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Abstract: This study introduces an innovative approach to optimizing the scheduling of 

intelligent logistics and warehousing robots by integrating deep reinforcement learning (DRL) 

with biomechanical modeling. Leveraging a comprehensive dataset from a large-scale logistics 

company, the research formulates the scheduling problem as a Markov Decision Process 

(MDP) and incorporates biomechanical principles to accurately model robot energy 

consumption. A Deep Q-network (DQN) is employed to learn the optimal scheduling policy, 

which is further refined using policy gradient optimization. This integrated framework aims to 

maximize task completion efficiency while minimizing energy usage, addressing the 

complexity of balancing these competing objectives. Extensive simulations validate the 

proposed approach, demonstrating significant improvements in task completion rates, average 

travel distances, and energy consumption compared to baseline algorithms such as random 

scheduling and greedy algorithms. The methodology presents a robust and efficient solution 

for enhancing operational efficiency in intelligent logistics and warehousing systems. 
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1. Introduction 

The rapid advancement of technology in the logistics and warehousing sector has 

facilitated the widespread adoption of intelligent robots, aimed at streamlining 

operations, enhancing efficiency, and reducing costs. However, the effective 

scheduling of these robots remains a complex and challenging problem, necessitating 

the development of sophisticated optimization techniques. This study addresses this 

issue by integrating deep reinforcement learning (DRL) and biomechanical modeling 

to optimize the scheduling of intelligent logistics and warehousing robots. 

Logistics and warehousing operations are critical components of the supply 

chain, significantly impacting business efficiency and profitability. The integration of 

robots into these operations has led to notable improvements, such as faster task 

completion and reduced human labor. Nevertheless, the scheduling of these robots—

ensuring optimal task assignment to maximize efficiency and minimize energy 

consumption—presents a formidable challenge. Traditional scheduling methods, like 

random and greedy algorithms, often fail to dynamically adapt to changing operational 

environments and do not consider the physical constraints of the robots. 

The scheduling problem’s complexity is heightened by the need to balance 

multiple objectives, including maximizing task completion rates, minimizing travel 

distances, and reducing energy consumption. These objectives are interdependent and 

often conflicting, complicating the achievement of a globally optimal solution through 
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conventional approaches. 

The importance of optimizing the scheduling of intelligent logistics and 

warehousing robots cannot be overstated. Efficient scheduling directly enhances 

operational performance, reduces costs, and boosts overall productivity. Additionally, 

minimizing energy consumption not only lowers operational expenses but also aligns 

with global sustainability goals. The necessity of this research is underscored by the 

limitations of existing scheduling methods, which lack adaptability to dynamic 

scenarios and fail to incorporate robots’ physical constraints, leading to suboptimal 

performance. The integration of DRL and biomechanical modeling offers a novel 

approach to address these limitations, leveraging the strengths of both techniques to 

develop a more robust and efficient scheduling policy. 

The primary objective of this study is to develop an optimized scheduling policy 

for intelligent logistics and warehousing robots by integrating DRL and biomechanical 

modeling. Specifically, the study aims to: (1) Formulate the scheduling problem as a 

Markov Decision Process (MDP) to capture the dynamic operational environment; 2) 

incorporate biomechanical principles to model the physical constraints and energy 

consumption of the robots; 3) employ a deep Q-network (DQN) to learn the optimal 

task assignment policy; 4) refine the policy using a policy gradient approach to 

enhance performance; 5) validate the proposed methodology through extensive 

simulations and compare its performance against baseline algorithms. 

Guiding research questions include: How can the scheduling problem of 

intelligent logistics and warehousing robots be effectively formulated as an MDP? 

What are the key biomechanical factors influencing robot energy consumption, and 

how can they be integrated into the DRL framework? How does the integration of 

DRL and biomechanical modeling affect the scheduling policy’s performance in terms 

of task completion rates, travel distances, and energy consumption? What are the 

comparative advantages of the proposed methodology over traditional scheduling 

algorithms? 

To achieve these objectives, the study employs a comprehensive methodology 

integrating data-driven insights with advanced computational techniques. Data are 

sourced from a large-scale logistics and warehousing company, providing a detailed 

sample of robot operations over a six-month period. The methodology involves 

problem formulation, biomechanical modeling, DRL framework setup, policy 

gradient optimization, and simulation and validation. The proposed approach is 

validated through extensive simulations, comparing its performance against baseline 

algorithms like random and greedy scheduling, using key performance metrics such 

as task completion rates, average travel distances, and energy consumption. 

