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Abstract: Physical education instruction has several issues on injuries as a result of 

interruptions to the learning, participation, or physical activity of the students. Existing 

strategies concern the risk prevention and warm-up activities without addressing personal 

characteristics and anatomical and kinematic prerequisites that underlie the occurrence of 

injury. The biomechanical evaluation of human motion can determine factors such as joint 

stresses, muscle loads, and motion patterns. This proceeding strives at eradicating the aspects 

of biomechanics in expanding the protective measures of injury prevention in physical 

education teaching. Beside the motion capture system, the force plate measurement and the 

electromyography (EMG) data movement patterns and joint load are measured 

biomechanically as accurately as possible. The accumulative data have to pass through 

cleaning and standardization steps to provide a certain level of reliability. In this case, the use 

of Fast Fourier Transform (FFT) extracts features of the movements relating to the frequency 

domain to undergo further analysis. Subsequently, an efficient Earthworm Optimized Graph 

Neural network (EEO-GNN) is employed to identify injury risk elements through modeling 

complex biomechanical relationships and patterns. The EEO-GNN model efficiently predicted 

ability injury hotspots by analyzing joint stresses, muscle activation, and motion irregularities. 

It is surpassing previous approaches in terms of F1-score (96.2%), recall (95.2%), accuracy 

(96%), and precision (95%). It underscores the ability to integrate superior biomechanical 

analysis and deep learning procedures to enhance injury prevention, enhance motion mechanics, 

and foster safer and greater effective physical education environments. 

Keywords: injury; prevention strategies; biomechanic; physical education; efficient 

earthworm optimized graph neural network (EEO-GNN) 

1. Introduction  

Injury prevention is one of the most critical aspects of teaching in physical 

education, as it ensures that students taking part in physical activities remain safe and 

sound (Evans and Sims, 2022). The inclusion of biomechanical analysis can help to 

reduce the occurrence of injuries. Biomechanics is the science of bodily movement; it 

examines body motions, joint angles, muscle forces, and overall posture (Zhao, 2024). 

It analyzes the risk variables that contribute to injuries and assists in the development 

of prevention methods. The biomechanical analysis enables the educator to perceive 

and correct the technique of the students during the activities (Prieto-González et al., 

2021). It can be through motion capture technology, video analysis, or wearable 

sensors that track the body movement. From the assessment of the movements, a PE 

teacher is also able to identify faulty posture, poor alignment, or inefficient mechanics 

that could predispose students to overuse injuries, strains, or sprains (Bonilla et al., 

2022). This proactive approach not only focuses on immediate injury prevention but 

also emphasizes the importance of developing a long-term understanding of body 
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mechanics among students. By fostering this awareness, educators can instill a sense 

of responsibility in students for their own physical health. Furthermore, biomechanics 

can be integrated into various sports and physical activities, allowing for a more 

comprehensive understanding of how different movements affect the body. This 

holistic view encourages students to be more mindful of their actions, ultimately 

leading to safer participation in sports and recreational activities. 

Furthermore, biomechanical concepts can be used to help build tailored injury 

prevention measures. For example, teaching students adequate warm-up and cool-

down procedures, as well as stretching exercises based on biomechanical principles, 

can assist them in improving flexibility, increasing joint mobility, and reducing muscle 

injuries (Prentice et al., 2024). Incorporating these practices into the curriculum not 

only enhances students’ physical capabilities but also promotes a culture of safety and 

awareness in physical education. By emphasizing the importance of these routines, 

teachers can help students understand the critical role that proper preparation plays in 

preventing injuries. This understanding can lead to lifelong habits that prioritize safety 

and well-being, extending beyond the classroom and into their daily lives. 

Biomechanics can be used to create appropriate equipment and footwear, as well as to 

modify training or sports techniques to better suit an individual’s physical ability. The 

customization of equipment, such as shoes designed to provide better support or 

protection based on an individual’s biomechanics, can significantly reduce the risk of 

injuries. Additionally, adapting training techniques to fit each student’s unique 

physical characteristics allows for a more personalized approach to physical education, 

ensuring that all students can participate safely and effectively. This individualized 

attention not only benefits injury prevention but also enhances overall performance 

and enjoyment of physical activities. 

