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Abstract: The lesion area in magnetic resonance imaging (MRI) of anterior cruciate ligament 

(ACL) injury is small, the features are difficult to focus, and the multiangle imaging features 

are scattered, which presents great challenges to clinicians for ACL injury. The ACL plays a 

critical role in maintaining knee stability. An injury can result in increased laxity, making the 

knee more vulnerable to further damage. This paper proposes a new neural network model, 

FDMRNet, which automatically focuses on the area of ACL injury and improves the accuracy 

of intelligent discrimination of the degree of ACL injury. Understanding the biomechanical 

effects of ACL injuries is crucial for developing effective rehabilitation protocols aimed at 

restoring normal knee function and preventing re-injury. First, FDMRNet enhances the focus 

of lesion features and reduces noise interference through the feature selection module (FSM), 

thereby improving the lesion localization ability. Secondly, the dimensional feature fusion 

module (DFFM) is used to fuse multi-angle features, which enhances the accuracy of the fusion 

representation of multi-angle features. To evaluate the performance of FDMRNet, real datasets 

from the Guangdong Provincial Armed Police Corps Hospital were used for model training 

and verification. The experimental results show that compared with the mainstream methods, 

the AUC (Area Under Curve), accuracy, precision, recall, and f1-score of the proposed model 

are improved by 2.52%, 3.17%, 5.79%, 4.14% and 4.54% respectively, which fully proves the 

effectiveness and accuracy of the proposed model in MRI classification of anterior cruciate 

ligament injury. Recognizing the biomechanical consequences of ACL injuries highlights the 

importance of accurate diagnosis and effective treatment strategies, which can be significantly 

enhanced through advanced models like FDMRNet. 

Keywords: neural network; classification model; medical imaging; biomechanics; anterior 

cruciate ligament injury; model optimization 

1. Introduction 

Severe ACL injuries can lead to complete loss of knee joint function. Diagnosing 

ACL injuries typically requires a detailed clinical examination by a physician, 

including observing symptoms, assessing knee joint stability, and conducting imaging 

studies such as X-rays and MRI to confirm the extent of the injury. Among these, 

magnetic resonance imaging (MRI) of the knee joint provides the most comprehensive 

imaging assessment, which is not only cost-effective [1] but also helps predict which 

patients may require further treatment [2]. Therefore, MRI of the knee joint has 

become the preferred method for diagnosing ACL injuries. 

Deep learning techniques have demonstrated high accuracy in image 

classification [3–6]. Deep learning models can analyze images quickly, providing a 
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more comprehensive image analysis than less experienced physicians [7], thereby 

improving the efficiency and accuracy of identifying ACL injuries. However, 

integrating deep learning technology with ACL diagnosis presents some challenges. 

In MRI of ACL injuries, the characteristics of the ACL between patients and normal 

individuals are relatively subtle, and MRI images from different patients or even 

different machines may vary. Additionally, MRI of ACL injuries typically includes 

multiple angles, and the lesion characteristics at different angles are not the same. 

Therefore, effectively utilizing the characteristics of the lesion area has become a 

challenge in processing MRI images of ACL injuries with deep learning models. 

Traditional methods, such as MRNet [8], use multiple neural network models in 

combination to process images of the ACL from different angles. However, they suffer 

from a lack of focus on lesion characteristics and the issue of feature dispersion in 

multi-angle images, resulting in still insufficient accuracy. Investigating a method that 

can better select compelling features and utilize high-order features is necessary. 

This paper proposes the ACL injury classification network FDMRNet, which 

first uses VGG16 as the backbone network for feature extraction and employs a feature 

selection module (FSM) to select high-dimensional features to improve the accuracy 

of focusing on the lesion area, thereby enabling the model to better capture semantic 

information of the lesion area. The proposed dimension feature fusion module 

(DFFM) is used to fuse features of different dimensions from the model’s output, 

enhancing the model’s feature expression ability and thereby improving the model’s 

performance in classifying ACL injuries. The main contributions of this paper are as 

follows: 

⚫ The proposal of the FSM module adds FSM after the model’s backbone network, 

allowing the model to select high-dimensional features extracted by the backbone 

network, focusing more on the semantic information of the ACL lesion area and 

enhancing model performance.  

⚫ The proposal of the DFFM module, which, through DFFM, fuses features of 

different dimensions from the model’s output, addresses the issue of feature 

dispersion in multi-angle ACL MRI images and improves the model’s feature 

representation ability. 

⚫ The construction of a dataset for validating the effectiveness of FDMRNet and 

conducting extensive testing. Experimental results show that FDMRNet’s AUC, 

accuracy, precision, recall, and F1 scores are 2.52%, 3.17%, 5.79%, 4.14%, and 

4.45% higher than MRNet’s. 