This study is expected to make significant contributions to the field of intelligent 

logistics and warehousing by developing a novel and efficient scheduling policy that 

addresses existing method limitations. The findings aim to enhance operational 

efficiency, reduce energy consumption, and provide valuable insights for the design 

and implementation of future intelligent logistics systems. 

2. Related works 

The integration of deep reinforcement learning (DRL) and biomechanical 
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modeling for optimizing the scheduling of intelligent logistics and warehousing robots 

is a multidisciplinary field that has garnered significant attention in recent years. 

Existing research has made substantial progress in both DRL and biomechanical 

modeling individually, but their combined application for scheduling problems 

remains an area with potential for further exploration. 

In the realm of DRL, several notable works have contributed to the development 

of algorithms that can handle complex decision-making tasks. Haarnoja et al. [1] 

introduced the Soft Actor-Critic algorithm, an off-policy actor-critic DRL method that 

achieves state-of-the-art performance on continuous control benchmark tasks by 

maximizing entropy, which encourages exploration. This method addresses the 

challenges of high sample complexity and brittle convergence properties that are 

common in model-free deep RL algorithms. Similarly, Mnih et al. [2–4] proposed 

asynchronous methods for deep reinforcement learning, which stabilize training and 

enable the successful training of neural network controllers on a single multi-core 

CPU. Their approach demonstrated superior performance on the Atari domain and 

continuous motor control problems. 

Biomechanical modeling, on the other hand, has been applied in various medical 

and biological contexts. Shao et al. [5] and Shao et al. [6] showcased the application 

of biomechanical modeling in real-time liver tumor localization using deep learning-

assisted methods. These studies demonstrate the accuracy and potential of 

biomechanical modeling in medical physics, particularly for tracking and localizing 

tumors with high precision. Furthermore, Van Hasselt et al. [7] and Wang et al. [8] 

presented advancements in deep reinforcement learning algorithms, such as Double 

Q-learning and dueling network architectures, which improve value function 

estimation and policy evaluation, respectively. 

Despite these advancements, there is a noticeable gap in the literature regarding 

the integration of DRL [9] and biomechanical modeling for logistics and warehousing 

robot scheduling. Existing DRL approaches often focus on simulation environments 

or simplified real-world scenarios, neglecting the physical constraints and energy 

consumption patterns of robots [10]. Similarly, while biomechanical models have been 

successfully applied in medical fields, their application in logistics and warehousing 

operations is limited [11]. 

This gap presents an opportunity for the current research, which aims to bridge 

these two areas by developing a scheduling framework that considers both the 

decision-making capabilities of DRL and the physical realities imposed by 

biomechanical modeling [12]. By integrating a deep reinforcement learning 

framework with a biomechanical model that accurately estimates energy consumption 

based on robot movements and load, the proposed study seeks to optimize task 

scheduling for intelligent logistics and warehousing robots [13]. This approach not 

only addresses the limitations of existing DRL methods in real-world applications but 

also leverages the precision of biomechanical modeling to enhance the efficiency and 

sustainability of robot operations [14]. 

The current research will contribute to the field by providing a comprehensive 

analysis of the scheduling problem, taking into account the complexities of both DRL 

and biomechanical modeling [15]. Through the development and validation of an 

integrated framework, this study will offer a novel perspective on optimizing robot 



Molecular & Cellular Biomechanics 2025, 22(5), 1507.  

4 

scheduling, potentially leading to more efficient and cost-effective logistics and 

warehousing operations [16,17]. 

The combination of DRL and biomechanical modeling brings unique advantages 

to many fields, such as medicine, robotics, sports science and so on. This cross-

integration not only improves the authenticity and practicability of the model, but also 

provides a new way to solve complex problems. 

1) Improve model performance 

More accurate motion simulation: Biomechanical modeling can accurately 

describe the physical structure and motion principles of organisms, while deep 

reinforcement learning can optimize motion strategies by learning a large amount of 

data. The combination of the two can make the simulated biological movement closer 

to the real situation. When simulating human walking, running and other complex 

movements, it can more accurately capture the changes of muscle strength, joint angle 

and other factors, and provide a more reliable reference for sports training, 

rehabilitation treatment and other fields. 

Enhanced environmental adaptability: Deep reinforcement learning has a 

powerful learning ability, allowing models to learn and adapt under different 

environmental conditions. Combined with biomechanical modeling, the model can not 

only take into account the mechanical characteristics of the organism itself but also 

adjust the movement strategy in real time according to the changes of the environment. 