A closer incorporation of biomechanical evaluation in the instructions of physical 

education makes the environment more productive and safer (Shan, 2023). This 

integration fosters an atmosphere where students feel supported and encouraged to 

explore their physical capabilities without the fear of injury. By creating such an 

environment, educators can motivate students to engage more fully in physical 

activities, which is essential for their overall development and well-being. Moreover, 

a focus on safety and injury prevention can lead to increased participation rates in 

physical education programs, as students recognize the value of these practices. It also 

improves the physical strength of the students and reduces cases of physical injuries 

that can occur. Also, advances in technology, which include providing feedback in 

real-time and using wearables, have made its application in physical education easy 

through biomechanics as coaches and teachers are able to develop and implement 

injury prevention measures in relation to every learner (Rebelo et al., 2023). This 

improves the standard of physical education while also bolstering kids’ future physical 

fitness and health (Garcia et al., 2023). Nevertheless, the cost and accessibility of 

quality technology offer a challenge to the use of biomechanical analysis in physical 

education. Also, due to biomechanical data analysis, the need to interpret data with 

specific and specialized knowledge is needed, and such knowledge may not be 

available with the teachers or educators. Due to time, different assessment activities 

cannot be incorporated into the lesson due to a lack of enough time. However, this can 



Molecular & Cellular Biomechanics 2025, 22(5), 1504. 
 

3 

present challenges in minimizing the differences among students while trying to come 

up with prevention measures that can be implemented across the entire population. 

Contribution and objective  

This investigates how crucial biomechanical assessment is to preventing injuries 

in physical education. By examining joint stresses, muscle loads, and motion patterns, 

it employs an EEO-GNN model to pinpoint injury risk factors. The model’s ability to 

identify injury hotspots emphasizes how combining deep learning and biomechanical 

analysis can enhance motion mechanics, reduce injuries, and provide safer physical 

education settings. 

• Biomechanical data, including joint angles, muscle activation, and ground 

reaction forces, are collected by motion capture systems, force plates, and EMG 

sensors while students are performing several physical activities. 

• Cleaned raw data, normalized to be consistent, and further segmented to ensure 

reliable feature extraction in improving the accuracy of injury risk prediction and 

biomechanical assessment. 

• FFT is applied to the time-domain motion signals for the generation of frequency-

domain representations, which accentuate biomechanical movement patterns, 

joint stress fluctuations, and muscle activation frequencies for effective injury 

risk assessment. 

• EEO-GNN is a biomechanical modeling that optimizes graphical structures to 

spatially capture the temporal patterns, hence potential injury hotspots with deep-

learning-driven biomechanical insights. 

The remaining parts of the research are as follows: Part 2 includes a literature 

review; Part 3 explains the suggested approach; Part 4 outcomes and discussion; and 

Part 5 concludes the evaluation of findings. 

2. Literature review  

The prevention of injuries improved in physical education employing real-time 

tracking and deep learning by Leilei et al. (2021). It analyzed student mobility using 

the Theory of Humanities Education (ToHE) and utilized the Global Positioning 

System (GPS) for emergency responses. The device detects injuries with an accuracy 

of 90%. Limitations included potential GPS errors and the necessity for further 

validation in a variety of circumstances.  

Cui et al. (2022) investigated physical rehabilitation and injury prevention in 

physical education using wearable technology. It gathered and analyzed workout data 

in real-time, including heart rate and steps and used machine learning and the Internet 

of Things. The results, injury risk prediction, and preventative advice were helpful. 

Variability in individual reactions to training and problems with data accuracy were 

limited. Mishra et al. (2025) used an AI-driven framework to examine how physical 

education instruction affects injury prevention. It gathers movement data from players, 

uses AI to detect injuries, and gives coaches and medical experts insights. The findings 

emphasized AI’s function in proactive sports administration. Data variability and the 

requirement for customized models were among the drawbacks. Utilizing computer 

vision and long short-term memory networks, Ouf et al. (2024) aim to improve injury 
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prevention by precisely monitoring push-up form. Finding the right and wrong 

methods was made possible by a well-selected dataset, which offered customized 

feedback. The training and testing F1 scores for the model were 0.9 and 0.85, 

respectively. One drawback was that it emphasizes push-ups, which calls for 

modification for more general sports use.  