2. Related work 

2.1. Anterior cruciate ligament injury classification network 

For the classification problem of ACL injuries, there are mainly two approaches: 

using 2D neural networks and 3D neural networks. To test whether deep learning 

models can accomplish the important task of detecting diseases in MRI, Bien et al. [8] 

proposed MRNet, which is a convolutional neural network with a backbone consisting 

of three identical models. These can be various neural networks, such as AlexNet [9] 

or ResNet [10], each processing images from three different angles. Then, the output 

features are concatenated in dimension and passed through a fully connected layer to 
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obtain the final results. Furthermore, when validating with the external dataset made 

public by Štajduhar et al. [11], it was found that external datasets play an important 

role in training deep learning models for generalization. However, the MRNet model 

neglects feature selection and feature fusion, preventing the model from fully utilizing 

lesion characteristics. Zhang [12] developed a classification CNN based on 3D 

DenseNet, using 408 MR images to diagnose ACL tears, and compared its diagnostic 

performance with VGG16 and ResNet. The results were superior to the other two 

models. In a large-scale study, Germann et al. [13] used arthroscopic surgery reports 

as the reference standard, and the deep neural network achieved a sensitivity of 99% 

on an internal dataset of 512 subjects. However, during external validation, the 

diagnostic performance significantly decreased, indicating that its performance may 

decline with the increase in MRI examination heterogeneity. Namiri et al. [14] 

classified ACL injuries using 2D and 3D convolutional neural networks and compared 

performance metrics. Overall, these networks can assist physicians in classifying ACL 

injuries. However, since the performance of 2D CNNs is slightly better than that of 

3D CNNs, 2D CNNs are closer to practical application scenarios. Nevertheless, when 

processing MRI images of the ACL, 2D CNNs have the issue of feature dispersion in 

the features extracted by the backbone network, failing to effectively capture 

important semantic information from the MRI images. Therefore, there is a need to 

investigate a new method to improve the problem of feature information loss in 

traditional methods. 

2.2. Deep feature fusion 

To address issues such as model overfitting and information loss, feature fusion 

modules are commonly used to integrate features from different levels to enhance the 

model’s expressive power. Feature fusion modules can take various forms, such as 

addition, concatenation, and weighted summation [11]. Precise tracking of transparent 

objects, like glasses, is crucial in many robotic tasks, especially robot-assisted living 

tasks. However, traditional tracking algorithms often face performance degradation 

due to their reliance on general learning functions. Garigapati et al. [15] proposed a 

new feature fusion module that integrates transparency information into a fixed feature 

space, making it usable in a broader range of trackers. Deevi et al. [16] proposed an 

efficient modular RGB-X fusion network that utilizes and fuses pre-trained unimodal 

models through scene-specific fusion modules, enabling the construction of adaptive 

network architectures for joint inputs on smaller datasets. Xie et al. [17] proposed a 

novel fusion method called the Point-based Attentive Cont-conv Fusion (PACF) 

module, which directly fuses multi-sensor features on 3D points, aiming to effectively 

merge LiDAR point clouds and RGB images. Chen et al. [18] proposed Freq Fusion, 

which integrates an Adaptive Low Pass Filter (ALPF) generator, an offset generator, 

and an Adaptive High Pass Filter (AHPF) generator to address the issue of high-

frequency feature interference leading to intra-class inconsistency in dense image 

prediction tasks. In late fusion, each modality is processed in a separate unimodal 

convolutional neural network stream, and the scores of each modality are fused at the 

end. Due to its simplicity, late fusion remains the primary method in many state-of-

the-art multimodal applications [19]. However, these feature fusion modules cannot 
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be easily inserted directly into the ACL classification model. Hence, a new feature 

fusion module needs to be designed to fully utilize the multi-angle input characteristics 

of ACL images. 

3. Methods 

3.1. FDMRNet architecture 

The backbone network of FDMRNet is based on VGG16.After the backbone 

network outputs features, the FSM module performs feature selection to capture 

adequate semantic information. The selected features are then fused using the DFFM 

module, which integrates features from various angles of the ACL, followed by the 

final classification output. The overall architecture of FDMRNet is shown in Figure 

1. 

 
Figure 1. Overview of FDMRNet architecture. The backbone network employs a three-branch convolutional neural 

network to extract multi-angle features from MRI image sequences of the ACL captured in three orthogonal planes: 

the axial plane (top branch), sagittal plane (middle branch), and coronal plane (bottom branch). 

Max pooling layers are applied to the features extracted by the backbone network 

to reduce spatial dimensions and accelerate model convergence. The FSM contains 

two view alignment components (before and after feature processing) with a Top-K 

selection mechanism in between: The view alignment components ensure dimensional 

consistency, while the Top-K mechanism filters the most discriminative lesion 

features. The BRF module, sequentially composed of Batch Normalization (BN), 
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Rectified Linear Unit (ReLU), and Fully Connected (FC) layers, performs feature 

normalization and non-linear mapping. The DFFM (Dimension Feature Fusion 

Module) adopts a dual-path strategy: One path concatenates features along the channel 

dimension (0th axis) followed by a fully connected layer for probability prediction, 

while the other concatenates features along the spatial dimension (1st axis) processed 

through two BN-ReLU-FC(BRF) modules before probability generation. Final 

predictions are obtained by fusing outputs from both paths. 

3.2. Features select module 

Effective feature selection can improve the prediction performance of the 

model [20]. The goal of feature selection is to find the optimal feature subset. 

Feature selection can eliminate irrelevant or redundant features, thereby reducing 

the number of features and improving the accuracy of the model [21]. 

The operation of a neural network usually covers three key processes: forward 

propagation, gradient calculation, and parameter update. 

