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Abstract: This study is based on breast cancer data from the National Cancer Institute (NCI) 

database, focusing on triple-negative breast cancer (n = 200) and LumB subtype breast cancer 

(n = 400). A data generation and analysis process combining non-parametric statistics and 

machine learning was designed. In the initial stage, the wgain algorithm was developed by 

integrating Wasserstein Generative Adversarial Networks (WGAN) and Random Forest 

algorithms. The generated expanded dataset was consistent with the original data, with a 

Pearson correlation coefficient of approximately 0.9, and Principal Component Analysis (PCA) 

confirmed the high accuracy and consistency of the generated data. The optimal threshold for 

differential gene selection was determined using the High-Confidence (HC) high-order 

identification method, and significance analysis was performed using rank-sum tests, 

Kolmogorov-Smirnov (K-S) tests, and edgeR tests. The results indicated that the rank-sum test 

performed the best (False Discovery Rate (FDR) = 0.099). A comparison with GAN and 

Wasserstein GAN Gradient Penalty (WGAN-GP) algorithms showed that wgain had a 

significant advantage in data consistency and differential gene reproduction (accuracy 83%). 

This study demonstrates the advantages of combining non-parametric statistics with machine 

learning, providing a new method for biological data generation and precise analysis. 

Keywords: rank-sum test; K-S test; HC high-order identification method; bioinformatics; 

wgain algorithm 

1. Introduction 

Generative Adversarial Networks (GANs) [1] have transformed gene expression 

analysis, particularly for small-sample datasets. While Marouf et al. employed 

WGAN-GP with gradient penalties for transcriptomic data, our wgain method extends 

this approach to tissue- and organ-specific bulk Ribonucleic Acid (RNA)-seq and 

microarray data. We further enhance biological relevance through word embeddings 

for categorical covariates. Traditional tools like SynTReN and GeneNetWeaver [2] 

focus on algorithm validation rather than small-sample analysis. Although DESeq2 

and edgeR excel in low-replication scenarios, their efficacy diminishes with larger 

datasets. Recent deep learning approaches, such as GANs [3], address these limitations 

by capturing non-linear relationships. Building on this, wgain integrates GANs with 

Random Forests to improve differential gene expression (DEG) detection and pathway 

enrichment. Validated on public datasets, wgain replicates large-scale study patterns 

using limited samples [4]. Our enhanced Wasserstein Generative Adversarial 

Inference Network (WGAIN) method further refines DEG detection via Random 

Forests, balancing accuracy and stability. Challenges persist, including computational 

demands and training instability. This study introduces a hybrid framework combining 

multiple GAN variants with Random Forests and non-parametric methods (e.g., rank-
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sum tests [5] and HC optimization [6]) to enhance DEG identification in small-sample 

contexts. Data preprocessing included normalization and batch correction, while 

GANs [7] generated synthetic samples to augment datasets [8]. Random Forests [9] 

improved DEG identification robustness, and non-parametric methods [10] optimized 

selection thresholds [11]. Validation via cross-validation and statistical tools 

confirmed the method’s efficacy, overcoming small-sample limitations and advancing 

DEG analysis. 

2. Materials and methods 

2.1. Rank-sum test 

The rank-sum test is a non-parametric method comparing two independent 

sample distributions without assuming normality. Key implementations include the 

Mann-Whitney U and Wilcoxon rank-sum tests, widely used for gene expression 

analysis in small or non-normal datasets. 

1) Basic steps of the rank-sum test 

The core principle of the rank-sum test is to assess whether the overall 

distributions of two independent sample groups are significantly different by 

calculating the sum of ranks for each group. The specific steps are as follows: 

Combine the two sample groups: Merge the data from the two sample groups into 

one combined dataset, removing any group labels. 

Ranking: Sort the combined dataset and assign a rank to each data point. If there 

are tied values in the data, assign the same rank to them, and the average of these ranks 

will be assigned as their rank. 

