface Temperature (Fatigued) Progressive heat accumulation due to metabolic stress Avg Fatigued Temp: 37.73 ℃ 

Thermal Gradient Difference 
Increased temperature differentials indicate localized 

fatigue 
Avg Thermal Gradient: 1.15 ℃ 

Microcirculatory Changes 
Reduced efficiency in heat dissipation during 

prolonged exertion 

Observed increased skin temperature 

in fatigued regions 

Fatigue induced temperature regulation changes are elucidated by the IRT 

analysis: 

• Increased Muscle Temperature: Surface temperatures of fatigued states are 

elevated, implying increased metabolic stress. 

• Thermal Gradient Increase: The differential in localized temperature that results 

from fatigue indicates potential overuse and increased risk for injury. 

• Microcirculatory Inefficiencies: Long lasting crated people put on the muscles 

on, reduces the efficiency of the body to get rid of the heat, in addition to its 

impact on the performance and recovery. 

The finding that IRT can be used to detect real time fatigue confirms that athlete 

recovery protocols can be optimized with such monitoring. 

 
Figure 10. Infrared Thermography (IRT) trends in fatigue progression. 
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The Infrared Thermography (IRT) analysis of fatigue progression reveals critical 

insights into muscle temperature regulation, thermal gradients, and microcirculatory 

efficiency. The muscle surface temperature increases from 36.58 ℃ (non-fatigued) to 

37.73 ℃ (fatigued), indicating elevated metabolic stress due to exertion. Additionally, 

the thermal gradient difference of 1.15 ℃ highlights localized fatigue accumulation, 

suggesting potential muscle overuse and increased injury risk. The microcirculatory 

inefficiencies observed further confirm that fatigued muscles struggle to dissipate heat 

effectively, impacting both performance and recovery speed. This analysis confirms 

that IRT-based fatigue monitoring can optimize real-time fatigue detection, helping in 

adjusting training loads, preventing overtraining, and enhancing athlete endurance and 

recovery strategies. 

4.4. Dynamic Time Warping (DTW) analysis 

Dynamic Time Warping was used to quantify movement pattern deviations 

caused by fatigue. The temporal alignment of gait cycles, and step patterns, used in 

comparison between fatigued and non-fatigued performers was proved to be 

inconsistent in movement efficiency. 

Table 10. Dynamic Time Warping (DTW) analysis of fatigue and movement efficiency. 

Feature Measured Outcome Result 

Movement Pattern Deviation Alignment deviation in gait cycle Up to 9% deviation detected 

Gait Cycle Consistency Reduction Consistency of step timing Significant inconsistency in fatigued states 

Step Length Variation Deviation in step distance Increased step length variability by 12% 

Fatigue-Induced Postural Shift Changes in weight distribution Altered postural mechanics observed 

DTW-Based Distance Estimation Temporal deviation in movement Estimated deviation range: 10%–15% 

Recovery Adaptation Time Time required for movement stabilization Average of 48 h for full recovery 

The DTW analysis offers a great insight into the inefficiencies in the fatigue 

induced movement. This indicates that gait cycles are irregular for athletes under 

fatigue, and therefore may cause biomechanical stress injuries. There is also a 12% 

increase in step length variation, which would be a compensatory adjustment in 

movement that would likely be inefficient from a performance perspective. 

Fatigued athletes show the reduction in gait cycle consistency which indicates the 

necessity of online fatigue monitoring to avoid irregularities in the motion. Corrective 

strategies in endurance training are also important in the light of postural shifts and 

changes in weight distribution. 

The DTW based movement deviation of 10%–15% estimated is in agreement 

with the need for an adaptive fatigue recovery protocol. At an average of 48 h of 

recovery adaption time, recovery from high intensity training was shown to be best 

when structured rest periods are taken between sessions. 
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Figure 11. DTW analysis of fatigue impact on movement patterns. 

With inclusion of DTW based movement tracking it will be possible to mitigate 

fatigue induced inefficiencies from targeted biomechanical training interventions. 

A correlation heatmap was thus generated to assess the interdependence of 

different fatigue analysis methods. The matrix shows the relations between 

biomechanical, statistical and physiological monitoring techniques. 

 
Figure 12. Correlation heatmap of fatigue analysis techniques: The heatmap illustrates the degree of association 

between biomechanical, statistical, and physiological fatigue tracking methods. 

By integrating biomechanics, statistical modeling, and physiological monitoring, 

a comprehensive fatigue tracking framework can be developed, optimizing training 

adaptation and injury prevention. 
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4.5. Comparative analysis of fatigue tracking techniques 

To assess the effectiveness of various fatigue tracking techniques, a comparison 

was made. In the summary of assessment of key performance metrics using the 

different techniques, the following Table 11 summarizes the information. 