During the forward propagation process, the convolution kernel performs 

convolution operations with the input feature map to generate an output feature map. 

This process extracts feature information from the input feature map through 

convolution operations, which manifests the forward flow of information in the neural 

network. 

Gradient calculation uses the chain rule to backpropagate the error and calculate 

the gradient of each parameter. In a neural network, the error indicates the difference 

between the model’s prediction result and the actual label. By backpropagating the 

mistake, the contribution of each parameter to the error can be clarified, thereby 

providing a basis for a parameter update. 

The parameter update adjusts the weight of the convolution kernel according to 

the calculated gradient direction. In this process, the weights corresponding to the key 

areas will be updated more. Precisely, the convolution kernel will dynamically adjust 

its parameters according to the loss function to allow the model to pay more attention 

to specific areas. For example, it may be the lesion area in medical image analysis. 

The core of backpropagation is to calculate the gradient 
𝜕𝐽

𝜕𝑊
 of the loss function 

𝐽(𝜃) to the convolution kernel parameter 𝑊, and use the gradient descent method to 

update the parameter. Its mathematical expression is: 

𝑊new = 𝑊old − 𝜂 ×
𝜕𝐽

𝜕𝑊
, 

where 𝑊old is the current convolution kernel parameter, 𝜂 is the learning rate, which 

controls the step size of each parameter update. In the next forward propagation, the 

updated parameter 𝑊new will generate the output feature map 𝑋output based on the input 

feature map 𝑋input, and the relationship can be expressed as: 

𝑋output = 𝑊new × 𝑋input. 

At this time, the input feature map 𝑋input is the result after the convolution kernel 

is filtered, and its value will be more significant in some areas. In a specific 

classification task, the features of the lesion area are often more critical. This means 
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that the model will automatically focus more on the lesion area, giving the feature map 

in this part a more significant value. Based on this, we can further guide the model to 

focus on key features by letting the model pay attention to the feature matrix with a 

more significant sum value, thereby improving the model’s performance on specific 

tasks. 

When processing MRI images, traditional 2D CNNs fail to focus effectively on 

the lesion area, which may lead to the negative impact of the loss of some effective 

semantic information. In order to solve this problem, by adjusting the feature 

dimension, the method of selecting the optimal feature subset is adopted to extract 

effective features, thereby enhancing the model’s ability to capture effective semantic 

information. 

We take the feature matrix of the data as the entry point for feature selection and 

propose an FSM, which effectively enables the model to select high-order features 

extracted by the appropriate backbone network. The module is shown in the FSM in 

Figure 1. Before passing through the FSM module, the backbone network will output 

the extracted feature map, which will be max-pooled through the Pool module and 

output the feature matrix 𝑋, which will then serve as the input of the FSM. 

The FSM module adjusts the dimensions of the input and output vectors. The 

output 𝑋 after MaxPool will be adjusted to 𝑋𝑣 by the view operation. For example, if 

the dimension of 𝑋 is (n, m, 1, 1), it will be adjusted to (n, m) after the view operation, 

so there will be no loss of information. 𝑋𝑣 can be calculated as 

𝑋𝑣 = 𝑣𝑖𝑒𝑤(𝑋), 

where the feature matrix 𝑋𝑣 consists of n rows and m columns, the number of rows 

represents the number of images at the current angle. In contrast, the number of 

columns indicates the number of feature maps extracted from a single image by the 

backbone network. Subsequently, it is necessary to calculate the sum of the elements 

in each row, denoted as 𝑆𝑖. The sum 𝑆𝑖 can be expressed as: 

𝑆𝑖 = ∑ 𝑋𝑣𝑖,𝑗

𝑚

𝑗=1
, 

where 𝑋𝑣𝑖,𝑗
 represents the element at the i-th row and j-th column (where { 0 ≤ 𝑖 < 𝑛 

and 0 ≤ 𝑗 < 𝑚 }), indicating the maximum value in the feature map of the j-th channel 

extracted from the i-th image by the backbone network. In other words, it represents 

the feature with the most information within that channel. The sum 𝑆𝑖 calculated for 

each row is used with the feature matrix 𝑋𝑣 through a Topk operation to compute a 

new matrix 𝑋𝑣
′ . The new matrix 𝑋𝑣

′  can be represented as: 

𝑋𝑣
′ = 𝑇𝑜𝑝𝑘(𝑋𝑣 , 𝑆𝑖), 

where 𝑇𝑜𝑝𝑘 can use the sum of each row vector 𝑆𝑖 in the 𝑋𝑣 matrix to find the row 

vectors corresponding to the indexes of the first k maximum values, retain the row 

vectors of the corresponding indexes, and discard all the remaining row vectors to 

obtain a new matrix 𝑋𝑣
′  . The dimension of the new tensor 𝑋𝑣

′  should be (k, m). 

Regarding feature information, 𝑋𝑣
′  retains the row vector corresponding to the 

maximum 𝑆𝑖 value equivalent to the maximum channel feature of the feature map of 

the MRI image with the most feature information. Then, adjust the dimension of 𝑋𝑣
′  
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through View, change the dimension of 𝑋𝑣
′  to a vector of 1 row and k × m columns, 

and obtain a new feature matrix 𝑋𝑣𝑣
′ . 𝑋𝑣𝑣

′  can be calculated as: 

𝑋𝑣𝑣
′ = 𝑉𝑖𝑒𝑤(𝑋𝑣

′ ). 