For example, in the task of robot navigation, the model combined with biomechanics 

can adjust the way of walking or moving according to factors such as the fluctuation 

of terrain and the change of friction so as to improve the adaptability and stability of 

robots in complex environments. 

2) Excavate the biomechanical mechanism 

Revealing the principle of motion control: Deep reinforcement learning can 

discover hidden patterns and laws from a large amount of biological motion data. 

Combined with biomechanical modeling, it helps to reveal how organisms control 

muscles and bones through the nervous system to achieve various movements. By 

analyzing the movement strategies learned by the model, we can deeply understand 

the control mechanism of organisms in different movement tasks, and provide new 

perspectives and methods for the study of neuroscience and exercise physiology. 

Exploring biological evolution strategies: The application of deep reinforcement 

learning to biomechanical modeling can simulate the motor adaptation process of 

organisms during long-term evolution. By setting different environmental pressures 

and survival goals, the model can learn the movement strategies similar to biological 

evolution, and help us understand how organisms adapt to environmental changes by 

constantly adjusting their mechanical structure and movement mode, thus promoting 

the development of biological evolution theory. 

3) Optimize engineering design 

Design of power-assisted robot: In the design of the robot, it is an important way 

to improve the performance of the robot by using the mechanical structure and motion 

mode of biology for reference. The combination of deep reinforcement learning and 

biomechanical modeling can help engineers better understand the advantages of 

biological motion and apply these advantages to the structural design and control 

algorithms of robots. The movement of the robot is more efficient, flexible and stable, 



Molecular & Cellular Biomechanics 2025, 22(5), 1507.  

5 

and the performance of the robot in various tasks is improved. 

Improve the design of rehabilitation equipment: For the design of rehabilitation 

equipment, combined with deep reinforcement learning and biomechanical modeling, 

personalized rehabilitation training programs can be customized according to the 

specific conditions of patients, such as muscle strength, joint range of motion, etc. At 

the same time, it can also optimize the mechanical properties of rehabilitation 

equipment, so that it can better assist patients in rehabilitation training and improve 

the rehabilitation effect. 

Amazon’s e-commerce warehouse uses traditional DRL algorithms (such as 

DQN) to optimize the path planning of AGV (automatic guided vehicle), but when 

orders surge during peak periods, the frequent start and stop of the robot leads to 

overheating of the motor and a sharp drop in battery life. DRL improves sorting 

efficiency by 20% after implementing the new technology, but increases hardware 

attrition by 30%. The main problem is that the traditional DRL does not consider the 

kinematic constraints of the robot (such as acceleration inertia, joint torque 

constraints), which leads to the mismatch between action instructions and physical 

execution. 

The main solution is to introduce the energy consumption model in biped robot 

gait optimization, combine the joint torque, motor power and DRL reward function, 

and constrain the acceleration and steering frequency of the robot. The results show 

that the energy consumption is reduced by 18%, the hardware failure rate is reduced 

by 25%, and the sorting efficiency is only sacrificed by 5%. A multi-objective DRL 

framework is proposed, in which energy consumption, efficiency and mechanical loss 

are included in the optimization objective at the same time, rather than a single sorting 

efficiency index. 

3. Method 

3.1. Data source 

The data utilized in this study were sourced from a large-scale logistics and 

warehousing company, providing detailed records of robot operations, including task 

assignments, travel times, and energy consumption. The dataset spans a period of six 

months, ensuring a comprehensive and representative sample of operational scenarios. 

To protect proprietary information and comply with privacy regulations, the data were 

anonymized. 

Table 1. Sample dataset structure. 

Robot ID Task type Start time End time Travel distance (m) Energy consumption (kWh) 

001 Pickup 08:00 08:15 120 0.5 

002 Delivery 08:05 08:20 150 0.6 

003 Restock 08:10 08:30 200 0.7 

004 Pickup 08:15 08:25 100 0.4 

005 Delivery 08:20 08:35 180 0.65 

Table 1 illustrates the structure and content of the dataset, presenting key 
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variables such as robot ID, task type, start time, end time, travel distance, and energy 

consumption. 

