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Abstract: Background: With the increasing competition in the shipbuilding industry, 

enterprises are facing more stringent environmental protection requirements and challenges 

posed by the marine environment, particularly the corrosion of ship materials caused by 

microorganisms in seawater. This creates an urgent need for innovation management to 

introduce new technologies that can enhance the corrosion resistance of ships, extend their 

service life, and reduce maintenance costs. Objective: This paper aims to explore how 

molecular science and biomechanics can drive product research and development in the 

shipbuilding industry, especially in addressing the issue of seawater microbial corrosion, 

thereby promoting technological progress and market expansion for enterprises. Method: 

This study adopts a combination of case analysis and technological application research, 

focusing on how molecular technology can be used to develop antibacterial and anti-

corrosive ship materials. It also investigates how biomechanics, through biomimetic 

principles, can enhance the adaptability and durability of ship designs. Additionally, the 

paper explores the application of molecular science and biomechanics in hull design, 

examining how nature’s biological defense mechanisms can be mimicked to design more 

corrosion-resistant, low-maintenance ship structures. Innovation: This paper systematically 

applies molecular technology and biomechanics to the shipbuilding sector, proposing new 

technical approaches for the prevention and control of seawater microbial corrosion. This not 

only effectively enhances the durability and environmental performance of ships but also 

reduces operational costs. Results: By developing novel anti-corrosion materials, molecular 

and biomechanical technologies significantly improved the adaptability of ships in marine 

environments and reduced microbial corrosion on hulls. The introduction of biomimetic 

design principles not only improved the structural stability of ships but also enhanced their 

performance in harsh marine conditions. 
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1. Introduction 

Shipbuilding is one of the key pillars of the global economy, playing a critical 

role in international trade and maritime transportation. With the acceleration of 

globalization and the continuous increase in shipping demand, the shipbuilding 

industry is facing increasingly fierce market competition. However, ships must 

endure the challenges of complex marine environments during their use, especially 

the issues of salt and microbial corrosion in seawater [1]. This not only affects the 

structural safety and durability of ships but also directly relates to energy efficiency 

and environmental performance. Metal materials are currently the most widely used 

corrosion-resistant materials in shipbuilding, but due to prolonged exposure to 
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seawater, metal surfaces are prone to corrosion points [2–4]. As corrosion spreads, 

the service life and safety of ships are significantly reduced. Therefore, shipbuilding 

companies urgently need to address the challenge of seawater corrosion through 

innovative technological solutions to enhance product performance and strengthen 

their competitiveness in the global market. 

In recent years, molecular technology and biomechanics, as interdisciplinary 

frontier technologies, have gradually infiltrated the shipbuilding field. Material 

genetics refers to a theoretical system formed through the systematic analysis and 

study of factors such as the material’s microstructure, properties, and processing 

methods, which can guide the design and development of new materials. Biomimetic 

micro-nano structures refer to artificial structures designed to mimic the 

characteristics of biological structures in nature at the micro or nano scale, using 

advanced manufacturing technologies such as nanotechnology and microfabrication 

techniques to achieve similar functions or properties. Molecular technology, by 

finely controlling the molecular structure of materials, not only enhances the 

corrosion resistance and antimicrobial attachment properties of ship materials but 

also enables the development of more environmentally friendly and sustainable 

shipbuilding materials. Biomechanics, through mimicking the protective 

mechanisms of biological organisms in nature, has introduced new ship design 

concepts and technologies, such as the development and optimization of biomimetic 

materials [5]. Particularly in the control of microbial corrosion, biomimetic design in 

biomechanics provides ships with highly effective protective solutions, reducing the 

corrosion threat they face in marine environments. At the same time, machine 

learning, as an important artificial intelligence technology, has been widely applied 

in multiple industries. For the shipbuilding industry, machine learning can 

effectively identify surface defects of ship materials through big data analysis and 

image recognition, predict the development trend of corrosion points, and optimize 

decision-making based on actual conditions [6]. This technology not only improves 

the efficiency of ship design and production and reduces labor input but also 

provides crucial technical support for ship maintenance, extending the service life of 

ships and reducing maintenance costs [7]. 

Therefore, integrating molecular technology, biomechanics, and machine 

learning to promote innovation management in shipbuilding enterprises is a crucial 

approach to improving ship performance, ensuring navigation safety, and enhancing 

market competitiveness [8]. By applying cutting-edge technologies, shipbuilding 

companies can break the limitations of traditional production methods, improve 

product quality while reducing environmental impact, and adapt to the ever-changing 

market demands. This not only provides new technological pathways for 

shipbuilding companies but also offers theoretical support and practical guidance for 

the sustainable development of the industry [9]. 