In summary, the 𝑇𝑜𝑝𝑘 operation is used to select the first 𝑘 most enormous rows 

and the corresponding row vectors according to the value of 𝑆𝑖, and the remaining row 

vectors are discarded. This enables the FSM module to accurately retain the features 

that contain the most information and avoid interference from irrelevant or redundant 

features. In contrast, some traditional feature selection methods may only screen based 

on the statistical properties of the features (such as variance, correlation, etc.) and 

cannot directly focus on high-information feature rows like FSM. Moreover, the FSM 

module can be well adapted to all neural networks to achieve a plug-and-play effect. 

At the same time, some traditional feature selection methods may not be well 

integrated with the neural network’s overall architecture and training process. 

3.3. Multi-view feature fusion module 

Although the FSM module will retain the lesion’s feature information as much as 

possible while removing redundant features, directly using the fully connected layer 

to process the multi-angle features of the anterior cruciate ligament is not ideal.  

The feature fusion module can fully fuse the multi-angle features, but many 

traditional feature fusion modules only perform simple operations such as feature 

splicing or weighted summation in a single dimension, which cannot effectively use 

the characteristics of ACL MRI multi-angle images. 

Inspired by SimSiam’s data projection module [22], this paper proposes the 

Dimension Feature Fusion Module (DFFM). The DFFM projects the input multi-view 

features onto two different dimensional spaces for fusion, enabling the model to obtain 

richer and more comprehensive representations. As a result, the model’s performance 

and generalization ability are improved. 

Compared with traditional feature fusion methods, this multidimensional 

projection approach is more complex and flexible, as it can capture the relationships 

between features from different perspectives. Moreover, the BN operation in the BRF 

module of DFFM allows the gradients to flow among batch elements. Additionally, 

the information about the opposing views in the batch can serve as implicit negative 

(contrastive) terms [23]. All samples in a batch are associated with each other, thereby 

achieving the effects of preventing overfitting and feature fusion. The structure of the 

DFFM is shown in Figure 1. 

DFFM first concatenates the three-dimensional 𝑘 × 𝑚 -dimensional features 

𝑋𝑎𝑥𝑖𝑎𝑙, 𝑋𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙 and 𝑋𝑐𝑜𝑟𝑜𝑛𝑎𝑙 into a 1 × 𝑘 × 𝑚 × 3-dimensional vector 𝑋𝑎𝑥𝑖𝑠0. That 

is, it adds 𝑋𝑎𝑥𝑖𝑎𝑙 , 𝑋𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙  and 𝑋𝑐𝑜𝑟𝑜𝑛𝑎𝑙  in the 0-th dimension and outputs 𝑋𝑎𝑥𝑖𝑠0 , 

thereby mapping the features of the three scattered angles to the same dimension, 

𝑋𝑎𝑥𝑖𝑠0 that can be calculated as: 

𝑋𝑎𝑥𝑖𝑎𝑙 , 𝑋𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙 , 𝑋𝑐𝑜𝑟𝑜𝑛𝑎𝑙 ∈ 𝑅𝑘×𝑚 ⟶
 

𝑋𝑎𝑥𝑖𝑠0 ∈ 𝑅1×𝑘×𝑚×3. 

Concurrently, the three-dimensional 𝑘 × 𝑚 -dimensional features 𝑋𝑎𝑥𝑖𝑎𝑙 , 

𝑋𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙  and 𝑋𝑐𝑜𝑟𝑜𝑛𝑎𝑙  of the input are concatenated into a 3 × 𝑘 × 𝑚-dimensional 
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vector 𝑋𝑎𝑥𝑖𝑠1 ; that is, the vectors are added in the first dimension, and the three 

scattered angle features are mapped to different dimensional spaces for vector 

alignment. 𝑋𝑎𝑥𝑖𝑠1 can be calculated as 

𝑋𝑎𝑥𝑖𝑎𝑙 , 𝑋𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙 , 𝑋𝑐𝑜𝑟𝑜𝑛𝑎𝑙 ∈ 𝑅𝑘×𝑚 ⟶
 

𝑋𝑎𝑥𝑖𝑠1 ∈ 𝑅3×𝑘×𝑚. 

Then 𝑋𝑎𝑥𝑖𝑠0  passes through the fully connected layer and outputs the 1 × 1 

dimensional lesion probability value 𝑓(𝑋𝑎𝑥𝑖𝑠0), which can be calculated as: 

𝑓(𝑋𝑎𝑥𝑖𝑠0) = 𝑊1 × 𝑋𝑎𝑥𝑖𝑠0 + 𝑏1. 

Meanwhile, 𝑋𝑎𝑥𝑖𝑠1  passes through two BRF layers and outputs a 1 × 1 

dimensional lesion probability value 𝑓(𝑋𝑎𝑥𝑖𝑠1), 𝑓(𝑋𝑎𝑥𝑖𝑠1) can be calculated as: 

𝑓(𝑋𝑎𝑥𝑖𝑠1) = 𝑊3 × 𝜎(𝐵𝑁(𝑊2 × 𝜎(𝐵𝑁(𝑋𝑎𝑥𝑖𝑠1)) + 𝑏2)) + 𝑏3. 