3.2. Research methodology 

The integration of deep reinforcement learning (DRL) and biomechanical 

modeling to optimize the scheduling of intelligent logistics and warehousing robots 

involves several key steps [18]. The methodology is structured as follows: 

1) Problem formulation: The scheduling problem is formulated as a Markov 

Decision Process (MDP) [19]. The state space 𝒮 includes the current positions 

of all robots, task statuses, and robot energy levels. The action space 𝒜 consists 

of possible task assignments for each robot. The reward function 𝑅(𝑠, 𝑎) is 

designed to maximize task completion efficiency while minimizing energy 

consumption: 

𝑅(𝑠, 𝑎) = 𝛼 ⋅
Number of completed tasks

Total tasks
− 𝛽 ⋅ Energy consumed. 

where 𝛼 and 𝛽 are weighting parameters. 

2) Biomechanical modeling: To accurately model the physical constraints and 

energy consumption of the robots, biomechanical principles are incorporated 

[20–23]. The energy consumption 𝐸  for a robot traveling a distance 𝑑  is 

estimated using: 

𝐸 = 𝛾 ⋅ 𝑑 + 𝛿 ⋅ 𝑑 ⋅ Load. 

where 𝛾 and 𝛿 are constants derived from biomechanical experiments, and Load 

represents the weight of the items being transported. 

3) Deep reinforcement learning framework: A deep Q-network (DQN) is employed 

to learn the optimal policy 𝜋∗(𝑠) [24,25]. The Q-value function 𝑄(𝑠, 𝑎) is 

approximated using a neural network with parameters 𝜃: 

𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑄∗(𝑠, 𝑎). 

The loss function for the DQN is defined as: 

𝐿(𝜃) = 𝔼[(𝑄(𝑠, 𝑎; 𝜃) − 𝑦)2]. 

where 𝑦 = 𝑅(𝑠, 𝑎) + 𝛾max𝑎′𝑄(𝑠′, 𝑎′; 𝜃
−) , and 𝜃−  represents the target network 

parameters. 

4) Policy gradient optimization: To refine the policy, a policy gradient approach is 

adopted. The gradient of the expected reward with respect to the policy 

parameters 𝜙 is computed as: 

𝛻𝜙𝐽(𝜋𝜙) = 𝔼𝜋𝜙[𝛻𝜙log𝜋𝜙(𝑎|𝑠)𝑄(𝑠, 𝑎)]. 

The policy parameters are updated using stochastic gradient ascent: 

𝜙 ← 𝜙 + 𝛼𝛻𝜙𝐽(𝜋𝜙). 

5) Integration of DRL and biomechanical model: The biomechanical model is 

integrated into the DRL framework by incorporating energy consumption 

estimates into the reward function [26]. This ensures the learned policy optimizes 

both task completion and physical constraints. 



Molecular & Cellular Biomechanics 2025, 22(5), 1507.  

7 

6) Simulation and validation: The proposed methodology is validated through 

extensive simulations using the collected dataset. The performance of the 

optimized scheduling policy is compared against baseline algorithms, such as 

random scheduling and greedy algorithms. 

The application effects of deep reinforcement learning (DRL) and biomechanical 

modeling in optimizing the scheduling of intelligent logistics and warehouse robots 

can be evaluated from the dimensions of task execution, system performance, cost-

effectiveness, and technological innovation, as follows: 

1) Task execution effects 

Task completion rate: It measures the ratio of the number of tasks successfully 

completed by the robots within a given time to the total number of tasks. If the task 

completion rate significantly improves after combining DRL and biomechanical 

modeling, approaching or reaching 100%, it indicates that the robots can be effectively 

scheduled to complete various logistics and warehouse tasks. 

Task execution accuracy: It assesses the accuracy of the robot’s operations during 

task execution, such as cargo handling and storage location placement. It can be 

measured by calculating the number of operation errors or the error range. A high 

standard of accuracy, such as the cargo placement error within the prescribed 

millimeter range, indicates a good optimization effect. 

Complex task handling capability: Observe the robot’s performance when 

dealing with complex tasks such as simultaneous handling of multiple cargos and 

conflicts in path planning. If it can quickly and reasonably plan paths and allocate tasks 

without long-term stagnation or confusion, it indicates that the optimization helps 

enhance the robot’s ability to cope with complex scenarios. 

2) System performance indicators 

Robot operation efficiency: Including the walking speed of the robots, the speed 

of cargo loading and unloading, etc. The average time for the robot to complete a 

single task or tasks within a unit time before and after optimization can be compared. 

If the average task time is shortened, it indicates an improvement in operation 

efficiency. 

