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Abstract: With the wide application of electric vehicles, smart robots and Internet of Things 

(IoT) devices, efficient scheduling of mobile charging systems has become an important 

research direction in smart energy management. However, the traditional cloud computing 

architecture is difficult to meet the requirements of low latency, high reliability and privacy 

protection, and the existing scheduling strategies still have challenges in terms of energy 

optimization, task balancing and dynamic adaptability. To this end, this paper proposes an 

intelligent mobile charging scheduling method that integrates edge computing and 

biomechanical modeling, constructs a biomechanical-based charging demand modeling and 

energy consumption analysis framework, and combines bionic optimization algorithms to 

achieve efficient path planning. Meanwhile, an edge computing architecture is adopted to 

optimize resource scheduling, and a federated learning mechanism is designed to enhance 

cross-domain data processing capability. To safeguard user privacy, a multi-level privacy 

protection mechanism is proposed, combining differential privacy, homomorphic encryption 

and zero-knowledge proof to ensure data security. Experimental results show that the method 

outperforms traditional methods in terms of task response time, energy consumption 

optimization, load balancing and privacy security, and can significantly improve the charging 

scheduling efficiency and provide effective technical support for large-scale distributed 

charging networks. The research results provide a theoretical basis and engineering practice 

reference for the application of smart charging networks, edge intelligent computing and 

privacy protection technology. 

Keywords: edge computing; biomechanical modeling; mobile charging scheduling; bionic 

optimization algorithm 

1. Introduction 

In recent years, edge computing has emerged as a promising framework to 

address the challenges posed by traditional cloud computing methods, including high 

latency and limited scalability [1]. Existing scheduling methods, such as centralized 

cloud-based systems and static planning algorithms, often struggle with efficient 

resource allocation in highly dynamic environments due to their reliance on 

centralized data processing and fixed task allocation strategies. These methods 

typically fail to account for the real-time fluctuations in energy demand and resource 

availability, which limits their adaptability in large-scale systems [2]. 

In contrast, this study introduces an innovative approach that combines edge 

computing with biomechanical modeling. The biomechanical model offers a dynamic, 

spatially and temporally adaptive mechanism that can more effectively simulate 

resource scheduling in real-world scenarios [3]. Unlike traditional algorithms that 
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overlook the complexities of spatial distribution and temporal changes in energy 

demand, our method leverages biomechanical principles to optimize charging paths in 

real-time. Furthermore, edge computing allows for decentralized task allocation, 

significantly reducing latency and improving the system’s responsiveness and 

scalability. This approach not only improves scheduling efficiency but also enhances 

privacy protection and energy optimization, addressing the limitations of existing 

methods. 

2. Edge computing fundamentals 

Edge computing builds a distributed low-latency service architecture by sinking 

computing, storage and network resources to the edge side of the network close to the 

terminal devices, effectively alleviating the high transmission latency and bandwidth 

bottlenecks faced by traditional cloud computing centers in mobile charging scenarios 

[4]. The core lies in the establishment of a multi-layer collaborative heterogeneous 

node topology, relying on the localized processing capabilities of edge nodes (such as 

base stations and gateways), to provide real-time analysis and decision-making 

feedback on the time and space-sensitive data generated by charging devices, so as to 

support the demand for dynamic resource scheduling. In the mobile charging system, 

the edge computing architecture needs to address three key issues: First, a distributed 

task allocation mechanism based on device location, residual energy, and task 

priority, and load balancing through local decision-making and global coordination; 

second, designing a lightweight protocol stack to adapt to the heterogeneous 

communication interfaces of charging devices (e.g., LoRa (Long Range), NB-IoT 

(Narrowband Internet of Things)), and ensuring highly reliable data transmission 

under low power consumption; third, constructing a cooperative computing 

mechanism between edge nodes (e.g., base stations, gateways) to provide real-time 

analysis and feedback of time- and space-sensitive data generated by edge nodes, thus 

supporting dynamic resource scheduling requirements. The third is to build a 

collaborative computing model among edge nodes, using federated learning or 

distributed optimization algorithms to achieve cross-domain resource scheduling and 

avoid service interruptions triggered by single-point failures. Compared with the 

traditional centralized cloud platform, edge computing significantly reduces the risk 

of privacy leakage through data localization processing, while its elastic scalability 

can adapt to the highly concurrent requests of large-scale mobile charging networks, 

providing basic support for subsequent biomechanics-driven real-time scheduling [5]. 