Finally, the two lesion probability values 𝑓(𝑋𝑎𝑥𝑖𝑠0) and 𝑓(𝑋𝑎𝑥𝑖𝑠1) are added 

together to output the disease diagnosis result, result can be calculated as: 

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑓(𝑋𝑎𝑥𝑖𝑠0) + 𝑓(𝑋𝑎𝑥𝑖𝑠1). 

4. Experimental results and analysis 

4.1. Dataset 

The experimental dataset is constructed based on the MRI images of the ACL 

from 725 individuals provided by the Guangdong Provincial Armed Police Corps 

Hospital. The machines used to capture the MRI images were Siemens MAGNETOM 

Skyra 3.0T magnetic resonance scanner and GE 1.5T magnetic resonance scanner. 

The patient labels in this dataset were obtained from arthroscopy, meaning that the 

patient data was verified as diseased through ACL surgery under arthroscopy, ensuring 

the accuracy of the patient data. The labels for the experimental dataset include 294 

normal individuals and 431 patients with ACL tears. The dataset was randomly 

divided into three groups with a ratio of 6:2:2 for training, validation, and testing sets, 

respectively, using five-fold cross-validation.  

However, it should be noted that the current dataset only contains samples from 

military personnel, and the sample homogeneity is high, which limits the 

generalization ability of the model. In order to solve this problem, comprehensively 

evaluate the performance of the model, and improve its applicability in different 

populations, we plan to expand the dataset to personnel of different ages, genders, 

nationalities, and various occupations in subsequent research to achieve the purpose 

of diversified samples. 

4.2. Experimental environment 

All experiments were conducted on a computer with an Intel® Core™ i7-13700 

CPU, 64GB of RAM, and the Ubuntu 22.04 64-bit operating system. The computer 

also had an NVIDIA GeForce RTX 4090 graphics card with 24GB of RAM and 

NVIDIA CUDA 12.2. Additionally, the experiments in this paper were completed 

using the Python 3.8.16 programming language within the PyTorch 2.0.1 framework. 
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In the experiment, the model was trained for 50 epochs each time, with a learning 

rate of 1 × 10−5, and the Adam [24] optimizer was used. During the training phase, 

the input images were uniformly resized to 224 × 224 . To perform effective 

normalization, we scaled the pixel values to the range of [0,255] and obtained 𝑥scaled 

as follows: 

𝑥scaled =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
× 255, 

here, 𝑥 represents the pixel value, and min(𝑥) and max(𝑥) represent the minimum 

and maximum pixel values in the image. In this way, the pixel values are linearly 

scaled to the range of [0,255]. Then, we standardized 𝑥scaled according to the mean of 

the data MEAN = 58.09  and the standard deviation STDDEV = 49.73  to obtain 

𝑥standardized. 𝑥standardized can be expressed as: 

𝑥standardized =
𝑥scaled−MEAN

STDDEV
. 

In terms of data augmentation, we used a variety of transformation operations. 

The image was randomly rotated with a probability of 0.2, and the rotation range was 

±15° on the x, y, and z axes; the image was randomly scaled with a probability of 0.2, 

and the scaling ratio was between 0.9 and 1.1; the image was randomly affine 

transformed with a probability of 0.5, and the translation range was 10 pixels. 

The data loader’s parameters were set to batch size 1, and the data order was 

shuffled at the beginning of each training epoch. 

In addition, due to the imbalanced data distribution, the ratio of patients to normal 

people in the data was about 4:6. To solve the problem of data imbalance and 

classification of difficult and easy samples, the cross-entropy loss function is not used, 

but Focal Loss [25] is used as the loss function. 

The expression for Focal Loss is as follows: 

𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾𝑙𝑜𝑔(𝑝𝑡), 

where 𝑝𝑡  is the model’s prediction probability for the correct class; 𝛼𝑡  is a weight 

factor used to balance positive and negative samples, which can be set according to 

the actual situation; 𝛾 is a hyperparameter that adjusts the focus on easy and hard 

samples. In this experiment, the 𝛾 setting is 2.0, set to the proportion of diseased 

patients among all patients, which is 0.406. 

4.3. Performance indicators 

In order to evaluate the classification performance of different models on the 

anterior cruciate ligament MRI image dataset, the experiment tested five test 

indicators: area under the ROC curve (AUC), accuracy, precision, recall, and F1-score. 

The reason for selecting these five indicators is that they can comprehensively evaluate 

the performance of the model from different dimensions, including the overall 

performance of the model, the ability to identify positive classes, and the ability to 

avoid misjudgment and underreporting of cases. The five test indicators are shown 

below. 

AUC =
∑ (FPR𝑖−FPR𝑖+1)×(TPR𝑖+TPR𝑖+1)

𝑛−1

𝑖=1

2
, 
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Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
Precision×Recall

Precision+Recall
. 

TP (True Positives) represents samples correctly classified as positive and indeed 

positive. FP (False Positives) represents samples misclassified as positive but 

negative. TN (True Negatives) represents samples correctly classified as negative and 

indeed negative. FN (False Negatives) represents samples misclassified as negative 

but positive. Precision measures the proportion of correct positive class predictions. 