Calculate the rank sums: Calculate the sum of ranks for each of the two groups 

of data. 

Calculate the test statistic: Based on the rank sums, compute the test statistic and 

perform the hypothesis test. 

2) Mann-Whitney U Test 

The Mann-Whitney U Test is one of the most common Rank-Sum Test methods 

used to compare the differences between two independent samples and to test the null 

hypothesis that the two samples come from the same population distribution. The test 

is designed to determine whether there is a significant difference between the two 

groups. X = {x1, x2, x3, …, xn} and y = {y1, y2, y3, …, yn}. Merge all the data from 

X and y, and sort the combined data in ascending order. 

3) Calculate the rank sums RX and RY 

Calculate the rank sums for each sample group, denoted as RX and RY, 

respectively:    

𝑈𝑥 = 𝑅𝑥 −
𝑛(𝑛−1)

2
, 

𝑈𝑌 = 𝑅𝑌 −
𝑛(𝑛−1)

2
, 

where Ux and UY are the statistical measures for the X-group and Y-group, respectively 

[12]. 

4) Determine significance 
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The final test statistic is u which is the smaller of Ux and UY. If the value of U is 

small, the null hypothesis can be rejected, indicating that there is a significant 

difference between the two datasets. The distribution of this statistic approximates a 

standard normal distribution, allowing for a Z-test based on its value. 

𝑍 =
𝑈 − 𝜇𝑈
𝜎𝑈

, 

where μU and σU are the expected value and standard deviation of the statistic u: 

𝜇𝑈 =
𝑚𝑛

2
, 

𝜎𝑈 = √
𝑚𝑛(𝑚+𝑛+1)

12
. 

Based on the Z value, we can look up the corresponding standard normal 

distribution to determine the p-value and thus make a decision on whether to reject the 

null hypothesis [13]. 

2.2. HC higher-order identification method 

The HC higher-order identification method is typically combined with machine 

learning techniques for pattern recognition and classification in complex datasets. In 

certain specific fields, this method can be used to determine the threshold range for p-

values. It is a data-driven approach that automatically extracts features from the data 

and makes inferences without relying on traditional hypothesis testing methods. The 

HC algorithm we use is based on the work by David Donoho and Jin, in which the e 

Influential Features PCA (IF-PCA) algorithm employs the KS test [14] to output p-

values. These p-values are sorted, and the k-th HC score is computed, resulting in an 

improved HC identification algorithm. In our case, we modify this algorithm to 

integrate the rank-sum test. The steps for the rank-sum test within the HC 

identification process are as follows: 

1) For each test, compute a test statistic and calculate the corresponding p-value 

based on the test statistic. 

2) Rank the p-values, such that π(1) < π(2) < … < π(p); 

3) Calculate the k-th HC score, corresponding to the second-order z-score. 

𝐻𝐶𝑝,𝑘 = √𝑝 [

𝑘

𝑝
−𝜋𝑘

√𝜋𝑘−(1−𝜋𝑘)
]. 

4) Take the maximum value and calculate the corresponding HCp∗ = max1 ≤  

k ≤ p α0{HC, k}, find the corresponding k, and consider the largest values, rejecting all 

H(i), i = 1, 2, …, k. 

2.3. Combining random forest with generative adversarial networks—

Wgain 

Wgain (Weight Generative Adversarial Networks Integrated with Random 

Forest) is an innovative method that combines Generative Adversarial Networks 

(GANs) with a Random Forest classifier. The goal is to enhance the accuracy and 
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stability of gene expression pattern recognition by increasing data volume and 

diversity. The main implementation steps are as follows: 

1) Training the Generative Adversarial Network (GAN) Model 

In wgain, we use an ensemble model consisting of 10 GANs. Each GAN consists 

of two parts: the discriminator and the generator. The generator learns gene expression 

patterns specific to a particular phenotype from Z-normalized gene expression data 

and generates synthetic samples that resemble real data. The discriminator, on the 

other hand, accepts both real and generated data, with the task of distinguishing 

between the two. The generator and discriminator are trained alternately, and after 

2000 training epochs, the generator can produce synthetic data that is almost 

indistinguishable from real gene expression data, greatly expanding the quantity and 

diversity of the training samples. 