Xu and Tang (2021) apply machine learning technology to robot path planning 

for the purpose of minimizing basketball training-related injuries. The robot operated 

by using an advanced Q-Learning algorithm controlled by a fuzzy controller for 

obstacle avoidance when moving. The simulation showed that the algorithms 

performed path identification tasks quickly besides creating well-optimized paths. The 

system requires additional research to establish its practical usability and 

expandability in actual settings. Li et al. (2025) presented artificial intelligence and 

infrared thermal imaging as methods to enhance injury prevention in risky activities, 

specifically aerobics. The system acquired thermal images through multiple image 

enhancement approaches followed by deep learning processes to locate risky and tired 

zones. The results showed improved accuracy, while the assessment measurements 

could be negatively affected by both data validation concerns and external conditions. 

Yang et al. (2024) were to enhance sports injury prevention by combining a back-

propagation neural network (BPNN) model with wearable technologies to identify 

accurate sports actions. The approach used BPNN classifiers to extract and classify 

features, and it has been tested on running, and static activities. The findings revealed 

that 11 hidden layer nodes provided excellent recognition for running activities. It 

focuses on wearable system layers and recommends ways to prevent damage. The 

classifier performance for static activities was comparable. Xie et al. (2021) were to 

use machine learning to create an intelligent badminton training robot (IBTR) that can 

reduce player injuries. A Hidden Markov Model (HMM) was used by the system to 

assess the motions of athletes. The results indicate a recognition accuracy of 96.03% 

with improved HMM and 94.5% for robot interaction, indicating stability throughout 

120 training sets. Limitations include challenges with different data set sizes. 

3. Methodology  

Biomechanical analyses of injury prevention in physical education were used by 

motion capture in force plates and EMG data. Preprocessing includes cleaning and 

standardization to ensure reliability. FFT is used to extract frequency-domain 

movement features. The models of biomechanical relations are performed by the EEO-

GNN, which identifies risks of injury through joint stress, muscle activation, and 

movement irregularities. Figure 1 shows the proposed research basic concept flow. 
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Figure 1. Basic concept of overall proposed research. 

3.1. Data set  

The biomechanical analysis utilized to prevent injuries in physical education was 

the primary focus of this dataset. It contains data concerning 1000 individuals, 

including biomechanical forces, joint angles, muscle activation (EMG), movement 

patterns, and injury risk variables. By investigating how individual movement 

mechanics can affect injury risk during physical activities, the dataset seeks to support 

the development of injury prevention techniques. The data is available on the Kaggle 

website: https://www.kaggle.com/datasets/ziya07/biomechanical-analysis-for-injury-

prevention/data. 

3.2. Data pre-processing  

Preprocessing includes data cleaning and standardization of biomechanical data 

coming from motion capture systems, force plates, and EMG in the analysis of 

movement patterns and risk of injuries to ensure such data possesses consistency and 

reliability. 

3.2.1. Handle missing data by MICE multiple imputation 

Missing data is a very critical problem in the pre-processing phase, which is very 

important in applying deep learning models for injury prediction based on 

biomechanical analysis. In the real world, biomechanical data sets can have missing 

values resulting from any of the following: equipment fault, human error, or 

unavailability. Such anomalies, outlier joint angles, or unusual muscle activation 

patterns could also induce missing or wrong data points, which can be compensated 

for by the application of adequate repairing mechanisms. The use of MICE remains 

valuable when it comes to preventing injuries in biomechanical educational research 

for physical education students. The MICE algorithm takes care of missing data about 

student health and movement patterns and physical performance, which maintains the 

robustness and fairness of the dataset. The method generates various alternative 

datasets through imputation, allowing researchers to execute precise biomechanical 

injury examinations. The application of MICE techniques to this research improves 
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injury prevention strategies by using complete data that helps decision-makers select 

appropriate physical education curriculum methods. 

• Unimportant: Less than one percent of missing data can be handled by MICE 

multiple imputation. 

• Manageable: One to five percent of the data are missing; standard imputation 

methods, such as MICE multiple imputation, can be used. 