2. Ship corrosion situation 

This chapter provides a systematic analysis of ship corrosion issues, covering 

three major aspects: the implicit components of seawater, corrosion symptoms of the 

internal structure of the hull, and microbial corrosion of other metallic materials in 
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the hull. Ships are exposed to the dual effects of seawater corrosion and microbial 

corrosion over long periods in the marine environment, and the corrosion process is 

continuous and complex. 

2.1. Corrosion from seawater’s implicit components 

The implicit components in seawater have a significant corrosive effect on ships 

and offshore structures. Seawater contains oxygen, salts, microorganisms, and other 

components, which, over long periods, can cause serious corrosion to materials. 

Oxygen reacts with the metal surface to form an oxide layer, while salts exacerbate 

this corrosion, particularly sodium chloride, which has a high concentration in 

seawater spray and is highly corrosive. Sodium chloride can widely penetrate the 

ship’s structure, especially in coastal areas, where the corrosion can extend up to 

hundreds of miles [10]. If the harmful effects of seawater’s implicit components are 

not identified in time and appropriate protective measures are not taken, the 

corrosion problem will worsen and may even lead to “hotbed corrosion”, 

accelerating the aging and damage of ships or offshore engineering structures [11]. 

2.2. Corrosion symptoms of internal ship structures 

The symptoms of seawater corrosion on ships mainly manifest as varying 

degrees of damage to the hull structure, equipment, and pipelines. First, corrosion on 

the ship’s surface is often seen as rust, especially in areas that come into contact with 

seawater, such as the hull bottom and the waterline. After prolonged immersion in 

seawater, these areas gradually develop pitting or peeling, which, if severe, can 

weaken the local structure and cause cracks [12]. Additionally, different types of 

corrosion, such as pitting and cracking corrosion, may occur on the metal surface. 

These corrosion forms affect the ship’s overall strength and stability. Furthermore, if 

the ship’s coating system fails, it accelerates the corrosion process by causing the 

separation of the primer layer from the metal, creating larger corrosion areas. The 

ship’s piping system, especially in the cooling system, often experiences leaks, 

blockages, or thinning of the pipe walls due to seawater corrosion [13]. Corrosion 

not only impacts the structural safety of ships but may also reduce system efficiency, 

potentially affecting the normal operation of the vessel. This paper reports on the 

corrosion symptoms in the ship’s fuel, lubrication oil, bilge water, and ballast water 

systems. 
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Table 1. Corrosion symptoms in fuel, lubrication oil, bilge water, and ballast water systems. 

Medium Fuel system Lubrication oil system Bilge water and ballast water system 

Visual 

1. When microorganisms reach a certain biomass, they cause fuel 

discoloration, cloudiness, and contamination. 

2. suspended in the oil phase. 

3. Purifiers and coalescers related to clean fuel and water may malfunction. 

4. Pitting corrosion of the storage tank. 

1. The oil becomes slippery, and a slime layer and rust layer appear 

on the crankcase door. 

2. A honey-colored film forms on the journal, which is later 

associated with pitting corrosion. 

3. Black bacterial strains appear on the surface of white alloy 

bearings, pins, and journals. 

4. Brown or gray deposits can be seen on metal parts. 

1. A black slime layer and sludge layer form or 

become black after peeling off. 

2. Pitting corrosion on the steel structure, pipelines, 

and the bottom. 

3. Rapid corrosion of the electroplated layer. 

Operation 

1. Bacterial polymers will block the filters and throttle orifice plates within a 

few hours. 

2. Contaminated filters, pumps, and injectors lead to failure. 

3. Uneven fuel flow and fluctuations during combustion will accelerate the 

wear rate of the piston rings. 

1. Additional wear. 

2. Foul or sulfurous odor. 

3. Increased oil acidity or sudden loss of alkalinity. 

4. The purifier fails to reduce the water content in the oil. 

5. Filter blockage under harsh weather conditions. 

6. Ongoing demulsification issues. 

7. Reduced heat exchange efficiency of the condenser. 

1. Unusual fouling and sulfurous odor. 

2. Structural damage. 

3. Loss of suction in the pipeline. 



Molecular & Cellular Biomechanics 2025, 22(4), 1537.  

5 

2.3. Microbial corrosion of other metal materials in the hull 

Microbial corrosion of other metal materials in the hull is a common corrosion 

phenomenon in marine environments, especially on metals such as stainless steel, 

aluminum, zinc, copper, and their alloys. Sulfate-reducing bacteria (SRB) are the 

primary microorganisms responsible for corrosion. They not only corrode steel 

materials but also cause varying degrees of damage to other metal alloys. Studies 

show that copper-nickel alloys (Cu-Ni alloys) are particularly sensitive to microbial 

corrosion, especially in seawater systems. The presence of SRB significantly 

accelerates the corrosion rate in these alloys [14]. Research conducted by the U.S. 