Table 11. Comparative analysis of fatigue tracking techniques. 

Analysis Method Key Metric Evaluated Measured Outcome 

Biomechanical Analysis Kinematic Deviations Stride length −10%, Ground Contact +15% 

3D Biomechanical Modeling Fatigue-Induced Stability Stability Index: 0.78, Max Effort: 297.78 N 

Bayesian Inference Analysis Fatigue Threshold Estimation Fatigue Threshold: 95% confidence, 32 min avg fatigue time 

HRV Analysis Autonomic Nervous System Response Avg RMSSD: 59.62 ms, LF/HF Ratio: 2.35 

ARIMA Model Analysis Fatigue Progression Forecasting Short-term accuracy: 91%, Recovery Time: 24–36 h 

Infrared Thermography (IRT) Thermal Stress Fatigued Muscle Temp: 37.73 ℃, Gradient: 1.15 ℃ 

Dynamic Time Warping (DTW) Movement Pattern Deviations Step Length Variability: 12%, DTW Deviation: 10%–15% 

 
Figure 13. Comparative analysis of fatigue tracking techniques: The bar chart visualizes measured fatigue effects 

across different assessment methodologies. 

A multi-dimensional fatigue tracking framework that integrates multiple fatigue 

assessment methods can therefore be created, leading to a more effective training, 

prevention of injuries, and optimized endurance. 

4.6. Discussion 

This study systematically examined the impact of fatigue on movement 

efficiency, neuromuscular coordination, and physiological stress response, utilizing a 

multi-method approach that combined biomechanical analysis, physiological 

monitoring, and predictive modeling. The integration of 3D motion analysis, heart rate 

variability (HRV) monitoring, infrared thermography (IRT), Bayesian inference, 

ARIMA-based forecasting, and dynamic time warping (DTW) allowed for a 

comprehensive assessment of fatigue progression and its effects on athletic 

performance. 
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Key findings demonstrate that fatigue significantly deteriorates biomechanical 

efficiency, with stride length decreasing by 10%, ground contact time increasing by 

15%, and knee flexion decreasing by 12 degrees under fatigued conditions. These 

movement inefficiencies align with previous research indicating that fatigue increases 

injury susceptibility due to impaired neuromuscular coordination and altered force 

application. Furthermore, physiological stress markers revealed that HRV 

parasympathetic activity declined by 20%, confirming autonomic nervous system 

dysregulation under fatigue. Bayesian inference provided a 95% confidence estimate 

for individual fatigue thresholds, while ARIMA-based forecasting achieved 91% 

accuracy in short-term fatigue prediction, confirming its efficacy in training load 

optimization. Additionally, IRT analysis detected a fatigued muscle temperature 

increase of 1.15 ℃, reinforcing the role of thermal regulation in fatigue monitoring. 

These findings establish that an integrated, data-driven fatigue monitoring 

framework can effectively assess, predict, and optimize fatigue adaptation in 

endurance sports, ensuring injury prevention and enhanced performance outcomes. 

(Un)expected Results and Comparison with Literature 

The study’s results largely align with existing literature but also reveal new 

insights and unexpected trends. As expected, fatigue caused a notable decline in 

biomechanical efficiency, which is consistent with previous findings by Cortes et al., 

who observed a 12% reduction in stride length and a 9% increase in ground reaction 

forces in fatigued athletes. Similarly, Santamaria and Webster highlighted that 

neuromuscular fatigue disproportionately affects lower-limb stability, a result 

confirmed in this study through the observed 7% increase in gait asymmetry and 18 

ms delay in muscle activation. 

An unexpected result, however, was the variation in fatigue adaptation between 

endurance and power-based athletes. The Bayesian inference model showed that 

endurance athletes had a 14% longer resistance to fatigue compared to power-based 

athletes, contradicting previous assumptions that power athletes recover faster due to 

greater neuromuscular efficiency. Another surprising finding was the gender-based 

difference in fatigue adaptation—female athletes exhibited higher HRV stability and 

lower biomechanical deterioration post-exertion, suggesting greater autonomic 

adaptability compared to male athletes, a factor rarely explored in fatigue research. 

Furthermore, ARIMA-based predictions aligned well with real-time fatigue 

trends; however, its reliance on historical data limited its real-time applicability, 

confirming concerns raised in previous studies (Boeker et al.) regarding the 

ineffectiveness of time-series forecasting for live fatigue assessment. The introduction 

of sensor-fusion techniques (IMUs, continuous glucose monitors) enhanced fatigue 

tracking accuracy, bridging the gap between real-time monitoring and long-term 

fatigue trend analysis. 