2) Restoring Gene Expression Scale 

Since the synthetic data output by the GAN is Z-normalized, wgain further uses 

the mean and standard deviation from public datasets to perform a correction for the 

gene expression scale. The Random Forest classifier is used to classify each sample in 

the public dataset, determining its similarity to the target phenotype. Then, based on 

the mean and standard deviation of gene expression from the public samples, the 

absolute gene expression values of the synthetic data are restored, ensuring that the 

generated data is consistent in scale with the real data. 

3. Research design 

Data Preprocessing: The original dataset consists of 19,113 genes and includes 

200 LumA samples and 400 LumB samples. For the data generation experiment, small 

sample sizes of 20 vs. 40 were selected. After removing low-expressed genes, 16,131 

genes remained. The data were then transformed using the limma-voom method in the 

R package to ensure proper normalization and make the data suitable for the 

subsequent analysis. 

To ensure the quality of the generated data, the values of each gene within the 

same class were standardized, resulting in a distribution with a mean of 0 and a 

standard deviation of 1. To enhance the accuracy and diversity of the generated data, 

multiple Generative Adversarial Network (GAN) architectures were used for data 

generation. A total of five GAN models were employed. WGAN-GP was used as the 

primary generator architecture for data generation in Class 1 and Class 2. Since 

WGAN-GP is an unsupervised learning model, the data for Class 1 and Class 2 were 

generated using different models. 

The WGAN-GP architecture consists of a generator and a discriminator. The 

generator has three hidden layers with 256, 512, and 1024 nodes, while the 

discriminator has one hidden layer with 512 nodes. Each hidden layer uses a Leaky 

ReLU activation function with a slope of 0.5 to enhance the model’s nonlinear 

expression ability. The input layer of the generator consists of 128 nodes, 

corresponding to a 128-dimensional Gaussian distribution vector. The number of 

nodes in the output layer of the generator and the input layer of the discriminator 

matches the total number of genes. The output layer of the discriminator has 256 

nodes. 
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Additionally, to further enhance the diversity of the generated data, other types 

of GAN models were employed, including WGAN (Wasserstein GAN). Each GAN 

model was trained separately in different classes (such as Class 1 and Class 2) to 

generate more diverse sample data. The use of these models effectively avoided the 

homogeneity of the generated data and improved the quality of the final generated 

dataset. 

During training, both the generator and the discriminator were optimized using 

the Adam optimizer. Specifically, the learning rate was set to 0.0002, and the gradient 

penalty coefficient was set to 10. The Adam optimizer combines momentum and 

adaptive learning rates, effectively handling sparse gradients and non-stationary 

objectives. In this experiment, the β1 was set to 0.5, and β2 was set to 0.999 to improve 

training stability. Each batch contained 2 samples. As pointed out by Gulrajani et al. 

[15], the training process included 2000 epochs, where the discriminator’s parameters 

were updated every five iterations, and the generator’s parameters were updated once 

per epoch. After training the WGAN-GP, the output data from the generator were 

restored to the log Counts Per Million (logCPM) range to ensure that the generated 

data were both usable and interpretable. 

To enhance the sample size of the generated data, the sample size was set as an 

integer multiple of the real data, ranging from 1 to 20 times. For each multiplier, to 

minimize randomness in the generated data, five different datasets were generated 

after training WGAN-GP. For each multiplier, the generated data from Class 1 and 

Class 2 were merged to form five generated datasets, and the average Pearson 

correlation coefficient between these generated datasets and the real dataset was 

calculated. 