Naval Research Laboratory has found that when copper-nickel alloys corrode in 

seawater, the corrosion morphology and the composition of the corrosion products 

exhibit unique characteristics. Under the corrosion product film, ammonia-producing 

bacteria can even be isolated, further confirming the microbial corrosion effect on 

the alloy. Similarly, domestic studies have confirmed a significant increase in the 

corrosion rate of B10 alloys in SRB-containing media, with selective dissolution of 

iron and nickel elements in the alloy, forming sponge-like corrosion patterns [15]. 

Table 2. Examples of microbial corrosion at typical ship locations. 

Location 

Evidence 
Corrosion rate 

(mm/a) Corrosive 

microorganisms 

Microbial 

corrosion products 

High corrosion 

rate 

Related corrosion 

morphology 

Bilge plating  √ √  4 

Fuel tank and associated equipment √ √ √   

Fuel tank √     

Bilge and engine room √     

Bilge plating, sludge tank, drinking 

water tank 
√  √ √ > 10 

Bilge √ √ √ √  

Engine cooling system  √ √   

Seawater cooling piping √ √ √ √ 2 

Hull steel, ballast tank √ √ √ √ 8 

Ballast tank √ √ √  6 

Cargo oil tank √ √ √  2 

Hull steel and bilge √ √ √  22 

Additionally, microbial corrosion of stainless steel often occurs at weld seams 

and heat-affected zones. Studies show that the microstructure and surface structure 

of stainless steel play a significant role in resistance to microbial corrosion, 

especially the properties of the passivation layer. Microorganisms such as algae, 

SRB, iron-oxidizing bacteria, and manganese-oxidizing bacteria on the surface of 

stainless steel can lead to the formation of local oxygen concentration cells, further 

exacerbating the corrosion process. Under the combined action of these 

microorganisms, pitting and crevice corrosion phenomena are particularly 

prominent. The formation of local precipitates and nodules can create small gaps, 

resulting in more severe corrosion areas. Examples of microbial corrosion at typical 
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ship locations are shown in Table 2. 

3. Research methods 

Chapter 2 focuses on the performance requirements of ship materials and the 

importance of defect detection, particularly the application of corrosion-resistant 

materials in ships and their impact on ship safety. In this context, Chapter 3 shifts to 

specific detection methods and technologies, especially the design and application of 

ultrasonic infrared imaging detection devices. It introduces how to combine 

ultrasonic and infrared technologies to improve the accuracy and efficiency of defect 

detection. Additionally, Chapter 3 delves into how data-driven algorithms, 

particularly machine learning and the ELM model, can be used to predict and 

optimize the performance and corrosion rate of ship materials. 

3.1. Infrared imaging acquisition method for ship materials 

3.1.1. Introduction to the ultrasound infrared imaging detection device 

In shipbuilding, detecting surface defects of corrosion-resistant materials is 

crucial for ensuring the safety and reliability of vessels. To effectively capture 

infrared images of corrosion-resistant ship materials, this study designs a collection 

method based on an ultrasonic infrared imaging detection device. This method 

combines ultrasonic technology with infrared thermography, improving defect 

identification accuracy and efficiency. The core of the ultrasonic infrared imaging 

detection device consists of three parts: an ultrasonic probe, an infrared thermal 

imager, and a pre-tensioning unit. The ultrasonic probe is used to emit high-

frequency DC pulse signals, which are converted into high-frequency vibration 

pulses that act on the surface of the ship materials [16]. The vibration pulses cause 

small thermal response changes on the material surface, which will appear in the 

infrared images. The infrared thermal imager is responsible for scanning the 

material’s surface, capturing real-time temperature distribution images, and detecting 

temperature differences caused by the ultrasonic excitation, allowing for subsequent 

analysis and defect identification. A schematic diagram of the ultrasonic infrared 

imaging detection device is presented in Figure 1. 

 

Figure 1. Schematic diagram of the ultrasonic infrared imaging detection device. 



Molecular & Cellular Biomechanics 2025, 22(4), 1537.  

7 

3.1.2. Calibration process of the ultrasound infrared imaging detection device 

In order to ensure measurement accuracy, the ultrasound infrared imaging 

detection device must undergo strict calibration. 

First, the infrared thermal imager and ultrasound gun need to be initialized. The 

temperature response range of the infrared thermal imager typically spans from −20 

°C to +100 °C, with an accuracy requirement of 0.05 °C. By comparing it with a 

standard blackbody radiation source, the infrared thermal imager’s temperature 

measurement accuracy is ensured. The transmission frequency and power of the 

ultrasound gun must be adjusted based on the thickness and properties of the 

material. Common frequencies range from 20 kHz to 50 kHz, and the power is set 

between 10 and 100 W to ensure effective signal propagation. 