• Advanced: Missing data of more than five to fifteen percent may need some 

advanced procedures to maintain the data integrity, which includes MICE 

multiple imputation. 

• Extreme: More than fifteen percent of data is missing; hence, data recovery is 

harder. It can be necessary to strongly consider whether the dataset can still be 

used or if it has to be re-collected. 

3.2.2. Z-score normalization  

The standardized method is commonly used to overcome issues with outliers and 

to standardize features in biomechanical data in the prediction of injury risk. In this 

respect, the technique ensures that all biomechanical features—joint angles, muscle 

activations, and force measurements—are transformed onto a common scale, allowing 

for a more accurate analysis of movement patterns and injury risks. In particular, each 

biomechanical feature’s values are converted to normalized values using Equation (1) 

as follows: 

𝑥′ =
𝑥 − 𝜇

𝜎
 (1) 

where 𝑥 is the raw value of the biomechanical feature, 𝜇 is the mean of that feature 

across all data points, and 𝜎 is the mean error of the feature. Biomechanical values 

under the mean are mapped to negative numbers after applying the Z-score 

normalization; those above the mean are represented by positive numbers, and finally, 

values amounting to exactly the mean get mapped to zero. This kind of transformation 

helps in determining important deviations from normal movement patterns that could 

predict injury risk. 

3.3. Fast fourier transform (FFT) used for feature extraction  

Biomechanical movements can be analyzed in the frequency domain by 

extracting the features of a signal through the Fast Fourier Transform. To convert time-

domain data into their corresponding frequency components, such as joint angles, 

muscle activations, and ground response forces, this approach employs FFT. The latter 

represents a sum of sinusoidal constituents with different frequencies and amplitudes 

that sum up to create the original signal. FFT is an efficient algorithm in computing 

discrete FT, Equation (2) defined as follows. 

𝑊𝑙 = ∑ 𝑤𝑚

𝑚=1

𝑚=0
𝑓−

𝑗2𝜋𝑘𝑚

𝑀 , 𝑙 = 0, … 𝑙 − 1 (2) 

In this Equation (2), 𝑤𝑚  denotes the time collection input, 𝑊𝑙  represents the 

domain of frequency output, and 𝑀 is the wide variety of samples. By analyzing those 

frequency features, the individual wants to understand the movement patterns that 

could contribute to injury throughout physical activities. 
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3.4. EEO-GNN for injury risk prediction in physical education 

An EEO-GNN model is proposed for the complicated biomechanical relation and 

predicting feasible injury areas in physical activities. EEO-GNN can capture 

problematic interdependencies among distinct biomechanical factors, inclusive of 

joint stresses, muscle activation, and irregular movement. The EEO algorithm also 

enhances the efficiency of the formula underlying the model for optimizing its 

parameters for optimal prediction of the concept’s value. This can enable the EEO-

GNN to recognize biomechanical data, estimate risk of injury factors, and gain much 

informative measures about increasing individualized preventative measures with 

physical education teaching. 

3.4.1. Graph neural network (GNN) 

The analyzing biomechanics in physical education, particularly in the aspect of 

prevention of injuries, it can be potentially useful to use GNN for the analysis and 

modeling of multiple interrelated factors that are biomechanical features. The square 

node could be “joint stresses” or “muscle activation levels” or could be “movement 

patterns”; these relate to each other like edges. The general objective is to understand 

how the different biomechanical variables, joint forces, and muscle activation rates. 

The general purpose is to determine how specifically joint forces and muscle 

activation of the GNN model can detect candidates for injury, patterns, and 

irregularities in movement data using information accumulation and propagation in 

neighboring nodes of related biomechanical data. The structure can follow Equation 

(3). 

𝑛𝑥
𝑦

= ∅(𝑤𝑦
𝑘−1, 𝑤𝑥

𝑘−1)   ∀𝑥 ∈ 𝑀 (𝑦) (3) 

Here 𝑀 (𝑦) denotes the set of neighboring nodes of node v, and 𝑤𝑦
𝑘−1 and 𝑤𝑥

𝑘−1 

represent features of nodes 𝑦 and x, respectively, in layer 𝑘 − 1. The function ∅(⋅

) defines how information (messages) is propagated between nodes. 