3. Biomechanics-based modeling of mobile charging 

3.1. System modeling 

In the mobile charging system, in order to accurately portray the distribution of 

charging demand and energy consumption, a biomechanical modeling method is 

introduced to construct a dynamic charging demand distribution and energy 

consumption calculation model by drawing on the energy metabolism and movement 

characteristics of human muscle tissue [6]. The model not only reflects the spatial 
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distribution of charging demand but also can be dynamically adjusted with the time 

dimension to optimize the reasonable allocation of charging resources. 

3.1.1. Charging demand distribution modeling 

The charging demand distribution is described by a density function similar to 

the distribution of muscle fibers, which divides the entire service area into multiple 

dynamically changing demand density regions (Figure 1). The charging demand 

intensity function 𝐷(𝑥, 𝑦, 𝑡)  is set, where (𝑥, 𝑦)  denotes the geographic location 

coordinates and t denotes the time variable. The demand intensity can be expressed as 

[7]: 

𝐷(𝑥, 𝑦, 𝑡) =∑(𝑤𝑖 ⋅ 𝑓𝑖(𝑥, 𝑦)) ⋅ 𝑔(𝑡) 

Where 𝑤𝑖 denotes the demand weight of the ith class of users, which is used to 

distinguish the charging demand priority of different types of users; 𝑓𝑖(𝑥, 𝑦) is the 

spatial distribution function of charging demand, which portrays the charging demand 

changes in different regions; 𝑔(𝑡) is the time decay function, which is used to adjust 

the impact of the charging demand changes over time. This model can reflect the 

spatio-temporal dynamic characteristics of the charging demand, similar to the 

distribution of the energy demand of muscle tissue in different movement states. 

 

Figure 1. Heat map of charging demand density distribution. 

3.1.2. Energy consumption model 

During the mobile charging process, the energy consumption of the charging 

vehicle is affected by the traveling distance, charging power and charging duration, 

which is similar to the energy consumed by human muscles during exercise. 

Therefore, the concept of energy conversion efficiency, which is similar to the work 

done by muscles, is introduced to establish the energy consumption equation of the 

mobile charging vehicle [8]: 

𝐸 = 𝛼 ⋅ 𝑑 + 𝛽 ⋅ 𝑃 + 𝛾 ⋅ 𝑇
 

where E is the total energy consumption, d is the driving distance of the charging 

vehicle, P is the charging power, T is the charging duration, α, β and γ are the 

corresponding energy consumption coefficients, which are used to characterize the 

energy loss under different working conditions. Considering the influence of different 

environmental factors on energy consumption, the energy consumption coefficients 

are summarized and quantified, and the specific parameters are listed in Table 1 
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below. The model can comprehensively consider the spatial and temporal distribution 

characteristics of charging demand and the energy loss of charging vehicles, which 

provides data support for optimizing mobile charging scheduling. 

Table 1. Parameters of energy consumption coefficients. 

working conditions Distance coefficient (α) Power factor (β) Time factor (γ) 

urban area 0.85 1.20 0.95 

suburbia 0.75 1.15 0.90 

rush hour 1.10 1.25 1.05 

off-peak hour 0.70 1.10 0.85 

3.2. Bionic optimization algorithm design 

In order to optimize the path planning and charging scheduling of mobile 

charging vehicles, a bionic optimization algorithm is proposed based on the 

biomechanical model, which simulates the synergistic movement mechanism of 

muscle contraction-diastole and improves the charging path and scheduling efficiency 

through the principle of bionics [9]. 

3.2.1. Charging path optimization 

In path planning, we consider each charging demand point as a “muscle unit”, 

and its demand intensity corresponds to muscle tension. When multiple charging 

demand points exist at the same time, these demand points are similar to a group of 

muscle fibers contracting together to form a dynamically adjusted charging path 

(Figure 2). The improved spring-damping system model is used for path planning 

[10]: 