The higher the Precision, the stronger the model’s ability to accurately identify 

positive examples. Recall (also known as Sensitivity) measures the proportion of 

actual positive classes that are correctly predicted. The higher the Recall, the stronger 

the model’s ability to capture positive examples and the higher the coverage of positive 

samples in the prediction results. Accuracy can measure the overall performance of 

the model, and it can intuitively reflect the overall correctness of the model’s 

classification of all samples, not just limited to positive and negative samples. 

Generally speaking, the higher the Accuracy, the stronger the model’s comprehensive 

judgment ability and robustness. The F1-Score is a metric that combines Precision and 

Recall to provide an overall measure of model accuracy. AUC (Area Under the ROC 

Curve) is a metric for measuring the performance of a model at different classification 

thresholds, represented by the area under the ROC curve. The ROC curve is plotted 

with the True Positive Rate (the same as Recall) on the y-axis and the False Positive 

Rate on the x-axis. The range of AUC is from 0 to 1, and the closer the value is to 1, 

the better the model performance. 

4.4. Backbone network 

To identify the best backbone network for feature extraction in our dataset, we 

tested various networks as the backbone of MRNet. We conducted model performance 

tests and Class Activation Mapping (CAM) experiments on EfficientNet, DenseNet, 

ResNet, AlexNet, and VGG16. CAM is a model visualization technique that 

represents the focus of the model on the important regions of the image [26]. 

In Table 1, VGG16 achieved the highest scores with 93.94% AUC, 86.90% 

accuracy, 88.83% precision, 79.17% recall, and 88.37% F1-Score, outperforming 

other models when used as the backbone network. Compared to other neural networks, 

VGG16 effectively captures rich information in images through a large number of 

convolutional and pooling layers, making it valuable for image classification and 

recognition tasks. This demonstrates that VGG16 is capable of extracting feature 

information more effectively when used as the backbone network in our dataset. 
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Table 1. Experimental comparison of the effects of various backbone networks 

unit: %. 

Backbone 

Network 
AUC Acc Precision Recall F1-Score 

Efficientnet-b0 86.88 78.76 84.97 66.62 79.01 

Efficientnet-b1 81.61 73.79 80.97 62.48 74.07 

Densenet121 86.72 74.90 76.14 64.55 75.61 

Resnet18 76.43 72.55 80.55 58.34 71.79 

Resnet34 65.30 63.72 74.34 60.41 66.67 

Resnet50 77.12 71.28 87.86 60.41 71.60 

Resnet101 85.29 75.03 84.97 70.76 77.27 

Alexnet 93.62 78.76 86.90 70.76 80.00 

VGG16 93.94 86.90 88.83 79.17 88.37 

In Figure 2, the focus of the model on the image regions is ranked as follows: 

red > yellow > blue. In the MRI images of the anterior cruciate ligament, the red 

dashed line indicates the lesion area. The results show that VGG16 can better focus 

on the lesion area in our dataset, with the red area containing only a small proportion 

of non-lesion areas and relatively less yellow area, indicating higher overlap between 

the model’s focus and the lesion area, effectively capturing key information from the 

lesion area with minimal noise interference. In contrast, AlexNet, ResNet18, 

ResNet50, ResNet101, DenseNet101, EfficientNet-b0, and EfficientNet-b1 have 

lower overlap between the red area and the lesion area, or the red area is too large, 

failing to effectively focus on the lesion area, or focusing on too much noise area. 

Therefore, it can be concluded that VGG16 performs relatively well in extracting 

features from this type of data. 

 
Figure 2. Comparison of class activation mapping. In CAM, the degree of attention that the model pays to regions of 

interest [26] in the image is represented by color, where red indicates a stronger focus than yellow, and yellow 

indicates a stronger focus than blue. The red line in the ACL MRI images denotes the area of the lesion. 

VGG16, compared to other neural networks, effectively extracts abundant 

features from images through many convolutional and pooling layers, which are very 
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useful for image classification and recognition tasks. Additionally, the VGG16 

structure is relatively simple compared to other networks, with fewer layers, and the 

model converges faster, saving computational resources effectively. From the results 

in Table 1, we can see that using VGG16 as the backbone network achieves higher 

values in all indicators compared to other models. It demonstrates that the model is a 

superior classifier in overall performance, disease diagnosis accuracy, precision of 

case examination, and comprehensiveness of checking cases. 

CAM is a model visualization technique that reveals which regions of an image 

are most important to the model’s predictions, allowing us to explore the basis of 

network predictions further. The heatmap in Figure 2 shows that when VGG16 is used 

as the backbone network, the red area significantly overlaps the lesion areas marked 

by doctors, and the yellow and red regions are relatively small. It indicates that the 

model’s focus areas highly correspond to the lesion regions, effectively capturing the 

essential semantic information of the lesion area and reducing noise interference. 

Therefore, VGG16 performs well in feature extraction for such data. 