𝑤𝑦
𝑘 = 𝛹 (𝑤𝑦

𝑘−1, 𝜌({𝑛𝑥
𝑦

: 𝑥 ∈ 𝑀(𝑦)})) (4) 

Here, in Equation (4), 𝜌(⋅) is the aggregation function that aggregates messages 

from neighboring nodes, and 𝜓(⋅) updates the features of node 𝑦 based on its previous 

features and the aggregated messages. It is important to emphasize the interaction of 

biomechanical features and how those interactions can help in identifying injury risks. 

The aim is to use GNN in learning, understanding, and predicting injury-prone 

movement with regard to joint stresses and muscle loads, based on other 

biomechanical parameters and their interactions. 

3.4.2. Efficient earthworm optimized (EEO) 

The optimization is realized by the EEO algorithm to enhance the performance 

of the GNN. Model parameters are fine-tuned by EEO in terms of an efficient search 

for the best configuration, aiming at better injury risk prediction accuracy. The EEO 

is developed by combining the Earthworm Optimization (EWO) algorithm and the 

Elite Oppositional-Based Learning (EOBL) strategy. The EOBL strategy enriches the 

optimization techniques’ search diversity and hence provides solid and better solutions. 

In biomechanical injury prediction, EOBL can be applied to enhance movement 
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pattern analysis by improving joint stress and muscle activation analysis. With elite 

solutions, EOBL improves initialization and increases the likelihood of discovering 

optimal biomechanical risk factors. An elite opposition solution is defined by the 

EOBL mechanism for each candidate solution based on the fittest movement pattern 

representation. The Equation (5) is as follows: 

�̃�𝑖𝑗 = 𝑙(𝑘𝑎𝑗 + 𝑣𝑎𝑗) − 𝑤𝑓𝑖 (5) 

where 𝑖 = 1,2,3, … , dim denotes biomechanical parameters like joint angles and force 

outputs; 𝑗 = 1,2,3, … , 𝑛 denotes individual movement samples; 𝑙  is a random value 

between [0, 1]; 𝑘𝑎𝑗  and 𝑣𝑎𝑗  represent the lower and upper boundaries of 

biomechanical constraints; 𝑤𝑓𝑖  is the elite biomechanical pattern derived from 

observed data. Additional hard constraints are added to ensure the generated solutions 

remain within physiologically valid ranges as defined in Equations (6) and (7). 

𝑘𝑎𝑗 = min(𝑤𝑗,𝑖) (6) 

𝑣𝑎𝑖 = max(𝑤𝑗,𝑖) (7) 

If the calculated 𝑤𝑗,𝑖 exceeds biomechanical feasible restrictions, it is defined as 

follows in Equation (8): 

�̃�𝑗,𝑖  =  rand (𝑘𝑎𝑖 , 𝑣𝑎𝑖) [if �̃�𝑖,𝑗 < 𝑤min OR 𝑤𝑗,𝑖 > 𝑤max]  (8) 

where 𝑤min and 𝑥max represent the physiological moving range. The EEO algorithm 

efficiently refines biomechanical risk factor identification by embedding EOBL in the 

initialization stage to give rise to improved injury prevention strategies with physical 

education. 

The proposed EEO-GNN method models the complex biomechanical relations to 

predict the risk of injury in physical education through the analysis of joint stresses, 

muscle activation, and movement patterns. The EEO algorithm optimizes the 

parameters of GNN to improve prediction accuracy, developing personalized injury 

prevention strategies with advanced biomechanical data analysis. Algorithm 1 shows 

the EEO-GNN. 

The EEO serves as an optimization method for GNN development to enhance 

injury risk forecast accuracy when processing biomechanical data. The approach 

optimizes GNN parameters through a method that enhances its ability to analyze and 

predict injury risks. Evaluation metrics for model performance include accuracy 

alongside precision, recall, and F1-score used to guarantee effectiveness in 

biomechanical analysis. The efficacy of the EEO algorithm in GNN parameter 

optimization is demonstrated by the optimization convergence in the parameter search 

procedure. The convergence curves give a direct assessment of the algorithm’s 

mathematical performance and target function optimization rate by showing how it 

gets closer to its ideal answer. With this update, it can learn more about stability 

variables and final results over the course of optimization. As long as the results 

showed exceptional efficacy, these technical details are valuable when assessing how 

well the EEO algorithm improved model performance. 
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Algorithm 1 EEO-GNN 