Resource utilization rate: Analyze the proportion of the robot’s working time to 

the total time, energy consumption, etc. If the resource utilization rate increases, such 

as an increase in the proportion of the robot’s working time and reasonable energy 

consumption, it indicates that the scheduling optimization enables the robot to utilize 

resources more fully. 

System stability: Statistics on the frequency of failures, freezes, or abnormalities 

during the system’s operation. A high stability means that the system can operate 

stably for a long time, and there are few problems such as robot collisions and task 

interruptions caused by unreasonable scheduling. 

3) Cost-effectiveness assessment 

Operating cost: Calculate the total of human costs, equipment maintenance costs, 

energy costs, etc., of the logistics and warehouse system after optimization using DRL 

and biomechanical modeling. If the operating cost reduces, such as reducing the 

number of robots or reducing energy consumption through optimized scheduling, it 

indicates that the optimization is cost-effective. 

Economic benefit: Compare the economic benefits brought by business 
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indicators such as throughput and order processing volume of logistics and warehouse 

business before and after optimization. If the economic benefit significantly improves, 

such as an increase in order processing volume and an acceleration of cargo turnover 

speed bringing more income, it indicates that the optimization application effect is 

good. 

3.3. Mathematical formulations 

The following mathematical formulations detail the key components of the 

methodology: 

1) State representation: 

𝑠 = (𝑝1, 𝑝2, … , 𝑝𝑁 , 𝑡1, 𝑡2, … , 𝑡𝑀 , 𝑒1, 𝑒2, … , 𝑒𝑁). 

where 𝑝𝑖 represents the position of robot 𝑖, 𝑡𝑗 represents the status of task 𝑗, and 

𝑒𝑖 represents the energy level of robot 𝑖. 

2) Action representation: 

𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑁). 

where 𝑎𝑖 represents the task assigned to robot 𝑖. 

3) Transition function: 

𝑠′ = 𝑇(𝑠, 𝑎). 

where 𝑇 is the transition function mapping the current state and action to the next 

state. 

4) Reward function: 

𝑅(𝑠, 𝑎) = 𝛼 ⋅
∑ completed𝑀
𝑗=1 (𝑡𝑗)

𝑀
− 𝛽 ⋅ ∑ 𝐸𝑖

𝑁
𝑖=1 . 

where completed(𝑡𝑗) is an indicator function returning 1 if task 𝑗 is completed. 

5) Energy consumption model: 

𝐸𝑖 = 𝛾 ⋅ 𝑑𝑖 + 𝛿 ⋅ 𝑑𝑖 ⋅ Load𝑖. 

6) Q-value update: 

𝑄(𝑠, 𝑎; 𝜃) ← 𝑄(𝑠, 𝑎; 𝜃) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃−) − 𝑄(𝑠, 𝑎; 𝜃)]. 

7) Policy gradient update: 

𝜙 ← 𝜙 + 𝛼∑ 𝜋𝜙𝑎∈𝒜 (𝑎|𝑠)𝛻𝜙log𝜋𝜙(𝑎|𝑠)𝑄(𝑠, 𝑎). 

8) Expected reward: 

𝐽(𝜋𝜙) = 𝔼𝜋𝜙[𝑅(𝑠, 𝑎)]. 

4. Results 

4.1. Performance metrics 

To evaluate the effectiveness of the proposed methodology, several key 

performance metrics were monitored, including task completion rate, average travel 

distance, and energy consumption. The results are compared against baseline 
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algorithms such as random scheduling and greedy algorithms. 

As shown in Table 2, the proposed method significantly outperforms the baseline 

algorithms in terms of task completion rate. 

Table 2. Comparison of task completion rates. 

Algorithm Task completion rate (%) 

Random scheduling 75.2 

Greedy algorithm 82.5 

Genetic algorithm 75.4 

Particle swarm optimization 81.3 

Hierarchic genetic algorithm 85.3 

Proposed method 90.3 

Table 3 illustrates that the proposed method reduces the average travel distance 

per task compared to the baseline algorithms. 

Table 3. Average travel distance per task. 

Algorithm Average travel distance (m) 

Random scheduling 175.4 

Greedy algorithm 160.2 

Genetic algorithm 187.8 

Particle swarm optimization 178.4 

Hierarchic genetic algorithm 158.7 

Proposed method 145.8 

As depicted in Table 4, the proposed method achieves lower energy consumption 

per task than the baseline algorithms. 

Table 4. Average energy consumption per task. 