Additionally, a random forest model was used for classification analysis. Random 

forests, as an ensemble learning method, were used to classify the generated and real 

data, further confirming the similarity of gene expression patterns between the 

generated and real data. The training process of the random forest model used samples 

generated from the augmented dataset, with the final classification accuracy serving 

as an important indicator of the quality of the generated data. After multiple training 

and cross-validation iterations, the random forest model showed stable performance 

in the classification task, further validating the reliability and application potential of 

the generated datasets. As illustrated in Figure 1, the experimental workflow diagram 

provides a clear depiction of the primary experimental steps. 
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Figure 1. Experimental workflow diagram: (a) Overview of GAiN; (b) the principle of GAN; (c) the process of 

Random Forest; (d) the experimental process. 

4. Evaluation of the quality of generated data 

4.1. Pearson correlation coefficient 

To validate the reliability of the data generation method, 20 and 40 samples were 

randomly selected from two sample groups to create small-scale datasets. These 

datasets were then used to generate expanded data through wgain. Subsequently, the 

Pearson correlation coefficients between the generated data and the original data were 

evaluated. As the multiple of generated data increased, the average Pearson correlation 

coefficient between the generated data and the original data showed a gradual upward 

trend, eventually stabilizing after reaching a certain multiple. This result indicates that 

the data generated by wgain effectively preserves the feature distribution of the 

original data and achieves high-quality extension of gene expression data under small 

sample conditions. This anviding support for subsequent gene differential expression 

analysis and model construction. As depicted in Figure 2, the average Pearson 

correlation coefficient plot provides a visual representation of the correlation analysis 

results. 
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Figure 2. Average Pearson correlation coefficient plot. 

4.2. Principal component analysis 

In the two-dimensional visualization based on principal component analysis, the 

red points represent the original data, and the gray points represent the generated data. 

From the plot, it can be observed that the distribution pattern of the generated data 

closely matches that of the original data in the principal component space, 

indicating that the generated data effectively simulates the main structure and features 

of the original data. 

Regarding the distribution range of the first and second principal components, 

the generated data’s distribution range covers the main area of the original data, with 

no significant deviations. This suggests that the generated data performs well in 

capturing the global distribution trends of the original data. Additionally, the density 

and point distribution characteristics of the generated data in the principal component 

space are highly similar to those of the original data, further confirming its 

effectiveness in preserving the local characteristics of the data. 

In the overlapping region between the generated and original data, the 

distribution density of the gray points and red points shows high consistency, 

indicating that the generated data successfully replicates the statistical features of the 

original data. The distribution of the generated data in the boundary region also does 

not exhibit any abnormal or unreasonable clustering, demonstrating the stability of the 

generation model in handling the boundaries. Figures 3 and 4 present the principal 

component plots of the original and generated data, respectively, providing a 

comparative visualization of their underlying data structures. 
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Figure 3. Principal component plot of original data. 

 

Figure 4. Principal component plot of generated data. 

5. Generation data testing 

5.1. Non-parametric statistics combined with HC higher-order 

identification method 

For the generated data, we conducted significance analysis of gene expression 

data using Wilcoxon rank-sum test, K-S test, and the traditional biological method 

edgeR. To do this, we ranked the test statistics using the HC method and conducted a 

comprehensive analysis of their p-value distribution and HC corrected statistics. The 

experimental results showed that the null hypothesis was rejected at p = 0.00049, p = 

0.00049, p = 0.00049, p = 0.00042, p = 0.00042, p = 0.00042, and p = 0.005, p = 0.005, 

p = 0.005, indicating significant statistical differences for the corresponding gene 

features. Further analysis of the trend in HC corrected statistics revealed that the HC 

value peaked when the number of features reached 3876, indicating the optimal signal 
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strength for this feature set. In contrast, the K-S test results indicated that the 

corresponding number of features was 6123, while the edgeR method indicated 6318 

features. The results are shown in the figure below. The rank-sum test achieved 

optimal FDR control (Figures 5–8). 

 

Figure 5. Comparison of principal components. 