1: 𝑖𝑚𝑝𝑜𝑟𝑡 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤 𝑎𝑠 𝑡𝑓 
2: 𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒, 𝑟𝑒𝑐𝑎𝑙𝑙_𝑠𝑐𝑜𝑟𝑒, 𝑓1_𝑠𝑐𝑜𝑟𝑒 
3: 𝑓𝑟𝑜𝑚 𝐸𝐸𝑂_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑖𝑚𝑝𝑜𝑟𝑡 𝐸𝐸𝑂_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 
4: 𝑓𝑟𝑜𝑚 𝐺𝑁𝑁_𝑚𝑜𝑑𝑒𝑙 𝑖𝑚𝑝𝑜𝑟𝑡 𝐺𝑁𝑁 
5: # 𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
6: 𝐸𝐸𝑂_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =

 {′𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒′: 50, ′𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡′: 1000, ′𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒′: 0.001, ′𝑒𝑙𝑖𝑡𝑒_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛′: 0.2, 
7:             ′𝑏𝑖𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠′: {′𝑘𝑛𝑒𝑒′: (0, 180), ′ℎ𝑖𝑝′: (0, 180), ′𝑎𝑛𝑘𝑙𝑒′: (0, 180)}} 
8: # 𝐵𝑢𝑖𝑙𝑑 𝑎𝑛𝑑 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝐺𝑁𝑁 
9: 𝑑𝑒𝑓 𝑏𝑢𝑖𝑙𝑑_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝐺𝑁𝑁(𝑑𝑎𝑡𝑎, 𝑙𝑎𝑏𝑒𝑙𝑠): 
10:   𝑚𝑜𝑑𝑒𝑙 =  𝐺𝑁𝑁(𝑑𝑎𝑡𝑎. 𝑠ℎ𝑎𝑝𝑒[1: ]) 
11:   𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝑎𝑑𝑎𝑚′, 𝑙𝑜𝑠𝑠 = ′𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦′, 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′]) 
12:   𝑚𝑜𝑑𝑒𝑙. 𝑠𝑒𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝐸𝐸𝑂_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟. 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎, 𝑙𝑎𝑏𝑒𝑙𝑠,∗∗ 𝐸𝐸𝑂_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)) 
13:   𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑜𝑑𝑒𝑙 
14: # 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑀𝑜𝑑𝑒𝑙 
15: 𝑑𝑒𝑓 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑚𝑜𝑑𝑒𝑙(𝑚𝑜𝑑𝑒𝑙, 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎, 𝑡𝑒𝑠𝑡_𝑙𝑎𝑏𝑒𝑙𝑠): 
16:   𝑝𝑟𝑒𝑑𝑠 =  𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎) 
17:   𝑚𝑒𝑡𝑟𝑖𝑐𝑠 =  [𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒, 𝑟𝑒𝑐𝑎𝑙𝑙_𝑠𝑐𝑜𝑟𝑒, 𝑓1_𝑠𝑐𝑜𝑟𝑒] 
18:   𝑝𝑟𝑖𝑛𝑡({𝑚𝑒𝑡𝑟𝑖𝑐. __𝑛𝑎𝑚𝑒__: 𝑚𝑒𝑡𝑟𝑖𝑐(𝑡𝑒𝑠𝑡_𝑙𝑎𝑏𝑒𝑙𝑠, 𝑝𝑟𝑒𝑑𝑠) 𝑓𝑜𝑟 𝑚𝑒𝑡𝑟𝑖𝑐 𝑖𝑛 𝑚𝑒𝑡𝑟𝑖𝑐𝑠}) 
19: # 𝑀𝑎𝑖𝑛 
20: 𝑑𝑒𝑓 𝑚𝑎𝑖𝑛(𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑙𝑎𝑏𝑒𝑙𝑠): 
21:   𝑚𝑜𝑑𝑒𝑙 =  𝑏𝑢𝑖𝑙𝑑_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝐺𝑁𝑁(𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑙𝑎𝑏𝑒𝑙𝑠) 
22:   𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑚𝑜𝑑𝑒𝑙(𝑚𝑜𝑑𝑒𝑙,∗ 𝑔𝑒𝑡_𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎()) 
23: # 𝑅𝑢𝑛 
24: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 =  𝑙𝑜𝑎𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡() 
25: 𝑙𝑎𝑏𝑒𝑙𝑠 =  𝑙𝑜𝑎𝑑_𝑙𝑎𝑏𝑒𝑙𝑠() 
26: 𝑚𝑎𝑖𝑛(𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑙𝑎𝑏𝑒𝑙𝑠) 