During the temperature response calibration, a standard sample with known 

defects is used for testing to ensure the infrared thermal imager can detect 

temperature differences of at least 0.2 °C. To avoid environmental temperature 

interference, the laboratory temperature should be controlled between 20 °C ± 2 °C. 

The ultrasound signal propagation calibration is carried out by adjusting the emission 

angle and contact pressure of the ultrasound gun, ensuring uniform signal 

transmission and inducing an effective thermal response. The contact pressure is 

generally controlled between 0.5 and 2 N/cm2. 

Once calibration is complete, the accuracy of the device is verified using 

standard defect samples. By comparing the location, size, and temperature difference 

of the defects, it ensures that the ultrasound infrared imaging detection device’s 

measurements align with the actual defects. Finally, the reliability and accuracy of 

the device are verified by comparing the results with other detection methods, such 

as ultrasound or X-ray. 

3.1.3. Data processing of the ultrasound infrared imaging detection device 

First, the collected infrared images are pre-processed using median filtering or 

Gaussian filtering to remove noise and eliminate environmental interference. 

Background correction is then performed to remove the influence of background 

temperature fluctuations, highlighting the temperature differences caused by defects. 

Next, a threshold segmentation method is used to identify regions that may 

contain defects, and Canny edge detection or Sobel operators are employed to extract 

the shape features of the defects. For irregularly shaped defects, morphological 

operations are used for correction to ensure clear edges in the image. 

During the temperature difference analysis phase, the temperature difference 

between the defect area and the normal area is calculated to assess the strength of the 

thermal response of the defect. The depth and severity of the defect are further 

analyzed through temperature gradient analysis. 

Subsequently, combining ultrasound excitation signals, correlation analysis, or 

Principal Component Analysis (PCA) is used to pair the ultrasound signals with the 

infrared thermal responses, predicting the depth and location of the defect. 

Finally, cross-validation with traditional detection methods (such as ultrasound 

or X-ray CT) is performed, and statistical tests are used to evaluate the accuracy of 

the results, ensuring the precision and reliability of the detection. Common 

evaluation metrics include accuracy, sensitivity, specificity, and false positive rate. 
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3.2. Bilateral filter and adaptive edge compensation infrared image 

enhancement method 

In order to improve the resolution and contrast of infrared images of corrosion-

resistant ship materials, an image enhancement method combining bilateral filtering 

and adaptive edge compensation is adopted. First, the bilateral filter is used to 

denoise the infrared image, eliminating the interference noise generated during the 

collection process. Specifically, the filtering expression uses a weighted average of 

the spatial proximity factor and the grayscale similarity factor to denoise, effectively 

removing the noise in the image. The denoised image can be represented as 

𝑄out(𝑥, 𝑦). 

𝑄out(𝑥, 𝑦) =
∑ 𝑤𝑠(𝑖,𝑗)𝑤𝑟(𝑖,𝑗)𝑄(𝑥,𝑦)(𝑖,𝑗)∈𝑀𝑥,𝑦

∑ 𝑤𝑠(𝑖,𝑗)𝑤𝑟(𝑖,𝑗)(𝑖,𝑗)∈𝑀𝑥,𝑦

, 

where 𝑄out(𝑥, 𝑦)  represents the filtered and denoised infrared image of the 

corrosion-resistant ship material, with x and y indicating the pixel coordinates; i and 

j. 

Next, to enhance the image edges, an adaptive edge compensation method is 

applied. By calculating the deviation ΔQ(x, y) between the filtered image and the 

original image, the edge differences of the image are obtained, and the edge 

compensation factor is determined based on the sum of spatial grayscale similarity 

factors. The edge compensation factor C(x, y) is dynamically adjusted according to 

the edge characteristics of the image, allowing for adaptive enhancement. 

𝐶(𝑥, 𝑦) =
ℎ𝑖 × ℎ𝑗 − 𝑤sum(𝑥, 𝑦)

𝜀 × ℎ𝑖 × ℎ𝑗
. 

Finally, the filtered image is corrected using the edge compensation factor to 

obtain the infrared image 𝑄cm(𝑥, 𝑦) with adaptive compensation. This process not 

only removes the noise but also enhances the defect details in the image, making the 

defects in the corrosion-resistant ship materials clearer and providing higher-quality 

image data for subsequent defect recognition. 

𝑄cm(𝑥, 𝑦) = 𝑄out(𝑥, 𝑦) + 𝑅(𝑥, 𝑦). 