𝐹 = 𝑘 ⋅ Δ𝑥 + 𝑐 ⋅ 𝑣 + 𝑚 ⋅ 𝑎
 

F is the path traction force, which determines the direction of movement of the 

charging vehicle; k is the elasticity coefficient, which represents the attraction 

between the charging demand points; ∆x is the displacement, which represents the 

change of the distance between the charging vehicle and the charging demand points; 

c is the damping coefficient, which controls the smoothing of the path; v is the speed, 

m is the mass, and a is the acceleration, which is used to dynamically adjust the 

driving trajectory. In the process of traveling, the charging vehicle will be affected by 

the “traction force” of multiple charging demand points, similar to the coordinated 

contraction of muscle groups. By solving the above system of equations, the system 

can dynamically adjust the optimal charging path, and realize the efficient completion 

of the charging task with the lowest energy consumption. 
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Figure 2. Flowchart of bionic optimization algorithm. 

3.2.2. Charge scheduling optimization 

In charging scheduling, a scheduling mechanism based on ATP (adenosine 

triphosphate) energy metabolism is introduced. In living organisms, ATP regeneration 

of muscle cells determines the energy supply priority of muscles. Similarly, the 

energy replenishment process of the charging vehicle is analogous to the ATP 

regeneration process, and the energy replenishment priority queue is established [11]: 

𝑃𝑟 𝑖 𝑜𝑟𝑖𝑡𝑦 = 𝑤1 ⋅ 𝐸𝑟𝑒𝑚𝑎𝑖𝑛 +𝑤2 ⋅ 𝐷𝑢𝑟𝑔𝑒𝑛𝑡 +𝑤3 ⋅ 𝑇𝑤𝑎𝑖𝑡 

where 𝐸𝑟𝑒𝑚𝑎𝑖𝑛 denotes the remaining power; 𝐷𝑢𝑟𝑔𝑒𝑛𝑡 is the urgency of the charging 

demand point (e.g., the value is larger when the power is lower than a certain 

threshold); 𝑇𝑤𝑎𝑖𝑡 denotes the waiting time, i.e., the length of time that the charging 

demand point is being waited for the service; and w1, w2, and w3 are the weight 

coefficients, which can be dynamically adjusted to adapt to different charging 

scenarios. By dynamically adjusting the weight coefficients, the optimal allocation of 

charging resources is realized. 

4. Edge intelligence-driven scheduling mechanisms 

4.1. Edge computing architecture design 

In this paper, a multi-tier edge computing architecture is designed to support the 

mobile charging scheduling system, as shown in Figure 3. The architecture consists 

of three layers: Terminal layer, edge layer and cloud layer. The terminal layer 

includes mobile charging vehicles, charging piles and user devices, which are 

responsible for collecting real-time charging demand, location information and energy 

status data [12]. The edge layer consists of distributed edge servers, each of which 

manages the terminal devices within its coverage area and undertakes tasks such as 

data preprocessing, real-time decision-making and local optimization. The cloud layer 

is responsible for global resource scheduling, historical data analysis and policy 

optimization [13]. 
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In terms of task allocation, the principle of “layered collaboration and proximity 

processing” is adopted, whereby delay-sensitive real-time scheduling tasks are 

delegated to the edge layer for processing, while computationally intensive 

optimization tasks are assigned to the cloud layer for execution. In order to improve 

system reliability, a blockchain-based distributed ledger is constructed between edge 

nodes to record charging transactions and scheduling decisions, ensuring data 

consistency and traceability. Meanwhile, a lightweight edge computing protocol stack 

is designed, as shown in Table 2, which contains a communication interface layer, a 

data processing layer, a task scheduling layer, and a security protection layer, and can 

support efficient data transmission and task processing in heterogeneous network 

environments. A distributed training mechanism based on federated learning is 

introduced in the data processing layer, which enables the edge nodes to 

collaboratively optimize the scheduling model under the premise of protecting data 

privacy. The architecture not only significantly reduces the system response delay but 

also improves the scalability and robustness of the system through distributed 

deployment. 

 

Figure 3. Schematic diagram of edge computing architecture. 