The observed biomechanical and physiological decline under fatigue can be 

attributed to neuromuscular inefficiencies, metabolic stress, and autonomic system 

overload. The 10% decrease in stride length and increase in ground contact time are 

direct consequences of fatigue-induced motor control impairment, leading to 

suboptimal force application and compromised stability. Similarly, the decline in HRV 

parasympathetic activity (20%) and increase in LF/HF ratio (2.35) suggest a shift 
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towards sympathetic dominance, indicating heightened cardiovascular stress and 

delayed recovery mechanisms. 

The effectiveness of IRT-based fatigue monitoring (1.15 ℃ muscle temperature 

increase) aligns with findings in Li et al., who reported thermal gradients as reliable 

indicators of localized muscle fatigue. The 95% accuracy of Bayesian fatigue 

threshold estimation validates its application in personalized fatigue management, 

while the 91% short-term predictive accuracy of ARIMA demonstrates its reliability 

in forecasting training adaptation needs. However, the variability in movement 

patterns (up to 9% deviation using DTW) emphasizes the importance of real-time 

tracking systems, as fatigue responses differ among athletes. 

The gender-based differences observed in this study may be linked to hormonal 

and neuromuscular variances, particularly the role of estrogen in promoting 

cardiovascular stability and metabolic recovery in female athletes. These findings 

highlight the necessity for gender-specific fatigue management strategies, which have 

been largely overlooked in sports science. 

While this study presents a comprehensive, multi-method fatigue assessment 

framework, several limitations must be acknowledged. First, despite expanding the 

sample size beyond 30 elite athletes, the study remains limited in its generalizability 

to broader athletic populations. Although efforts were made to include endurance and 

power-based athletes across different competition levels, longitudinal data collection 

over extended periods is required to further validate these findings. 

Second, while ARIMA-based forecasting provided high accuracy in fatigue 

prediction, its dependence on historical trends makes it less effective for real-time 

monitoring. Future studies should integrate machine-learning-driven models (e.g., 

CNN-based systems) that can analyze live sensor data and predict fatigue in real-time. 

Additionally, IRT-based monitoring showed strong correlation with fatigue 

progression, but environmental factors such as ambient temperature variations could 

affect thermal readings, necessitating controlled conditions for precise application. 

Another limitation is the inter-individual variability in fatigue adaptation. While 

Bayesian inference accounted for individual fatigue thresholds, external factors such 

as hydration, nutrition, and mental fatigue were not fully incorporated. Future research 

should explore multi-sensor fatigue tracking systems that integrate both physical and 

psychological fatigue markers to develop more holistic training adaptation models. 

Despite its methodological limitations, the findings of this study have strong 

practical applications across multiple sports disciplines. By integrating biomechanical, 

physiological, and predictive analytics, the study provides a data-driven framework 

for fatigue management, applicable to both endurance and power-based sports. The 

real-world validation phase demonstrated that fatigue monitoring systems can be 

effectively used in competitive environments, with fatigue prediction data improving 

pacing stability by 15% and reducing early fatigue onset by 12%. 

The gender-based fatigue adaptation insights underscore the importance of 

personalized fatigue management strategies, ensuring training loads are optimized 

based on individual physiological responses. Furthermore, the use of sensor-fusion 

techniques, including IMUs and continuous glucose monitors, enhances real-time 

fatigue detection, allowing coaches and sports scientists to adjust training strategies 

on the spot. 
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Future research should aim to expand dataset diversity, introduce real-time AI-

driven fatigue prediction, and validate findings across different competitive settings, 

ensuring the continued advancement of fatigue monitoring methodologies in sports 

science. 

This study successfully integrates biomechanical assessment, physiological 

monitoring, and predictive modeling to create a comprehensive fatigue management 

framework. The results confirm that fatigue significantly impacts movement 

efficiency, neuromuscular coordination, and physiological stress response, reinforcing 

the necessity of real-time monitoring and adaptive training loads. While ARIMA and 

Bayesian inference provided strong predictive capabilities, the incorporation of 

sensor-fusion techniques enhances real-time fatigue assessment, bridging the gap 

between long-term forecasting and immediate training adjustments. 

By addressing gender differences, psychological fatigue factors, and real-world 

validation, this study provides a holistic approach to fatigue management, ensuring 

that training interventions are scientifically driven and personalized. These findings 

lay the foundation for next-generation fatigue tracking technologies, improving injury 

prevention strategies and athletic performance sustainability. 

5. Conclusion 

This study integrates the processes of track and field events based on a systematic 

evaluation of effects of fatigue on athletic performance using multi method approach 

based on biomechanical analysis and physiological monitoring. This study found that 

movement efficiency, neuromuscular coordination, and physiological stress response 

are altered so greatly by fatigue that movement is jeopardized for injury and 

performance suffers. Using the biomechanical tracking, coupled with Bayesian 

inference, HRV analysis, ARIMA, infrared thermography, and DTW based movement 

analysis, it was combined in this study for fatigue assessment and training 

optimization. 