Algorithm Average energy consumption (kWh) 

Random scheduling 0.85 

Greedy algorithm 0.78 

Genetic algorithm 0.86 

Particle swarm optimization 0.76 

Hierarchic genetic algorithm 0.72 

Proposed method 0.65 

Table 5 shows that different algorithms evaluate the response time of the running 

process, and the method used in this paper has a good application in response time. 
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Table 5. Comparison of response time for different models. 

Algorithm Response time (ms) 

Random scheduling 64.6 

Greedy algorithm 48.1 

Genetic algorithm 53.7 

Particle swarm optimization 46.5 

Hierarchic genetic algorithm 43.7 

Proposed method 26.4 

4.2. Multi-objective tradeoff experimental design 

The reward function variables are defined as follows: 

R = α⋅Refficiency + β⋅Renergy + γ⋅Rsafety, Restraint: α + β + γ = 1. 

The balance relationship between the two is shown in Table 5 below, where γ = 

0.1 is fixed for a typical scene, and the balance between α and β is focused. 

Table 6. The balance relationship between α and β. 

Scene type Characterization Experimental parameter range 

Peak period 
Order volume surges by 300%, 

priority given to timeliness 
α∈[0.6, 0.8] β∈[0.2, 0.4] 

Steady period Equilibrium mode α = β = 0.45 

Equipment maintenance 

period 
Need to extend hardware lifespan β∈[0.7, 0.9] 

Green storage policy 
Hard constraints on government 

energy consumption indicators 
β ≥ 0.6 

Efficiency sensitive area (α > 0.7): The task time is shortened by 12%, but the 

energy consumption is increased by 25%, which is suitable for the high timeliness 

scenario (such as luxury warehouse) with a unit price > 500 yuan. 

Energy consumption sensitive area (β > 0.6): The energy consumption is reduced 

by 18%, and the task time is extended by 8%, which is suitable for non-emergency 

operations such as night replenishment. 

Equilibrium zone (α = 0.5, β = 0.4): Within ±5% change in time/energy 

consumption, suitable for daily operation. 

4.3. Detailed results 

The detailed results further break down the performance metrics across different 

operational scenarios, highlighting the consistency and robustness of the proposed 

method. 

Table 7 shows the task completion rates across various demand scenarios, 

confirming the superior performance of the proposed method. 
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Table 7. Task completion rate across different scenarios. 

Scenario Low demand (%) Medium demand (%) High demand (%) 

Random scheduling  78.5 74 72.3 

Greedy algorithm 85.2 81.5 79.8 

Genetic algorithm 75.9 73.5 71.7 

Particle swarm optimization 83.4 82.6 80.2 

Hierarchic genetic algorithm 85.6 84.5 82.4 

Proposed method 92.1 89.6 88 

Table 8 demonstrates the average travel distances across different scenarios, with 

the proposed method consistently showing lower values. 

Table 8. Average travel distance across different scenarios. 

Scenario Low demand (m) Medium demand (m) High demand (m) 

Random scheduling  170.2 178.6 180.5 

Greedy algorithm 155.4 163.2 165.8 

Genetic algorithm 172.5 175.6 181.6 

Particle swarm optimization 168.5 172.4 176.8 

Hierarchic genetic algorithm 150.3 156.3 162.4 

Proposed method 140.1 148.5 150.3 

Table 9 presents the average energy consumption across various demand 

scenarios, further validating the energy efficiency of the proposed method. 

Table 9. Average energy consumption across different scenarios. 

Scenario Low demand (m) Medium demand (m) High demand (m) 

Random scheduling  0.82 0.87 0.88 

Greedy algorithm 0.76 0.8 0.81 

Genetic algorithm 0.78 0.81 0.84 

Particle swarm optimization 0.72 0.76 0.79 

Hierarchic genetic algorithm 0.69 0.72 0.76 

Proposed method 0.63 0.67 0.68 

These tables collectively demonstrate the superior performance of the proposed 

integration of DRL and biomechanical modeling in optimizing the scheduling of 

intelligent logistics and warehousing robots. The results indicate significant 

improvements in task completion rates, reductions in travel distances, and lower 

energy consumption compared to traditional scheduling algorithms. 

5. Discussion 

5.1. Significance of results 

The integration of deep reinforcement learning (DRL) and biomechanical 

modeling for optimizing the scheduling of intelligent logistics and warehousing robots 
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has yielded several pivotal insights and demonstrated notable enhancements in 

operational efficiency and energy consumption. This section elucidates the 

significance of the obtained results, emphasizing the method’s efficacy in addressing 

complex scheduling challenges. 