In the formula, 𝑄cm(𝑥, 𝑦) is the corrected infrared image of the corrosion-

resistant ship material is represented. 

This paper also provides performance evaluation, including signal-to-noise ratio 

(SNR), edge detection accuracy, and structural similarity index (SSIM). 

The signal-to-noise ratio is used to measure the ratio of noise to the true signal 

in the image, and the formula is as follows: 

SNR = 10 log10(
∑ 𝑄𝑥,𝑦 orig

(𝑥, 𝑦)2

∑ (𝑄𝑥,𝑦 orig
(𝑥, 𝑦) − 𝑄denoised(𝑥, 𝑦))2

). 

Edge detection accuracy can be quantified by comparing the edge overlap 

between the enhanced image and the original image, and the formula is as follows: 

Edge precision =
True positive edges

The positive edges+False positive edges
. 
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The SSIM index measures the similarity in brightness, contrast, and structure 

between two images. A value closer to 1 indicates higher similarity between the two 

images. The formula is: 

SSIM(𝑄orig, 𝑄enhanced) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
. 

3.3. Data-driven shipbuilding modeling algorithm 

Data-driven shipbuilding modeling algorithms have increasingly become a key 

technology in the modern shipbuilding industry, particularly in improving the 

performance of ship materials, optimizing production processes, and enhancing 

manufacturing precision. The development and production environment of ship 

materials is complex, involving various requirements such as corrosion resistance, 

anti-pollution, weight reduction, and high strength. Traditional material research 

methods often rely on a ‘trial-and-error’ process, which is time-consuming, costly, 

and difficult to control accurately. Data-driven modeling algorithms, through the 

collection, processing, and analysis of massive amounts of material and production 

data, can effectively predict material performance in the early stages of ship design, 

optimize the process flow, and greatly improve production efficiency [17]. 

First, data-driven modeling algorithms rely on the construction of a 

comprehensive material database that includes the composition, processing 

techniques, and corresponding physical, chemical, and mechanical properties of the 

materials. The database not only contains data on existing materials but also includes 

real-time data obtained from experiments and production processes. Through data 

cleaning, standardization, and other preprocessing steps, the accuracy and usability 

of the data are ensured. Based on this high-quality data, researchers can build a set of 

descriptors that quantify the various characteristics of the materials and provide a 

foundation for subsequent predictive models. 

In the process of establishing predictive models, selecting appropriate machine 

learning algorithms is crucial. Common algorithms, such as regression analysis, 

support vector machines (SVM), and random forests, can precisely predict both 

macroscopic and microscopic material properties. In some more complex material 

designs, intelligent optimization algorithms such as genetic algorithms and particle 

swarm optimization are used to further improve the accuracy and reliability of the 

models. Through these data-driven algorithms, the performance of ship materials can 

be predicted during the design phase, reducing the trial-and-error process common in 

traditional methods. The data-driven modeling algorithm is shown in Figure 2. 
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Figure 2. The data-driven modeling algorithm. 

3.4. ELM prediction model for corrosion rate 

ELM (Extreme Learning Machine) is a learning algorithm used for Single-

Layer Feedforward Neural Networks (SLFN). The steps of the ELM algorithm are as 

follows: 

First, initialization. The weights W and biases b of the hidden layer nodes are 

randomly generated. These values are typically randomly initialized and are not 

updated during training. The number of hidden layer nodes, N, is also set. 

Second, input and hidden layer mapping. Given an input sample set X = [x1, x2, 

..., xm], where each input xi is an n-dimensional vector (i.e., xi ∈ Rn). The activation 

function g (usually choosing Sigmoid, ReLU, or other activation functions) is 

applied to map the input to the hidden layer, resulting in the hidden layer output 

matrix H = [h1, h2, ..., hm], where each column ℎ𝑖  is the hidden layer output 

corresponding to input xi, expressed as: 

ℎ𝑖 = 𝑔(𝑊 ∗ 𝑥𝑖 + 𝑏). 

where W is the weight matrix of the hidden layer, b is the bias, and hi is the hidden 

layer output after applying the activation function. 

Third, compute the output weights. Suppose the target of the output layer is T = 

[t1, t2, ..., tm], where each ti is the desired output. 

To solve for the output layer weights β, we typically use the least squares 

method to solve the following linear equation: 

𝐻 × 𝛽 = 𝑇. 

where β is the weight vector of the output layer, which can be obtained by solving 

this equation, often using the pseudo-inverse of the matrix. 

𝛽 = (𝐻𝛵𝐻)−1𝐻𝛵𝐻. 
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Fourth, prediction. For a new input sample xnew, the hidden layer output is first 

calculated: 

ℎnew = 𝑔(𝑊 × 𝑥new + 𝑏). 