4.5. Model performance comparison 

To evaluate the effectiveness of FSM and DFFM, we compared the performance 

of FDMRNet with MRNet, LeNET-5 [27], 3D DenseNet [12], MR-Transformer [28], 

and TNIDBL [29], which have performed well in anterior cruciate ligament image 

classification in recent years, as well as Astroformer [30], Dynamics2 [31], 

SparseSwin [32], GAC-SNN [33], and ASB-Former-B [34], which have performed 

well in other classification fields. Table 2 shows the performance comparison between 

FDMRNet and other models. 

Table 2. Model performance comparison unit: %. 

Model AUC Acc Precision Recall F1-Score 

MRNet (VGG16) 93.94 86.90 88.83 79.17 88.37 

LeNET-5 91.48 86.21 86.62 77.10 83.06 

3D DenseNet 92.03 85.10 88.41 81.24 84.67 

TNIDBL 90.06 84.69 77.79 82.48 79.96 

MR-Transformer 94.12 87.31 90.90 80.28 86.72 

Astroformer 94.44 88.69 91.03 80.55 89.46 

Dynamics2 87.41 78.21 77.24 74.62 75.23 

SparseSwin 90.42 85.38 87.59 74.48 82.66 

GAC-SNN 88.72 79.03 75.45 80.28 78.38 

ASB-Former-B 87.42 80.41 74.31 79.72 76.89 

FDMRNet 96.46 90.07 94.62 83.31 92.91 

From the results in Table 2, we can see that the AUC, Accuracy, Precision, 

Recall, and F1-Score of FDMRNet are 2.52%, 3.17%, 5.79%, 4.14%, and 4.54% 

higher than those of MRNet and outperform other models. It can be seen that the 

addition of FSM and DFFM enhances MRNet’s ability to capture important semantic 

information and feature fusion, thereby improving its generalization performance and 

comprehensive model performance. 
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The Precision-Recall Curve is an important tool for evaluating model 

performance. As can be seen from Figure 3, FDMRNet’s average precision (AP) 

value reaches 0.88, and its PR curve completely envelops the curves of other models. 

This shows that FDMRNet is significantly better than other comparison models in 

terms of comprehensive precision and recall performance.  

 
Figure 3. Precision recall graph. 

The ROC curve is a core visualization tool for evaluating the performance of a 

binary classification model. The curve dynamically depicts the corresponding 

relationship between the True Positive Rate (TPR) and the False Positive Rate (FPR) 

as the classification threshold changes, intuitively reflecting the model’s trade-off 

mechanism between sensitivity and specificity. Combining Figure 4 and Table 2, it 

can be seen that the ROC curve of FDMRNet shows a significant upper left shift 

feature, and its area under the curve (AUC) reaches 0.9646, which is an average 

increase of 2.52% over the baseline model (MRNet) and significantly stronger than 

other models. Moreover, FDMRNet performs well at each recall rate threshold, which 

shows that FDMRNet has stronger robustness in controlling the false positive rate. 

 
Figure 4. Receiver operating characteristic curve graph. 
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4.6. Ablation experiment 

To assess the effectiveness of the FSM and the impact of the number of selected 

features on the model’s performance, we compared the performance metrics of MRNet 

with that of MRNet augmented with FSM, using the VGG16 backbone network, which 

demonstrated the best overall performance. We evaluated the effects of FSM selecting 

different numbers of features, that is, the number of effective features chosen. The 

results are shown in Table 3. The different parameters of FSM represent the number 

of selected features. It can be observed that when the parameter f = 7, the Accuracy, 

Recall, and F1-Score of MRNet with FSM added improved by 2.20%, 3.31%, and 

2.74% compared to MRNet, respectively. When the parameter f = 6, the model 

achieved the highest AUC of 95.22%, which is 1.28% higher than that of MRNet. 

When the parameter f = 5, the Precision of the model reached 92.28%, 3.45% higher 

than MRNet. These results validate the effectiveness of FSM in focusing on lesion 

characteristics and enhancing model performance. However, the feature parameters of 

FSM need to be adjusted according to the characteristics of the data. 

Table 3. Comparison of FSM parameter effects unit: %. 

Model AUC Acc Precision Recall F1-Score 

MRNet (VGG16) 93.94 86.90 88.83 79.17 88.37 

MRNet (VGG16) + FSM (f = 2) 94.03 87.45 90.07 80.41 89.13 

MRNet (VGG16) + FSM (f = 3) 94.42 88.69 89.79 80.69 90.72 

MRNet (VGG16) + FSM (f = 4) 94.07 88.83 90.48 81.52 90.53 

MRNet (VGG16) + FSM (f = 5) 94.33 85.10 92.28 77.10 87.06 

MRNet (VGG16) + FSM (f = 6) 95.22 88.97 91.59 82.34 89.89 

MRNet (VGG16) + FSM (f = 7) 94.84 89.10 91.59 82.48 91.11 

To evaluate the impact of the DFFM on model performance, we used VGG16 as 

the backbone network. We compared the performance of the MRNet model enhanced 

with the DFFM module against the original MRNet model. The results are shown in 

Table 4. 

Table 4. DFFM effect comparison unit: %. 