 

Figure 6. Rank-sum test HC results plot. 
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Figure 7. K-S test HC results plot. 

 

Figure 8. EdgeR test HC results plot. 
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As shown in the table below, this study systematically identified and analyzed 

differentially expressed genes (DEGs) using the edgeR method, Wilcoxon rank-sum 

test, and K-S test, combined with the HC higher-order identification method. The aim 

was to evaluate the applicability and effectiveness of each method in large-scale gene 

data analysis. Table 1 presents the non-parametric statistical results, providing 

detailed insights into the statistical analysis conducted in this study. 

Table 1. Non-parametric statistical results. 

 p Number of Differentially. Expressed Genes Number of False Discoveries False Discovery Rate 

Rank-Sum Test 0.0005 3876 384 0.099071207 

K-S Test 0.0049 6123 738 0.120529152 

edgeR Test 0.005 6318 907 0.143558088 

From the perspective of data analysis, the Wilcoxon rank-sum test demonstrates 

high accuracy, with its false discovery rate significantly lower than the other two 

methods. In balancing detection sensitivity and false discovery control, the Wilcoxon 

rank-sum test achieves a superior equilibrium. 

As a non-parametric statistical method, the Wilcoxon rank-sum test is 

particularly suitable for scenarios with large sample sizes, unknown or biased data 

distributions. It has lower assumptions regarding distribution, making it more stable 

and robust. This allows it to provide accurate and reliable results without adding extra 

complexity. In contrast, while the edgeR method is widely used in gene expression 

analysis, it relies on generalized linear models with stricter assumptions and has a 

stronger dependence on data distribution and false discovery control. The K-S test, 

although more flexible, is limited in sensitivity under specific distributions and does 

not offer the same level of false discovery control as the rank-sum test. 

Based on the above results and analysis, it can be concluded that under traditional 

large-sample conditions, the Wilcoxon rank-sum test is recommended as the primary 

method for gene expression analysis in non-parametric statistics. Its stable 

performance in large-scale gene data and its effective control of false discoveries 

provide a solid foundation for ensuring the reliability and scientific validity of the 

analysis results. This conclusion serves as an important reference for differential gene 

expression research and subsequent analyses. 

5.2. Comparison of wgain with other models 

By comparing the differential gene (DEGs) detection results of wgain with the 

mainstream algorithms GAN and WGAN-GP, the performance of each method was 

evaluated in terms of the accuracy of the generated data and the control of false 

discovery rate (FDR). A total of 3876 differential genes were detected in the original 

data using wgain. The following are the specific analysis results for the generated data, 

wgain outperformed in accuracy and FDR (Figures 9 and 10). Table 2 provides a 

comprehensive comparison of different methods, highlighting their respective 

strengths and limitations. 

 



Molecular & Cellular Biomechanics 2025, 22(4), 1465. 
 

12 

Table 2. Method comparison. 

 The number of differential genes overlap count 

wgain   3629 3245 

gan   3920 3089 

wgan-gp    4130 3200 

 

Figure 9. Comparison of statistical results plot. 

 

Figure 10. Accuracy comparison plot. 

The performance differences of three generative models—wgain, GAN, and 

WGAN-GP—in differential gene detection were compared using two key metrics: 

FDP and TP [16]. FDP measures the proportion of false discoveries, reflecting the 

accuracy of the generated data, while TP evaluates the model’s ability to identify true 

differential genes in the generated data, indicating how well it retains the 

characteristics of the real data. 

From the FDP results, wgain demonstrated a significant advantage, showing the 

lowest false discovery rate, indicating that the data generated by wgain are more 

reliable in terms of consistency with real data. In contrast, GAN had a significantly 

higher FDP than wgain, suggesting that a relatively larger proportion of genes in the 
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generated data were falsely detected. WGAN-GP exhibited an even higher FDP than 

the other two methods, indicating a notable deficiency in accurately identifying 

differential genes in the generated data. A lower FDP is an important indicator of 

generative model quality, and wgain’s excellent performance in this aspect suggests it 

is more suitable for bioinformatics analyses that require high accuracy. Figure 11 

presents an error rate comparison plot, visually illustrating the differences in error rates 

among various methods or conditions. 