Then, the network’s output is computed: 

�̂�new = ℎnew × 𝛽. 

3.5. Corrosion rate prediction framework 

The corrosion rate prediction framework is based on a generalized gray 

relational analysis and an optimized model using an Extreme Learning Machine 

(ELM) network, aimed at predicting the corrosion rate of subsea pipelines. This 

framework demonstrates the overall process of data preprocessing, model 

construction, optimization algorithms, and prediction outputs, enabling precise 

prediction of the corrosion rate in subsea pipelines and providing strong support for 

early warning and maintenance decision-making for pipeline corrosion, as shown in 

Figure 3. 

 

Figure 3. Corrosion rate prediction framework diagram. 

4. Research results 

Chapter 3 primarily explores the corrosion mechanisms of ship materials and 

their influencing factors, with a focus on analyzing the corrosion process of materials 

in the marine environment and traditional corrosion protection techniques. Chapter 4 

shifts the focus to specific research outcomes and technological applications. It first 

presents the application pathway of material genomics in ship material development 

and further discusses how to improve corrosion prediction and defect detection 

accuracy under conditions of data scarcity and image noise by introducing the 

Extreme Learning Machine (ELM) model and infrared image processing technology, 
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thus achieving more precise and efficient ship maintenance and management. 

4.1. Application route of material gene in ship and equipment 

The application route of material genes in ships and equipment mainly includes 

the following steps: First, analyze the material requirements of the ship and clarify 

performance indicators such as corrosion resistance, anti-fouling, weight reduction, 

etc. Based on the material needs, optimize the material formula and processing 

technology using material databases and high-throughput computational methods, 

establishing a quantitative relationship between material performance and 

formulation. Next, use virtual testing technology for preliminary performance 

verification, simulating actual service conditions on a virtual platform to reduce 

testing costs. Finally, perform physical testing to ensure that the material’s 

performance meets the requirements in practical applications [18]. By combining 

data, computation, and experimentation, the research accelerates the development of 

ship materials, improving material performance and reducing costs. 

4.2. Anti-fouling performance of biomimetic micro-nano structured 

super-duplex hydrophobic coating 

4.2.1. Biomimetic micro-nano structured super-duplex hydrophobic coating 

The biomimetic micro-nano structured super-duplex hydrophobic coating is a 

type of anti-fouling coating based on a composite material of polydimethylsiloxane 

(PDMS) and epoxy resin (EP). By mimicking the microstructures on the surfaces of 

plants and animals in nature, nanoparticles and various mass fractions of additives 

are used to create a coating with super-duplex hydrophobic properties. The low 

surface energy of PDMS endows the coating with excellent water-repellent 

properties, while epoxy resin improves the adhesion strength of the coating to the 

substrate, solving the problem of poor mechanical properties and insufficient 

adhesion of low-surface-energy coatings. The coating’s mechanical performance is 

enhanced by incorporating nano-fillers, which increase surface roughness and 

improve its anti-fouling effect. Research shows that the micro-nano structure of the 

coating exhibits significant self-cleaning properties and effectively resists biofouling. 

Experimental tests, including static and dynamic immersion tests, have proven the 

superior anti-fouling performance of the coating, demonstrating its potential as an 

environmentally friendly anti-fouling coating. 

4.2.2. FTIR analysis of biomimetic micro-nano structured super-duplex 

hydrophobic coating 

The design of the biomimetic micro-nano structured super-duplex hydrophobic 

coating primarily achieves efficient anti-fouling effects through the surface 

modification of nanoparticles. The coating uses nano-SiO2 and nano-ZnO as the base 

materials, and they are hydrophobically modified by PFDTMS and APTES to 

enhance the coating’s anti-fouling performance. Through infrared spectroscopy 

analysis, it was found that before modification, the surfaces of nano-ZnO and nano-

SiO2 contained many hydroxyl (O–H) groups, which may cause water molecule 

adsorption in the anti-fouling coating, thereby reducing hydrophobicity. After 

modification, PFDTMS and APTES effectively reduce the number of hydroxyl 
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groups on the surfaces, forming C=C bonds and Si–C bonds on ZnO and SiO2, 

respectively. These changes were confirmed by characteristic absorption peaks in the 

infrared spectrum. For example, the O–H absorption peak at 3447 cm−1 on the ZnO 

surface after modification was significantly reduced, proving the reduction of surface 

hydroxyl groups and further improving its hydrophobicity. Similarly, the O-H and 

H–O–H bending vibration peaks at 3426 cm−1 and 1631 cm−1 on the modified SiO2 

were also reduced, indicating a decrease in surface hydroxyl groups and confirming 

the success of the modification. The infrared comparison spectra before and after 

nanoparticle modification are shown in Figure 4. 