Table 2. Edge computing protocol stack structure. 

phase functional module Key technologies 

communications interface layer Heterogeneous network access, protocol conversion LoRa, NB-IoT, 5G 

data processing layer Data cleaning, feature extraction, model training Federated learning, distributed storage 

task scheduling layer Load balancing, resource allocation, path planning Biomechanical optimization, blockchain 

security layer Authentication, data encryption, access control Homomorphic encryption, zero-knowledge proofs 

4.2. Real-time scheduling algorithm 

In order to achieve efficient mobile charging scheduling, this paper proposes an 

adaptive real-time scheduling algorithm based on edge computing architecture, which 

integrates biomechanical modeling and deep reinforcement learning methods to 

achieve dynamic optimal allocation of charging resources. Since mobile charging 

scheduling involves multiple constraints, such as spatial and temporal distribution of 

charging demand, energy consumption of charging vehicles, path planning, etc., this 

paper models the scheduling optimization problem as a multi-objective optimization 

problem and solves it using an intelligent algorithm. In the scheduling process, the 
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system first constructs a multi-objective decision-making model with minimizing the 

total energy consumption, average response time and scheduling distance as the 

objective function in the following form [14]: 

𝑚𝑖𝑛𝐹 (𝑠) = 𝑤1 ⋅ 𝐸(𝑠) + 𝑤2 ⋅ 𝑇(𝑠) + 𝑤3 ⋅ 𝐷(𝑠) 

where E(s) denotes the total energy consumption, T(s) denotes the average response 

time, D(s) denotes the dispatch distance, and w1, w2, w3 are the weighting coefficients 

for the respective weight coefficients of the objectives. This optimization objective is 

subject to several constraints, including the maximum load capacity of the charging 

vehicle, the time window for task completion, and the maximum coverage distance of 

the charging service, i.e., 

𝐶1:∑𝑥𝑖,𝑗 ≤ 𝐶𝑚𝑎𝑥

∑

 

𝐶2: 𝑡𝑖,𝑗 ≤ 𝑇𝑚𝑎𝑥 

𝐶3: 𝑑𝑖,𝑗 ≤ 𝐷𝑚𝑎𝑥 

where Cmax is the maximum load capacity of the charging vehicle, Tmax is the 

maximum acceptable waiting time of the task, and Dmax is the maximum service 

radius. In order to solve this optimization problem, this paper designs a deep 

reinforcement learning algorithm based on the Actor-Critic framework, which is able 

to optimize the scheduling decision in dynamic environments and adapt to different 

charging demand distributions. 

In the scheduling decision process, the system first inputs the state information 

of the charging task to the neural network, including the distribution of the current 

charging demand points, the location of the charging vehicle, the remaining power 

and other data. Then, based on the Actor-Critic structure, a strategy network (Actor) 

is used to output the scheduling decision of charging vehicles, including path 

selection and charging power adjustment, etc. The Critic network is used to evaluate 

the advantages and disadvantages of the current strategy and adjust the parameters of 

the strategy network according to the real-time feedback so as to optimize the 

scheduling scheme continuously. The whole algorithm flow is shown in Figure 4. 

In the training process, in order to improve the learning efficiency, the 

Experience Replay and Prioritized Sampling techniques are used to select key 

samples from the past scheduling experience for training so as to avoid the neural 

network from falling into the local optimum. At the same time, in order to ensure the 

stability of the algorithm, the reward-shaping mechanism is introduced, in which the 

reward function is based on biomechanical modeling so that the optimization 

direction of the charging scheduling is in line with the trend of the actual charging 

demand [15]. The definition of the reward function is as follows: 

𝑅𝑡 = 𝛼 ⋅ (𝐸𝑡𝑡𝑡𝑚𝑎𝑥𝑚𝑎𝑥𝑚𝑎𝑥 

where Emax, Tmax, Dmax denote the maximum thresholds set by the system for energy 

consumption, response time and dispatch distance respectively, and α, β, γ are reward 

coefficients for balancing the weights between different optimization objectives. In 
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practical applications, these parameters can be adjusted by experimental data to adapt 

to different charging scenarios. 

 

Figure 4. Framework diagram of real-time scheduling algorithm. 

5. Privacy protection program design 

5.1. Data security threat analysis 

In mobile charging scheduling systems, data security is crucial, involving 

multiple sensitive pieces of information such as user charging requests, vehicle 

operating status, and charging scheduling policies. However, due to the complexity of 

data transmission and storage among terminal devices, edge nodes, and cloud 

platforms, the system faces a variety of security threats, including data eavesdropping, 

identity disguise, data tampering, denial-of-service attacks, and inference attacks. If 

these threats are not effectively controlled, they may not only cause user privacy 

leakage but also lead to charging scheduling failure, service quality degradation, or 

even system paralysis. Therefore, it is necessary to analyze these security risks in 

depth and design corresponding protective measures. 