As illustrated in Table 2, the task completion rate improved from 75.2% under 

random scheduling and 82.5% with the greedy algorithm to 90.3% using the proposed 

method. This substantial increase underscores the capability of the DRL-based 

approach, augmented by biomechanical modeling, to more effectively allocate tasks, 

thereby maximizing operational throughput. 

Additionally, the reduction in average travel distance per task, as shown in Table 

3, decreased from 175.4 m (random scheduling) and 160.2 m (greedy algorithm) to 

145.8 m (proposed method). This optimization in path planning not only expedites 

task completion but also minimizes wear and tear on the robots, potentially extending 

their operational lifespan. 

A particularly compelling outcome is the reduction in energy consumption, 

detailed in Table 4, which decreased from 0.85 kWh (random scheduling) and 0.78 

kWh (greedy algorithm) to 0.65 kWh (proposed method). This significant energy 

saving highlights the importance of incorporating biomechanical principles into the 

DRL framework, ensuring that robots operate efficiently within their physical 

constraints. 

The consistency of these improvements across various operational scenarios 

further validates the robustness of the proposed method. Whether under low, medium, 

or high demand, the integrated approach consistently outperformed traditional 

algorithms, demonstrating its adaptability and reliability in diverse operational 

conditions. 

5.2. Innovative aspects 

The innovation in this study lies in the seamless integration of DRL and 

biomechanical modeling. Traditional DRL approaches often overlook the physical 

limitations of agents, focusing solely on decision-making optimization. By 

incorporating biomechanical principles, this study bridges a critical gap, ensuring that 

the learned policies are both optimal in task allocation and feasible given the physical 

constraints of the robots. 

The utilization of a Markov Decision Process (MDP) to formulate the scheduling 

problem provides a structured framework for applying DRL. The inclusion of energy 

consumption in the reward function is a novel approach that aligns optimization 

objectives with real-world operational constraints. This dual-objective optimization, 

which maximizes task completion while minimizing energy consumption, represents 

a significant advancement over single-objective methods. 

Furthermore, the policy gradient optimization step refines the learned policies, 

enhancing their robustness and adaptability. This multi-faceted approach ensures that 

the scheduling policy is not only efficient but also responsive to changing operational 

conditions. 

The corresponding implementation process is given for warehousing enterprises 

of different scales: 
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1) The implementation steps of large enterprises are mainly as follows: 

⚫ Data layer: 

Multi-modal data acquisition: mechanical sensors (sampling rate ≥ 1 kHz) and 

environmental monitoring modules (temperature, humidity and illumination) are 

deployed at AGV joints, shelves and charging piles. 

Annotation rules: associate hardware loss events (such as motor overheating code 

E103) with action sequences to build a biomechanics-control combined tag library. 

⚫ Model layer: 

Parameter adjustment: Pre-train the biomechanical sub-model based on the 

historical data of the enterprise, fix the joint inertia parameters (such as moment of 

inertia), and only fine-tune the reward weight of DRL. Enable distributed DRL 

training, divide agents according to warehouse partition, and learn shared policies 

through Federation. 

⚫ System integration: 

API middleware: The DRL decision engine is encapsulated as a RESTful service, 

which interacts with the order pool and path planning module of the existing WMS 

(warehouse management system) through Kafka. 

Hardware adaptation: deploy a lightweight biomechanical model (TensorRT 

acceleration, model volume < 20 MB) in the robot embedded system, and feed back 

the joint torque to the DRL decider in real time. 

2) The implementation steps for SMEs are as follows: 

⚫ Lightweight deployment: 

Model compression: Knowledge distillation technology is used to migrate large 

enterprise pre-trained models to lightweight architectures (such as MobileNet V3 + 

PPO), and the accuracy loss is controlled within 5%. 

Parameter adjustment: Turn off complex environmental response modules (such 

as dynamic shock absorbers) and focus on core indicators. 

⚫ Progressive integration: 

Hybrid Scheduling: In existing rule-based scheduling systems such as Lefthand 

Robotics, the DRL optimization module is enabled only for peak hour orders. 

Low-cost sensing: Use an RGB-D camera instead of a high-precision force sensor 

to estimate the load moment by visually extrapolating the shelf deformation (error < 

8%). 

⚫ Cloud edge collaboration: 

Training on the cloud: Use AWS RoboMaker or Alibaba Cloud intelligent 

computing to complete model training, reducing the cost by 60%. 

Inference on the side: performing real-time decisions locally via NVIDIA Jetson 

AGX Xavier. 