 

Figure 4. Infrared comparison spectra before and after nanoparticle modification. 

Through the surface modification method of the biomimetic micro-nano 

structure superhydrophobic coating, the ship not only improved the hydrophobic 

properties of nano ZnO and nano SiO2 but also optimized their application 

effectiveness in anti-fouling coatings. 
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Figure 5. (a) Raw material; (b) biomimetic micro-nano structured superhydrophobic 

coating material. 

In the anti-microalgae adhesion experiment, a 10-day anti-adhesion test on 

Chlorella liquid showed that the modified biomimetic micro-nano structured 

superhydrophobic coating exhibited good anti-microalgae adhesion performance 

compared to the unmodified samples. Statistical analysis using ImageJ software 

revealed that the adhesion rate of algae cells on the surface of the raw material was 

22%, while the adhesion rate on the surface of the biomimetic micro-nano-structured 

superhydrophobic coating was 4%. The CLSM images of samples immersed in algae 

liquid for 1 day and 10 days are shown in Figure 5. 

4.3. Corrosion depth prediction case analysis 

4.3.1. Data selection 

In general, traditional regression prediction methods usually require a large 

amount of data for training to ensure the accuracy of the model. However, in 

practical engineering applications, due to the particularity of the marine 

environment—such as high detection costs, harsh environmental conditions, and the 

difficulty of obtaining complete and valid detection data on platforms—it is often 

challenging to obtain a sufficiently large dataset. In contrast, Extreme Learning 

Machine (ELM) has significant advantages, particularly when handling small sample 

regression prediction problems. ELM can effectively learn and predict with less 

training data, making it especially suitable for applications like marine 

environmental monitoring, where data is difficult to obtain. Therefore, the ELM-

based corrosion rate prediction model can still provide reliable prediction results 
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even when faced with challenges such as data scarcity and complex environments. 

4.3.2. Prediction results analysis 

To evaluate the prediction performance of the model, this paper compares the 

prediction results of the BP model and the ELM model. The specific method is to 

input the test set into the trained model and compare the prediction accuracy of the 

two models on the same dataset. After experimental verification, the prediction 

results are obtained, as shown in Table 3. 

Table 3. Model prediction performance. 

No. 
Actual corrosion 

rate 

BP model ELM model 

Predicted value Relative error of predicted value/% Predicted value Relative error of predicted value/% 

1 3.2724 3.82689 17.1094 3.64206 11.41805 

2 2.1311 1.92102 9.95557 2.42602 13.96527 

3 6.7064 6.2014 7.61035 6.94577 3.60873 

4 2.4341 2.05636 15.66611 2.64418 8.72741 

5 8.6254 7.74064 10.36361 9.04253 4.88436 

4.4. Corrosion effect of hull based on infrared image acquisition 

4.4.1. Infrared image denoising effect 

The analysis of the infrared image denoising effect shows that after applying the 

method in this paper to denoise the infrared images of surface defects on corrosion-

resistant ship materials, the noise points in the images were effectively removed. The 

results indicate that the interference caused by noise in the original image is no 

longer prominent, and the quality of the image has significantly improved. The 

denoised infrared image is clearer, with the defect edges more distinct, providing 

more accurate data support for subsequent defect identification and analysis. This 

indicates that the method in this paper can effectively improve the accuracy and 

reliability of surface defect detection for corrosion-resistant ship materials in 

practical applications. The infrared image denoising effect is shown in Figure 6. 

 

Figure 6. Infrared image denoising effect. 

4.4.2. Infrared image edge enhancement effect 

After enhancing the infrared images of surface defects on corrosion-resistant 
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ship materials, the clarity of the image edges significantly improved, as shown in 

Figure 7. 

 

Figure 7. Infrared image edge enhancement effect. 

Specifically, the edge of the propeller in the original image is somewhat blurry, 

but in the enhanced image, the edge of the propeller becomes clearer, with more 

prominent details. Meanwhile, the previously inconspicuous welding point at the top 

right becomes more noticeable after enhancement, further improving the image’s 

readability and defect recognition accuracy. This shows that the method in this paper 

can effectively enhance the edge performance of surface defects in infrared images, 

which is helpful for subsequent detection and analysis. 

4.4.3. Different defect recognition results 

In this paper, the proposed method was tested for its ability to recognize surface 

defects of corrosion-resistant ship materials of various sizes. Two infrared images 

with different defect sizes were selected for testing, one containing a larger defect 

and the other containing a smaller defect. The experimental results showed that the 

method in this paper can effectively recognize defects of different types and sizes. 