 

Figure 11. Error rate comparison plot. 

Regarding the TP results, wgain also performed excellently, with the highest true 

positive rate and the greatest success in replicating the true differential genes from the 

original data. This indicates that wgain is effective at retaining the key information 

from the original data, thus enhancing the scientific value of the generated data. The 

TP for GAN was slightly lower than wgain but still at a relatively high level, 

suggesting that it can somewhat replicate the characteristics of the real data. WGAN-

GP showed a slightly lower TP than both wgain and GAN, reflecting its somewhat 

reduced capability to capture the true differential gene features. 

In summary, based on the analysis of both FDP and TP results, wgain 

outperforms GAN and WGAN-GP in both the accuracy of the generated data and its 

ability to preserve key features. wgain not only significantly reduces the false 

discovery rate but also effectively increases the detection of true differential genes. 

This indicates that wgain has significant advantages in differential gene analysis and 

biological data generation, and when combined with the Wilcoxon rank-sum test, it 

can serve as a major method for enhancing data in current biostatistical practices. 

5.3. Conclusion 

In this study, we proposed and implemented a data augmentation approach—

termed the WGAIN algorithm—that integrates WGAN-GP with a random forest 

classifier to address the limitations of differential gene expression analysis using small 

sample datasets. Our experimental results demonstrated that the WGAIN algorithm 

outperforms traditional methods in terms of data generation stability, data quality, and 

the accuracy of differential gene identification. Traditional GAN-based methods (e.g., 
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the GAIN method proposed by Waters et al. [4]) are prone to mode collapse during 

training, which can compromise the stability of the generated data. In contrast, we 

employ WGAN-GP, which introduces a gradient penalty term to improve the training 

balance between the generator and the discriminator, thereby significantly enhancing 

the robustness and quality of the generated data. 

Additionally, existing research (e.g., Li et al. [2]) has indicated that the rank-sum 

test exhibits superior statistical performance in large-sample differential expression 

analyses. However, such methods depend on a preset p-value threshold (typically 

0.05), and this subjective thresholding may exaggerate statistical significance when 

applied to small sample datasets. To address this issue, we developed a novel threshold 

determination strategy based on the Higher Criticism (HC) approach. This data-driven 

method uses a mathematical formulation to automatically determine the optimal p-

value threshold, thus overcoming the limitations of subjective thresholding inherent in 

traditional methods. This strategy not only ensures the objectivity and precision of 

statistical assessments under small-sample conditions but also demonstrates 

remarkable stability across various tests. 

Furthermore, we validated the similarity between the generated and real data 

using a random forest model, further confirming that the WGAIN algorithm 

effectively captures and preserves key gene expression features during data 

augmentation, thereby providing a robust foundation for subsequent differential gene 

screening. Overall, the WGAIN algorithm significantly enhances the performance of 

small-sample data analysis, offering a novel and efficient technical pathway to address 

data scarcity issues, with considerable potential for broader application and further 

development. 

5.4. Potential weaknesses 

Despite the strong performance of wgain in data generation, there are several 

potential weaknesses that may impact its effectiveness in practical applications: 

5.4.1. Training instability 

Although WGAN-GP mitigates some of the training instability issues of 

traditional GANs through gradient penalties, GANs still face challenges such as mode 

collapse, particularly when dealing with complex or high-dimensional data. This can 

lead to instability during training and affect the quality and consistency of the 

generated data. 

5.4.2. Overfitting 

Due to the model’s complexity and long training periods, overfitting may occur, 

especially when the training data is small or the data distribution is imbalanced. This 

can cause the model to overly fit specific training samples, limiting its ability to 

generate diverse, representative data. 