During data transmission, attackers may steal charging request data by listening 

to network communications, which contain sensitive information such as the user’s 

geographic location, charging time, and power demand. Once this data is intercepted, 

the attacker can perform trajectory analysis of user behavior, speculate on the user’s 

travel pattern, and even implement accurate tracking, resulting in serious privacy 

leakage. In addition, in the process of data interaction between edge nodes, if there is 

a lack of sufficient encryption protection, an attacker can steal data through a Man-in-

the-Middle Attack (MITM) and tamper with the data packets, causing the scheduling 

system to misjudge the charging demand and affecting the normal resource allocation. 

As shown in Figure 5, in order to quantify the risk of data eavesdropping, this paper 

introduces the information entropy model to calculate the success probability of the 

attacker to infer the user’s trajectory, and the degree of privacy leakage can be 

expressed as: 

𝑃𝑟 𝑖 𝑣𝑎𝑐𝑦_𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = −∑(𝑝𝑖 ⋅ 𝑙𝑜𝑔2 𝑝𝑖) × 𝜆
 

where pi denotes the probability that an attacker successfully infers a certain type of 

privacy information, and λ is the privacy sensitivity weight. With this model, the 
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privacy protection ability of the system under different attack scenarios can be 

objectively evaluated (Table 3). 

Table 3. Security threat analysis model. 

Threat type attack target implication risk level 

data tapping user location information track leakage your (honorific) 

identity masquerade Charge authentication system service abuse center 

data tampering scheduling decision systemic disorder your (honorific) 

denial of service (computing) edge node service interruption center 

inference attack User Behavior Patterns privacy breach your (honorific) 

 
Figure 5. Schematic diagram of the multi-level security threat model. 

5.2. Privacy protection mechanisms 

In mobile charging scheduling systems, safeguarding user privacy is paramount 

due to the sensitive nature of the data involved, including user location, charging 

requests, and vehicle status. To address the risks of data leakage at various stages—

collection, transmission, storage, and computation—this paper introduces a multi-

layered privacy protection framework designed to mitigate potential privacy breaches 

effectively. The framework integrates several advanced cryptographic techniques 

tailored for each phase. At the data collection stage, differential privacy is employed 

to add controlled noise to location data, ensuring that individual users’ movements 

cannot be accurately tracked. During data transmission, a Hybrid Encryption scheme 

is used, combining homomorphic encryption and attribute encryption, which enables 

secure data processing and fine-grained access control without revealing sensitive 

content. For data storage, a sharding-based decentralized storage scheme is adopted to 

distribute encrypted data across multiple edge nodes, reducing the risk of centralized 

data breaches. Finally, at the computational processing stage, zero-knowledge proofs 

allow charging vehicles to validate their availability without exposing their locations 

or specific operational details. This multi-layered approach not only strengthens 

privacy protection but also ensures that the system remains efficient and scalable for 

large-scale applications. 
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At the data collection level, the user’s charging request usually contains sensitive 

data such as location information, power status, time stamp, etc. In order to prevent 

the attacker from inferring the user’s travel patterns or daily behaviors through the 

data correlation, this paper employs the differential privacy mechanism to perturb the 

user’s location information. Under the differential privacy framework, each user’s 

location data is added with noise before submission, so that the attacker cannot 

accurately recognize the user’s real location. The perturbation function is defined as 

follows: 

𝐿′(𝑥, 𝑦) = 𝐿(𝑥, 𝑦) + 𝐿𝑎𝑝(Δ𝑓/𝜀)
 

where 𝐿(𝑥, 𝑦) is the original position coordinate, 𝐿𝑎𝑝(∆𝑓/𝜀) is the Laplace noise, ∆f 

is the position sensitivity, and ε is the privacy budget. At the data transmission layer, a 

lightweight hybrid encryption scheme combining homomorphic encryption and 

attribute encryption techniques is designed to realize secure data transmission and 

fine-grained access control. The core of the scheme is to construct a three-layer 

encryption structure: The outer layer uses attribute encryption to protect data access 

privileges, the middle layer uses homomorphic encryption to support ciphertext 

computation, and the inner layer uses lightweight symmetric encryption to protect 

data confidentiality. To reduce the computation overhead, a dedicated cryptographic 

gas pedal is deployed on the edge nodes. In the data storage layer, a decentralized 

storage scheme based on sharding is proposed to decentralize the storage of sensitive 

data on multiple edge nodes and use threshold cryptography to protect data integrity. 