4. Result and discussion  

Extensive biomechanical data analysis in this experiment shows how well the 

Efficient Earthworm Optimized Graph Neural Network (EEO-GNN) functions in risk 

region prediction. A computer system with Windows 10-controlled operation used an 

Intel i7 CPU core accompanied by 64 GB memory, a 256 GB storage drive, a 1070 

GPU, and Python 3.6.3 as its programming language. 

The GNN nodes include essential biomechanical elements that combine joint 

stress with muscle activation and movement irregularities, and the edges indicate how 

these elements relate to each other. Each stress node related to joints receives 

connections from nodes depicting muscle activations, thereby demonstrating how 

force from muscles affects joint loads. A connection exists between muscle activation 

nodes and movement irregularity nodes to demonstrate how irregular movements 

cause increased stress. The EEO-GNN model uses its learned knowledge of 

complicated system dynamics to locate potential injury areas for improved preventive 

measures through biomechanical movement behavioral analysis. Figure 2 presents the 

feature correlation heat map. 
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Figure 2. Graphical representation of feature correlation heat map. 

The EEO-GNN system identified abnormally patterned movements for lunge, 

jump, and squat movements. The proposed system also measures irregular activities 

in regard to three risk levels: low, medium, and high, implemented with biomechanics 

data as shown in Figure 3. The proposed system performs joint angle and stress 

measurements by biomechanical structural analysis to perform the above assessments 

as shown in Figure 4 a,b. The method identifies hot spots that are the areas under 

maximum stress: they are knee, hip, and ankle joints because these areas are under 

high risk of incurring an injury in movement patterns. The indicated procedure of risk 

assessment offers clear guidelines on how to measure injury risks of different 

movements while exercising. Providing information that can help prevent or minimize 

injuries and improve performance in areas related to physical training represents the 

aim. 
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Figure 3. Frequency analysis of irregular movements. 

 

Figure 4. Biomechanical assessment of: (a) joint angle; (b) joint stress. 

The proposed EEO-GNN model achieves exceptional results in injury prediction 

according to its ROC-AUC curve analysis shown in Figure 5. The model shows 

outstanding identification potential for injury risk factors because its AUC value 

reaches 0.97, demonstrating superior precision in positive and negative prediction 

zones for physical education injury prevention. 

 

Figure 5. ROC-AUC curve for the EEO-GNN model in injury prediction. 
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4.1. Experimental metrics  

The EEO-GNN-based injury prevention model utilizes four essential 

experimental metrics, including accuracy, precision, recall, and F1-score for validation 

purposes. The proposed EEO-GNN is compared with more traditional models for 

injury prediction, including the CNN-LSTM (Cai et al., 2024) and the RCNN (Wang 

et al., 2024), to which biomechanical analysis of injury risk prediction. 

Accuracy is used to determine the level of precision in the prediction model. It 

can be computed as the number of correct classifications of all the test instances, 

including both true positives and true negatives. The accuracy of the EEO-GNN is 

expressed as 96%, which denotes 96% correctness in the positive or negative of the 

places it predicts. This is significantly higher in comparison with 87% of CNN-LSTM 

and 92% of RCNN.  

Precision measures the amount of accurate positive outcomes among all the cases 

the model classified as positive. It defines the card’s performance in the avoidance of 

false positive results. For instance, the results obtained proposed EEO-GNN has a 

precision of 95%, which means its results regarding a particular risk or abnormality 

can be considered correct in comparison with the CNN-LSTM model with 84% and 

the RCNN model with 89%. 