5.4.3. High computational cost 

The use of multiple GAN architectures increases the computational load, 

particularly when each model needs to be trained independently. This significantly 

increases training time and hardware resource consumption, posing a challenge for 

researchers with limited computational resources. 
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5.4.4. Lack of data diversity 

While the use of multiple GAN architectures aims to enhance data diversity, the 

generated data may still be concentrated around certain patterns and fail to capture all 

the variations present in the real data. This limits the comprehensiveness and practical 

applicability of the generated data. 

6. Conclusion and future outlook 

This study demonstrates an innovative method with significant advantages in 

differential gene analysis and biological data generation by developing and validating 

the wgain algorithm (combined with the Wilcoxon Rank-Sum Test). By effectively 

addressing the issue of limited sample size through data augmentation techniques, our 

approach shows remarkable potential for applications in the medical field, particularly 

in areas such as gene expression analysis and tumor classification. In many medical 

studies, especially those targeting rare diseases or early diagnosis, the number of 

available samples is often limited, posing serious challenges for data analysis and 

model training. Traditional methods frequently fail to fully extract the latent 

information contained in small sample datasets. In contrast, our wgain algorithm 

leverages WGAN-GP to generate high-quality, extended data that closely conforms to 

the distribution of the original data, and incorporates Random Forest classification for 

performance validation, thereby significantly enhancing data utilization efficiency and 

the accuracy of differential gene identification. Our results indicate that wgain can 

efficiently generate extended data that highly match the original data characteristics, 

and that incorporating non-parametric statistical methods such as the Wilcoxon Rank-

Sum Test further improves the accuracy and reliability of the data analysis. This 

provides important technical support for the analysis and modeling of high-

dimensional biological data. 

In future research, the combined application of the wgain algorithm and non-

parametric statistical methods holds vast potential for exploration. The importance of 

this method in the medical field is reflected in several key aspects. First, by expanding 

the sample size through data augmentation, the statistical significance of analyses and 

the stability of model training are enhanced, offering a new solution for the utilization 

of limited clinical sample data. This is particularly critical for early cancer screening, 

disease prognosis evaluation, and precision medicine, where data scarcity and 

imbalanced samples are common challenges. Second, the use of non-parametric 

statistical methods (such as the Wilcoxon Rank-Sum Test) makes the data analysis 

more objective and precise, reducing the false positive rate and providing more reliable 

technical support for biomarker discovery. Effective identification of differential 

genes not only aids in a deeper understanding of the molecular mechanisms underlying 

diseases but also provides key evidence for the development of personalized treatment 

strategies.[17] 

Furthermore, this method can be extended to the analysis of genome data with 

larger sample sizes and various cancer subtypes, in order to validate its generalizability 

and adaptability across diverse datasets. In addition, the wgain algorithm possesses 

strong adaptability and scalability. It is not only applicable to gene expression data, 

but can also be extended to other types of medical data, such as imaging data, clinical 
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test data, and multi-omics data. By applying it across different domains, its 

universality and robustness can be further verified, providing novel technical means 

for multimodal data integration and comprehensive diagnosis. Particularly in the fields 

of precision medicine and tumor feature discovery, the large-scale, high-quality data 

generated by wgain can reveal subtle differences among various tumor subtypes, 

offering precise data support for the development of personalized treatment plans. 

In summary, the wgain algorithm, through its innovative data augmentation 

approach, not only effectively mitigates the challenges posed by small sample sizes in 

medical research but also provides a high-quality data foundation for bioinformatics 

analysis. It shows great potential in enhancing data analysis accuracy, optimizing 

model training, and supporting personalized medical decision-making. Looking 

ahead, by integrating with other advanced machine learning models, wgain is expected 

to further improve its data generation and analysis capabilities, offering a more 

comprehensive and reliable technical guarantee for early diagnosis, disease 

monitoring, and precision treatment in the medical field [18,19]. 
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