Specifically, for the infrared image of a corrosion-resistant ship material with 

small defects, the method accurately identified two small defects, as shown in 

Figure 8. 

 

Figure 8. Different defect recognition results. 
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5. Discussion 

This paper discusses innovation management in the shipbuilding industry and 

proposes strategies for driving product development and market expansion, 

incorporating modern technologies such as machine learning, molecular technology, 

and biomechanics. It introduces cutting-edge technologies in the traditional 

shipbuilding industry, offering new insights for innovation management, especially 

with the introduction of machine learning, which provides more efficient production 

and decision-making support. By combining molecular technology and 

biomechanics, this paper offers more precise performance prediction and 

optimization methods for ship design, driving product performance improvements 

and a more accurate grasp of market demand. 

In the shipbuilding industry, the integration of machine learning, molecular 

science, and biomechanics offers significant potential for improving design, 

manufacturing, and maintenance levels. Firstly, material optimization is an important 

application direction of this technological integration. By using machine learning 

algorithms to model the performance of different materials, combined with 

molecular science’s analysis of material molecular structures, the performance of 

new ship materials, such as corrosion resistance, strength, and elasticity, can be 

predicted. Based on this, the molecular arrangement can be simulated and optimized, 

selecting the most suitable material combination, thereby enhancing the overall 

durability and safety of the ship. Secondly, applications in intelligent manufacturing 

and maintenance are gradually becoming a key focus of industry innovation. By 

applying machine learning to intelligent ship manufacturing, the quality of materials 

during production can be monitored in real-time, optimizing the production process. 

At the same time, by integrating biomechanics and molecular science, an intelligent 

ship maintenance system can be developed, which collects operational data from the 

ship in real-time, analyzes these data using machine learning, predicts potential 

equipment failures, and plans maintenance work in advance. Lastly, the optimization 

of ship adaptability to the environment can also be achieved through this 

technological integration. In the harsh marine environment, ships face multiple 

challenges, such as complex seawater conditions, climate changes, and biofouling. 

By combining fluid mechanics from biomechanics with machine learning 

algorithms, the ship’s design can be optimized to better adapt to different 

environmental conditions, improving speed and fuel efficiency. Additionally, the 

application of molecular science can improve ship coating materials, reduce 

biofouling, and decrease hull wear and fuel consumption. 

However, this paper also has certain shortcomings. The application of machine 

learning, molecular science, and biomechanics in the shipbuilding industry faces 

several technical obstacles. Firstly, data collection and quality issues are a major 

challenge. The application of machine learning and other technologies heavily relies 

on large amounts of high-quality data, but data in the shipbuilding industry is often 

fragmented and difficult to obtain, especially real-time data on ship operational 

status, material properties, and environmental factors. The data differences under 

various ships and navigation conditions lead to insufficient generalization of the 

algorithms, and data quality issues such as noise and missing values can also impact 
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the accuracy and reliability of the models. Secondly, the complexity of integrating 

multidisciplinary technologies is another challenge. Machine learning, molecular 

science, and biomechanics belong to different technical fields, and their differences 

in theory and methods increase the difficulty of integrating these technologies. 

Especially in interdisciplinary integration, how to effectively combine the results 

from different fields and design a unified framework for cross-disciplinary research 

and application remains a huge challenge. How molecular-level simulations and 

biomechanical modeling can be integrated with the macroscopic structural analysis 

and design of ships requires collaboration among cross-disciplinary experts and 

long-term technological accumulation. Finally, the gap between simulation and 

reality is also a significant barrier in technical implementation. Although machine 

learning and molecular simulations can provide theoretical support in laboratory or 

simulated environments, the application of these technologies in actual ship 

operations may face many complex situations. 

6. Conclusion 

The shipbuilding industry is facing increasingly intense market competition and 

technological development pressure, and the traditional innovation management 

model is no longer sufficient to meet the demands of the new era. Therefore, 

applying modern technologies, especially cutting-edge technologies like machine 

learning, molecular technology, and biomechanics, to product development and 

market expansion has become a key approach to enhancing the competitiveness of 

shipbuilding enterprises. 

The research shows that machine learning can optimize production processes 

and decision support systems through data analysis, improving the efficiency and 

accuracy of ship design and manufacturing. Molecular technology and biomechanics 

have shown great potential in enhancing ship design performance, reducing weight, 

and increasing durability, driving product innovation and upgrades. At the same 

time, the effective implementation of innovation management requires consideration 

of the actual conditions of enterprises, focusing on the integration of technologies 

and a precise understanding of market demands. Therefore, future research could 

further explore how to optimize innovation management strategies in different types 

of shipbuilding enterprises, promoting the deep integration of technology and 

business. 
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