In addition, a privacy-preserving scheduling protocol based on zero-knowledge proof 

is designed to enable charging vehicles to prove their service capability and 

availability without revealing their specific locations. Table 4 details the specific 

parameter configurations for each layer of protection mechanisms. 

Table 4. Privacy protection parameter configuration. 

protection level Protection mechanisms Key parameters performance overhead 

data acquisition differential privacy ε = 0.1 CPU: 5% 

data transmission hybrid encryption Key length: 2048 bits Delay: 10 ms 

data storage slice storage Number of slices: 5 Storage: 1.2x 

computational processing zero proof of knowledge Circuit depth: 20 CPU: 8% 

6. Experimentation and evaluation 

6.1. Simulation environment setting 

To verify the effectiveness of the proposed edge intelligence-driven mobile 

charging scheduling scheme, a large-scale simulation platform is constructed based 

on Python and SimPy simulation framework. The simulation scenario is set as a 10 

km × 10 km urban core area, and a hierarchical grid model is used to divide the area 

into one hundred 500 m × 500 m grid cells. Two hundred charging demand points are 

randomly deployed in the area, including 80 fixed charging station points and 120 

mobile charging demand points. For the modeling of mobile charging demand, a 

Modified Random Walk Model (MRWM) is proposed, which not only takes into 
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account the user’s random movement characteristics, but also integrates a destination-

based trajectory prediction mechanism, which can more accurately reflect the actual 

user’s movement pattern. The user movement speed obeys a truncated Gaussian 

distribution with a mean value of 3 km/h and a standard deviation of 0.8 km/h. The 

system deploys 20 mobile charging vehicles, adopting a hierarchical partitioning 

management strategy, with each vehicle equipped with a 60 kWh capacity energy 

storage unit, a maximum charging power of 60 kW, and a maximum range of 300 km 

for a single vehicle. In terms of the communication network architecture, the edge 

computing environment consists of 30 edge server nodes, adopting a three-tiered tree 

network topology, with the nodes interconnected through a 5G network, and the edge 

nodes. The computing power of the edge nodes is distributed between 8–16 GFLOPS 

(Giga Floating Point Operations Per Second). 

In order to improve the simulation accuracy, the biomechanical model 

parameters are calibrated based on six months of actual charging data in a city, the 

model parameters are iteratively optimized through the improved particle swarm 

optimization algorithm (MPSO), and a set of adaptive parameter adjustment 

mechanisms are designed to ensure that the model can accurately reflect the charging 

demand characteristics of different time periods and different regions. In the 

simulation of environmental factors, the effects of random events such as weather 

conditions, traffic congestion, and charging equipment failure are considered, and the 

sequence of these random events is generated through a Markov chain model. The 

core parameters of the simulation platform are configured as shown in Table 5. The 

experiments were run using a multithreaded parallel computing framework on a 

server equipped with an Intel Xeon E5-2680 v4 processor and 128 GB of RAM 

(Random Access Memory), with the simulation period set to 7 days and the system 

sampling interval to 5 min, and more than 2000 sets of valid data samples were 

collected. To ensure the statistical significance of the experimental results, each group 

of experiments is repeated 10 times and the average value is taken as the final result. 

Table 5. Parameter configuration of the simulation platform. 

parameter category Parameter name parameter value instructions 

Scene parameters 

Area size 10 km × 10 km Urban core 

meshing 20 × 20 500 m × 500 m/grid 

Charging Demand Points 200 randomized distribution 

Equipment parameters 

Mobile Charging Vehicle 20 vehicles uniform distribution 

Edge Server 30 tree topology 

communications bandwidth 100 Mbps 5G network 

algorithmic parameter 

learning rate 0.001 Adam Optimizer 

Batch size 64 Training batch 

training round 1000 model convergence 

6.2. Performance comparison 

In order to comprehensively evaluate the system performance, a multi-

dimensional evaluation framework is designed to compare the proposed 

biomechanics-based edge intelligent scheduling scheme (BM-EI) with three 
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mainstream benchmarking schemes: The traditional greedy algorithm (Greedy), the 