5.1. Key findings 

The main findings of this study indicate: 

• Biomechanical analysis revealed a 10% reduction in stride length and a 15% 

increase in ground contact time, confirming fatigue-induced inefficiencies in 

movement patterns. 

• 3D biomechanical modeling identified a decline in force production (avg. force: 

297.78 N) and an increase in neuromuscular response time (avg. reaction time: 

0.46 s), highlighting the progressive deterioration of motor control. 

• Bayesian inference analysis estimated fatigue thresholds with 95% confidence, 

predicting an average fatigue onset time of 32 min and a 20% increase in injury 

risk beyond this threshold. 

• HRV analysis demonstrated a 20% decline in parasympathetic activity, with 

RMSSD values averaging 59.62 ms and LF/HF ratios rising to 2.35, indicating 

cardiovascular stress accumulation. 

• ARIMA modeling provided a 91% accurate forecast of short-term fatigue trends, 

estimating peak fatigue periods and recovery times between 24–36 h. 
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• Infrared Thermography (IRT) identified an increase in fatigued muscle 

temperature to 37.73 ℃, with a 1.15 ℃ thermal gradient, confirming localized 

metabolic stress. 

• Finally, up to 9% movement pattern deviation was detected by Dynamic Time 

Warping (DTW) analysis as well as 12% increase in step length variability, 

stimulating the need for fitted cognitive adaptations that are fatigue resistant. 

Together these findings establish that fatigue is a multi-faced phenomenon and 

thus an integrated approach is needed for effective monitoring, prediction and 

management of fatigue. 

5.2. Recommendations for training optimization 

Based on the findings, the following recommendations are proposed to optimize 

fatigue management and training: 

• Real-Time Monitoring: Wearable HRV sensor and motion tracker devices which 

will be implemented to monitor fatigue progression and recovery status 

continuously. 

• Adaptive Training Loads: Therefore, we personalize both intensity of training 

and fatigue threshold predictions using Bayesian inference and ARIMA 

modeling. 

• Neuromuscular Recovery Interventions: Introduce the specific rehabilitation 

protocols to address biomechanical inefficiencies found in the 3D motion 

analysis and DTW based movement deviations. 

• Temperature-Based Fatigue Detection: Monitor local muscle overuse using IRT, 

catch and manage related injury risks before they happen. 

• Structured Recovery Strategies: To optimize endurance and avoid overtraining, 

ensure 24–36 h recovery periods that align with the corpses of the HRV and the 

ARIMA predicted fatigue period. 

By using these fatigue assessment techniques the possible use can be a part of 

training regimens enabling athletes and coaches make evidence based decisions about 

performance longevity, injury prevention and physiological adaptation. 

5.3. Future research directions 

However, this study still has further developments to present in order to improve 

the fatigue tracking precision and real time adaptability. Future work directions are 

recommended as follows: 

• Expansion of Sample Size: Study of large scale fatiguing processes in diverse 

groups of athletes in different sports disciplines to increase generalizability of 

fatigue assessment models. 

• Integration of AI-Driven Fatigue Prediction: Machine learning and deep learning 

models for fatigue adaptation in real time to achieve better prediction 

performance than traditional ARIMA and Bayesian inference ones. 

• Hybrid Fatigue Modeling Approaches: Make the combination of HRV and 

biomechanical gait analysis to define personalized fatigue adaptation protocol. 
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• Validation in Competitive Settings: Validating effectiveness of test fatigue 

monitoring systems under physiological stress conditions of high intensity 

competition environments. 

• Longitudinal Fatigue Impact Analysis: Determine the long term consequences of 

cumulative fatigue on the rates of injury, biomechanical efficiency and endurance 

adaptation in athletes. 

This research advances will allow next generation fatigue assessment system to 

be developed, and with these, we can build smarter smarter, data science sport science 

methodology. 

5.4. Final remarks 

This study provides a comprehensive, multi-method approach to fatigue tracking, 

demonstrating how biomechanical principles, statistical modeling, and physiological 

monitoring can be integrated for enhanced endurance training optimization. The 

findings underscore the necessity for real-time fatigue management, emphasizing that 

a single-method approach is insufficient for accurately capturing the complexity of 

fatigue progression. 

By incorporating predictive analytics, real-time monitoring, and targeted 

recovery interventions, this study contributes to the advancement of sports fatigue 

research, ensuring that athletes achieve peak performance while minimizing injury 

risks. 

Conflict of interest: The authors declare no conflict of interest. 
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