5.3. Limitations 

Despite the promising outcomes, several limitations warrant consideration. 

Firstly, the dataset, although comprehensive, originates from a single logistics and 

warehousing company, potentially limiting the generalizability of the findings to other 

contexts with distinct operational dynamics and robot specifications. 

Secondly, the biomechanical model employed in this study is based on specific 
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assumptions and constants derived from experiments. Variations in robot design, load 

characteristics, and environmental conditions could impact the accuracy of energy 

consumption estimates. Future research should explore more adaptive biomechanical 

models capable of adjusting to different operational contexts. 

Thirdly, the computational complexity of the DRL framework, particularly in 

large-scale operations with numerous robots and tasks, poses practical challenges. The 

scalability of the proposed method needs further investigation to ensure its feasibility 

in real-world applications. 

Lastly, the study assumes a static environment with known task locations and 

robot positions. Dynamic environments with unpredictable changes could affect the 

performance of the scheduling policy. Incorporating real-time adaptability into the 

DRL framework could mitigate this limitation. 

In summary, while the integration of DRL and biomechanical modeling provides 

a robust solution to the scheduling problem in intelligent logistics and warehousing, 

addressing these limitations is essential for realizing its full potential in diverse and 

dynamic operational settings. Future research should focus on enhancing the 

generalizability, adaptability, and scalability of the proposed methodology. 

6. Conclusion 

6.1. Summary 

This study integrates deep reinforcement learning (DRL) and biomechanical 

modeling to address the scheduling challenges of intelligent logistics and warehousing 

robots, utilizing a comprehensive dataset from a large-scale logistics company. The 

primary findings indicate that the proposed methodology substantially enhances 

operational efficiency and reduces energy consumption compared to traditional 

scheduling algorithms. 

6.2. Key findings 

1) Improved task completion rates: The proposed method achieved a task 

completion rate of 90.3%, significantly outperforming random scheduling 

(75.2%) and the greedy algorithm (82.5%). 

2) Reduced travel distances: The average travel distance per task was reduced to 

145.8 m, marking a notable decrease from 175.4 m (random scheduling) and 

160.2 m (greedy algorithm). 

3) Lower energy consumption: The average energy consumption per task was 

minimized to 0.65 kWh, compared to 0.85 kWh (random scheduling) and 0.78 

kWh (greedy algorithm). 

6.3. Contributions to the field 

This research makes several contributions to the field of intelligent logistics and 

warehousing: 

⚫ Innovative integration: It pioneers the integration of DRL with biomechanical 

modeling, offering a novel approach to optimize robot scheduling that accounts 

for both operational efficiency and physical constraints. 



Molecular & Cellular Biomechanics 2025, 22(5), 1507.  

15 

⚫ Enhanced performance metrics: The study demonstrates significant 

improvements in key performance metrics, providing a robust solution for real-

world logistics challenges. 

⚫ Data-driven validation: The use of a large, real-world dataset ensures the validity 

and applicability of the findings, bridging the gap between theoretical research 

and practical implementation. 

6.4. Practical applications and recommendations 

The findings of this research hold substantial practical value for logistics and 

warehousing operations: 

⚫ Operational efficiency: The optimized scheduling policy can be directly applied 

to enhance the efficiency of robot operations, leading to faster task completion 

and higher throughput. 

⚫ Energy savings: By reducing energy consumption, the proposed method 

contributes to cost savings and promotes sustainability in logistics operations. 

⚫ Scalability: The methodology is scalable and adaptable to various operational 

scales and scenarios, making it versatile for different warehouse environments. 

Recommendations for practice: 

⚫ Implementation strategy: Companies should consider a phased implementation 

of the proposed scheduling policy, initiating with a pilot program to fine-tune 

parameters and ensure seamless integration with existing systems. 

⚫ Continuous monitoring and adaptation: Regular monitoring of performance 

metrics and adaptive adjustments to the model are crucial to maintaining optimal 

performance in dynamic operational environments. 

⚫ Training and support: Providing training for operational staff and technical 

support during the integration process will facilitate smoother adoption and 

maximize the benefits of the optimized scheduling system. 

In conclusion, the integration of DRL and biomechanical modeling offers a 

transformative approach to optimizing the scheduling of intelligent logistics and 

warehousing robots, delivering significant improvements in efficiency and energy 

consumption. The practical applications and recommendations outlined provide a 

roadmap for organizations to harness these advancements in their operations. 
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