Recall measures the number of actual positives that have been correctly classified 

by the model. It is defined as the ratio of the number of people who tested positive for 

the actual illness out of all those who were diagnosed to be positive by the test and on 

the actual disease. The EEO-GNN gives an impressive result in its recall of about 

95.6%, which means that it has a high capability to capture almost all possible risks 

related to injuries compared to CNN LSTM at 85% and RCNN at 90%. 

The F1 Score, which is the harmonious average of recall and accuracy, is 

particularly appropriate for instances when incorrect positives and false negatives 

could prove significant. Specifically, the F1-score for EEO-GNN is 96.2, and it shows 

that this method can be considered quite balanced and robust because, compared to 

the CNN-LSTM model, which was 84%, and the RCNN, which was 89.5%. 

The overall trend from Figure 6 and Table 1 illustrates the proposed EEO-GNN 

method outperforms the existing CNN-LSTM and RCNN models for each of the 

performance measures. This superior performance underscores the enhanced ability of 

EEO-GNN to accurately detect biomechanical abnormalities and predict injury risks 

by reducing misclassifications. 

Table 1. Comparison of injury risk prediction performance metrics. 

Methods  Accuracy (%) Precision (%) Recall (%) F1 score (%) 

CNN-LSTM (Cai et al., 2024) 87 84 85 84 

RCNN (Wang et al., 2024) 92 89 90 89.5 

EEO-GNN (Proposed) 96 95 95.6 96.2 
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Figure 6. Evaluation of different injury risk prediction methods comparison. 

4.2. Discussion 

The analysis tools applied in PE instruction help identify inefficient movements 

from students while detecting potential risks so coaches can establish specific 

protective strategies. Teachers can maximize performance while minimizing injury 

risks through proper practices of posture along with proper technique and distribution 

of loads. The injury prevention approaches involving CNN-LSTM together with 

RCNN currently used for biomechanical analysis in physical education (PE) teaching 

show major operational limitations. The CNN-LSTM (Cai et al., 2024) shows limited 

effectiveness for monitoring continuous relationships between movement sequence 

information because its detection capabilities for precise biomechanical changes are 

limited. The processing speed of the RCNN method described by Wang et al. (2024) 

makes it inadequate for real-time usage by requiring lengthy computation and handling 

complicated spatial patterns. The currently available methods show restricted utility 

in developing customized injury prevention approaches because they do not work well 

with different physical activities and unique individual movement patterns. 

The proposed EEO-GNN effectively deals with the limitations of traditional 

methods when it comes to capturing spatial-temporal correlations and long-term 

dependencies in biomechanical data. An optimized version of real-time injury risk 

prediction becomes achievable as it streamlines computational processing. The EEO-

GNN model possesses properties adaptable to multiple physical activities during 

teaching physical education so it can deliver specific and precise injury prevention 

methodologies. 

5. Conclusion  

The research aims to establish the place and operational role of biomechanical 

analysis when developing injury prevention programs for physical education 

instruction. An efficient EEO-GNN model performed the identification of injury risk 

factors by constructing complex biomechanical relationships and movement patterns. 

To precisely determine joint loads, muscle activation, and movement irregularities, 
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biomechanical data is gathered utilizing motion capture appliances, force plates, and 

EMG. Preprocessing was performed on the collected data, including cleaning and 

standardization, to enhance reliability and consistency. Feature extraction was 

performed using the FFT to analyze frequency-domain characteristics of movements. 

The EEO-GNN model effectively predicted possible injury hotspots by evaluating 

biomechanical stress factors, therefore bringing valuable insight into injury prevention. 

Experimental results proved better F1-score (96.2%), recall (95.2%), accuracy (96%), 

and precision (95%) of the proposed EEO-GNN method compared to the traditional 

approaches. The results underline the possibility of integration between advanced 

biomechanical analysis and deep-learning techniques in optimizing movement 

mechanics to decrease risks and provide safer, more effective physical education 

environments. 

Limitation and future scope 

Biomechanical analysis in physical education helps to prevent injuries by 

optimizing movement patterns and thus reducing strain. However, limitations include 

high equipment costs, technical complexity, and individual variability in response. In 

the future, advanced machine learning motion analysis, wearable technology for real-

time feedback, personalized biomechanical assessment in injury prevention, and 

overall better performance of students in physical education can be envisioned. 

Conflict of interest: The author declares no conflict of interest. 
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