deep reinforcement learning scheme (DRL), and the hybrid heuristic algorithm 

(Hybrid). The experimental evaluation dimensions include four aspects: Scheduling 

efficiency, energy consumption, system reliability and computational resource 

utilization. In scheduling efficiency evaluation, Time-Weighted Completion Rate 

(TWCR) is introduced, which not only considers the completion of tasks, but also 

takes the urgency of tasks as a weighting factor. As shown in Figure 6, under high 

load conditions (system load > 85%), the average response time of the BM-EI scheme 

reduces by 23.5%, 18.7% and 15.3%, and the weighted task completion rate improves 

by 12.8%, 9.5% and 7.2%, respectively, compared with other schemes. An in-depth 

analysis of the scheduling logs reveals that this performance advantage mainly stems 

from three aspects: First, the biomechanical model can accurately capture the spatio-

temporal dynamic characteristics of charging demand and provide more accurate 

demand forecasts; second, the edge computing architecture significantly reduces the 

system response latency so that the scheduling decisions can be adapted to the 

environmental changes quickly; third, the deep reinforcement learning based on the 

Actor-Critic architecture model has strong environmental adaptability and can 

maintain stable performance in dynamic scenarios. 

In terms of energy consumption, a set of refined energy consumption assessment 

models is designed to decompose the energy consumption of the charging vehicle into 

three parts: Driving energy consumption, charging energy consumption and standby 

energy consumption. Experimental results show that the average single service energy 

consumption of the BM-EI scheme is 0.85 kWh, which saves 15%–25% energy 

consumption compared with other schemes. This energy-saving effect is mainly due 

to the optimization of the charging path by the biomechanical model and the 

intelligent power regulation mechanism. In the system reliability test, we simulate a 

variety of failure scenarios, including edge nodes going offline, network 

communication interruption and charging equipment failure. The experiment 

randomly takes 30% of the edge nodes offline while injecting communication delay 

jitter to record the system’s quality of service changes. The results show that the BM-

EI scheme exhibits strong fault recovery capability, with an average recovery time of 

only 62 s, and the quality of service degradation is controlled within 8.5%. In 

addition, we also evaluate the system’s computational resource utilization efficiency 

and find that the BM-EI scheme maintains high performance while the average CPU 

utilization of the edge nodes is maintained at around 65%, which is significantly 

lower than that of other schemes, which is more than 85%. The detailed performance 

comparison data is shown in Table 6. 
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Figure 6. Comparison of scheduling efficiency. 

Table 6. Performance comparison results. 

Assessment of indicators BM-EI DRL Greedy 

Response time (min) 12.5 15.4 16.3 

Completion rate (%) 94.8 86.5 83.2 

Energy consumption (kWh/time) 0.85 1.02 1.13 

Recovery time (s) 62 95 128 

Decline in services (%) 8.5 15.3 21.7 

6.3. Privacy protection analysis 

For the privacy protection performance of the system, a complete security 

evaluation framework is constructed to design multi-level attack scenarios, including 

location trajectory reconstruction attack, user behavior inference attack, data 

tampering attack and distributed denial-of-service attack. In the location privacy 

protection test, three types of attackers are simulated: Passive observer, active attacker 

and colluding attacker. The attackers try to reconstruct the user’s complete mobile 

trajectory by collecting part of the leaked trajectory data in the system and combining 

it with machine learning and trajectory mining algorithms. The experiments used a 

trajectory prediction model based on a graph neural network to evaluate the accuracy 

of trajectory reconstruction under different proportions of known trajectory data. As 

shown in Figure 7, the trajectory reconstruction accuracy is kept below 32% with the 

differential privacy mechanism, even if the attacker has 50% of the trajectory data, 

while the accuracy without the protection mechanism is as high as 78%. 