Model AUC Acc Precision Recall F1-Score 

MRNet (VGG16) 93.94 86.90 88.83 79.17 88.37 

MRNet (VGG16) + DDFM 95.48 88.83 93.52 82.62 91.49 

From Table 4, it can be observed that the model with the added DFFM 

outperforms the original model across various metrics. Specifically, there were 

improvements of 1.54% in AUC, 1.93% in Accuracy, 4.69% in precision, 3.45% in 

Recall, and 3.12% in F1-Score. These results confirm that the DFFM can effectively 

integrate the high-order features from three perspectives output by the model, leading 

to a significant enhancement in model performance. 
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5. Discussion 

ACL tears typically refer to injuries or ruptures of the anterior cruciate ligament 

(ACL) in the knee. Clinical studies in recent years have shown that the number of 

patients with ACL tears is on the rise, especially among athletes, soldiers, police, and 

other groups. Patients with ACL tears usually experience symptoms such as knee 

instability and limited extension and flexion activities. If not treated in time, it will 

increase the risk of delayed rehabilitation and recurrent sprains. Traditional 

examination methods rely on doctors manually examining or analyzing patient-

specific ACL MRI images for diagnosis. This diagnostic method is highly dependent 

on the doctor’s professional knowledge. However, it is easily affected by the doctor’s 

subjective judgment, and the diagnostic process is time-consuming, which may lead 

to delayed treatment. 

Deep learning methods have brought new opportunities for ACL injury diagnosis 

in this context. It can automatically analyze image data, improve inspection efficiency, 

and reduce the time required for manual operation. Analyzing a large amount of data 

can minimize the impact of subjective judgment, provide more objective results, and 

help patients take treatment measures as soon as possible. However, there are two 

problems with traditional deep learning methods when processing ACL MRI images: 

first, the lesion features with considerable noise are difficult to focus on, and second, 

the three-view input characteristics of ACL images cause feature diffusion. 

In order to solve the above problems, we proposed a targeted improvement plan. 

In order to solve the problem of the lesion features and noise in ACL MRI images 

being challenging to focus on, we proposed FSM. FSM is used to select the feature 

subset containing the richest feature information, direct the model’s attention to the 

lesion area, minimize the noise that may interfere with the model, and enhance the 

model’s ability to focus on the lesion area. On the other hand, selecting features 

relevant to disease discrimination can simplify the model and help alleviate the 

overfitting problem. 

To solve the feature dispersion problem caused by the model’s multi-view input 

characteristics, we proposed DFFM. This module mainly performs feature fusion, 

maps the multi-view scattered features to two different vector spaces after filtering by 

the FSM module, and then converts them into disease probability values, which 

improves the model’s ability to utilize features and fuse multi-view features. By 

improving the FSM and DFFM modules, our model achieved specific results in the 

ACL injury MRI image classification task. 

However, there is still much room for improvement in our improvements. The 

aspects in which the model performance can be further improved mainly include the 

following: First, increasing the amount and diversity of data. Our existing dataset is a 

pure military dataset with only 725 cases, and the data is relatively homogeneous. 

Obtaining data sets of different occupational groups and increasing the data will help 

improve the model’s generalization performance to better adapt to the diagnostic needs 

of different types of patients. Second, the backbone network of the model has not been 

improved. Other more suitable backbone networks can extract features from ACL 

MRI images more effectively, improving model performance and generalization 

ability. Third, the loss function is improved. This dataset has the problem of sample 
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imbalance. Although the Focal Loss function has been used to solve the sample 

imbalance problem as much as possible, a better solution is to design a special loss 

function for this data type. 

In addition, ACL injury is closely related to meniscus injury and cartilage injury, 

and clinical diagnosis often involves multiple types of data, such as patient history, 

clinical symptom description, physical examination results, and other imaging 

examinations (such as X-rays, CT, etc.). Future research can be expanded in a broader 

direction. Specifically, it can conduct in-depth research with the help of multimodal 

models. Multimodal models can integrate multiple sources of information and can 

capture injury characteristics from different angles and levels. By collecting a large 

amount of medical image data, including ACL, meniscus, cartilage and other injuries, 

covering different modal data such as MRI images, X-rays, and CT, and conducting 

systematic training, it is expected to build a universal knee injury training model that 

can identify multiple modal injuries. This universal model is no longer limited to a 

single ACL injury classification but can accurately diagnose and classify a variety of 

common knee injuries, such as meniscus injuries, cartilage injuries, and other diseases, 

as well as multiple image data, including MRI images, X-rays, CT, etc., which will 

further improve the accuracy and comprehensiveness of diagnosis and provide more 

substantial support for clinical treatment. 

6. Conclusion 

In this paper, a new network structure, FDMRNet, was proposed based on MRNet 

to address the problem of difficulty in focusing on lesion features in ACL MRI images 

and feature dispersion caused by multi-view input. We designed an FSM module to 

screen the optimal feature subset of the model so that the model’s attention can be 

better focused on lesion features. In addition, we proposed a DFFM module to project 

multi-view model features into different dimensions and then fuse them, thereby 

giving the model richer data understanding capabilities. We constructed an anterior 

cruciate ligament MRI image dataset and conducted extensive testing. Experimental 

results show that compared with mainstream models, FDMRNet achieved the best 

performance in the ACL classification task. FDMRNet can assist clinicians in ACL 

diagnosis and has high application and promotion value in clinical diagnosis. 
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