In order to evaluate the impact of the protection mechanism on the system 

performance, a series of microbenchmark tests were designed to measure the 

overhead of cryptographic operations, proof generation and verification computations, 

respectively. The experiments were conducted on edge nodes equipped with Intel 

SGX security quarantine and the results are shown in Table 7. A single encryption 

operation takes an average of 12 ms, zero-knowledge proof generation takes 35 ms, 

verification computation takes 18 ms, and the overall latency increase is controlled 

within 50 ms. The computational latency is further reduced by 40% by deploying a 

dedicated FPGA-based cryptographic gas pedal. In terms of storage overhead, an 

improved Merkle tree structure is used to store the encrypted data, and by optimizing 

the branching factor of the tree and the node encoding scheme, the storage expansion 
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rate is controlled at 1.2 times. In order to verify the security performance of the 

system in large-scale scenarios, we also conducted a concurrent security test, 

simulating a scenario in which 1000 concurrent users initiate charging requests at the 

same time. The results show that the system is able to maintain stable security 

performance, and the throughput of proof generation and verification reaches 200 

times per second, which meets the requirements of practical applications. In addition, 

the performance-security tradeoff of the system under different privacy budgets (ε) is 

evaluated, which provides reference configurations for practical deployment. 

 

Figure 7. Privacy protection effect analysis diagram. 

Table 7. Safety performance test results. 

Test items Encryption delay (ms) Storage overhead (times) CPU utilization (%) 

data encryption 12 1.2 5 

Proof generation 35 1.1 8 

verification calculation 18 1.0 6 

Overall expenses 50 1.2 15 

7. Conclusion 

In this study, a smart scheduling framework integrating edge computing, 

biomechanical modeling and privacy protection is proposed around the mobile 

charging scheduling and privacy protection problem, and its effectiveness is verified 

through simulation experiments. The study shows that the biomechanics-based 

charging demand modeling method can accurately portray the spatio-temporal 

dynamic distribution characteristics and effectively optimize the charging path and 

resource allocation. The scheduling mechanism based on edge intelligence reduces 

the scheduling response delay and improves the adaptability and fault tolerance of the 

system. Experimental results show that the scheme outperforms traditional methods in 

terms of scheduling efficiency, energy consumption optimization, privacy protection, 

and exhibits better service stability under high load conditions. However, while the 

simulation results are promising, it is essential to consider the challenges associated 
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with implementing this approach in real-world environments. Several factors could 

potentially hinder the practical deployment of the proposed system. First, the accuracy 

of the biomechanical modeling relies heavily on data calibration, which may not 

always be available or accurate in real-world scenarios. The real-time data required 

for such modeling could face delays or inaccuracies due to environmental factors, 

such as traffic congestion, network instability, and unpredictable user behavior. These 

issues could reduce the effectiveness of the scheduling optimization and energy 

consumption model. Second, the edge computing architecture proposed in this paper, 

while effective in reducing latency, may still face scalability challenges in very large-

scale networks. The distributed edge nodes must handle a significant amount of data 

and computations, which could result in bottlenecks, especially under high 

concurrency. This may require more advanced hardware solutions, such as high-

performance edge servers or a more optimized network topology, which would 

increase the system’s overall complexity and cost. Lastly, the proposed multi-level 

privacy protection mechanisms, while providing robust data security, could introduce 

significant computational overhead. The encryption techniques, particularly 

homomorphic encryption and zero-knowledge proofs, are computationally intensive, 

which may affect the system’s performance in real-time environments. Balancing 

privacy protection and computational efficiency remains a challenging trade-off that 

needs to be carefully managed. In conclusion, while the proposed system 

demonstrates substantial advantages in simulations, further research is needed to 

address these implementation challenges, particularly regarding data accuracy, system 

scalability, and privacy-efficiency balance, in order to ensure its successful 

deployment in real-world mobile charging networks. 

Despite the progress made in the study, there are still some limitations. First, the 

parameter settings for biomechanical modeling rely on a large amount of 

experimental data, which may require further optimization for actual deployment. 

Second, the performance of edge computing architectures is limited by hardware 

resources and may face computational bottlenecks in ultra-large-scale network 

environments. In addition, the adaptability of the privacy protection mechanism under 

extreme attack scenarios still needs to be further evaluated to ensure the long-term 

security of the system. 

Future research will focus on the adaptive nature of intelligent scheduling, 

exploring more efficient online learning algorithms to dynamically adapt to changes 

in charging demand in different environments. At the same time, for large-scale 

mobile charging networks, we will optimize the collaborative scheduling mechanism 

of edge computing nodes to improve the computational efficiency of the system in 

high concurrency scenarios. In addition, a more traceable scheduling record system is 

constructed with blockchain technology to provide higher security and transparency 

for charging services. 
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