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Abstract: As the biosensor technology rapidly develops, the application of flexible sensors in 

health monitoring is receiving increasing attention. To achieve high-precision, non-invasive, 

and continuous blood pressure monitoring, a flexible pulse biosensor based on modified multi-

walled carbon nanotubes is studied, designed, and prepared. The sensor adopts a dual 

conductive layer resistive structure and combines crack structure design to enhance the 

sensitivity and response speed of the sensor. This design fully considers the biomechanical 

properties to ensure that the sensor can adapt to the strain changes caused by human movement, 

thereby improving the accuracy and reliability of monitoring. In addition, the study combines 

time-frequency analysis methods with fast Fourier transform to extract key feature points of 

pulse signals and uses a BPNN model to predict current blood pressure values. The results 

show that within a small strain range, the response time of the sensor is only 56.14 ms, and the 

strain coefficient is as high as 1572.4, effectively achieving real-time monitoring. This high 

response speed and sensitivity enable the sensor to accurately capture changes in pulse 

waveforms related to biomechanics, providing more reliable data support. The error of the 

average arterial pressure obtained by the prediction model is only −0.070 mmHg, which proves 

the accuracy of the current blood pressure value prediction. In summary, the intelligent flexible 

pulse monitoring system based on biosensors studied can achieve high-precision real-time 

blood pressure measurement and has good stability and anti-interference ability, providing 

effective technical support for home health management and early monitoring of hypertension. 

This research not only promotes the development of biosensor technology but also provides a 

new research direction in the field of biomechanics. 

Keywords: Internet of Things; biosensors; pulse monitoring; remote medical diagnosis 

1. Introduction 

As the national living standards improve, people’s health awareness is also 

constantly increasing. In addition, with the arrival of an aging society, health 

management and disease prevention have become hot topics in modern society. 

Hypertension, as a common and dangerous chronic disease, has become a major public 

health challenge worldwide [1]. Based on the World Health Organization (WHO) 

report, hypertension is a major risk factor for various fatal diseases such as 

cardiovascular disease and stroke [2]. The pulse of the human body contains rich 

cardiovascular physiological and pathological information. Therefore, monitoring the 

pulse waveform to obtain cardiovascular characteristic information plays a critical part 

in the early detection and prevention of hypertension. This is particularly important as 

early intervention can significantly reduce the risks associated with high blood 

pressure, including heart attacks and strokes, which are prevalent in the aging 

population. Pulse, as a common physiological signal, can provide medical information 

related to cardiovascular health through its waveform [3]. Compared with traditional 

CITATION 

Li P. Biomechanical design of 

intelligent flexible pulse monitoring 

system based on biosensors. 

Molecular & Cellular Biomechanics. 

2025; 22(5): 1457. 

https://doi.org/10.62617/mcb1457 

ARTICLE INFO 

Received: 24 January 2025 

Accepted: 7 March 2025 

Available online: 24 March 2025 

COPYRIGHT 

 
Copyright © 2025 by author(s). 

Molecular & Cellular Biomechanics 

is published by Sin-Chn Scientific 

Press Pte. Ltd. This work is licensed 

under the Creative Commons 

Attribution (CC BY) license. 

https://creativecommons.org/licenses/

by/4.0/ 



Molecular & Cellular Biomechanics 2025, 22(5), 1457.  

2 

blood pressure monitoring methods that suffer from measurement discontinuity, 

cumbersome operation, and poor comfort, biosensors have the characteristics of being 

lightweight, wearable, comfortable, and well attached to the surface of the human 

body. This adaptability makes biosensors particularly suitable for continuous 

monitoring in everyday settings, allowing individuals to track their health without the 

need for frequent clinical visits. They can provide users with continuous, non-invasive, 

and high-precision physiological signal monitoring [4]. Wang et al. developed a 

wearable, multi-channel pulse state monitoring system grounded on flexible pressure 

sensors, thereby confirming the system’s capacity to measure pulse signals of varying 

individuals in different situations [5]. This versatility is crucial, as it indicates that such 

systems can cater to diverse populations, including those with different health 

conditions and lifestyles. Venugopal et al. discussed the design field of different blood 

pressure sensors and confirmed the effectiveness of biosensors in pulse measurement 

[6]. Therefore, in this context, innovative research is being conducted on the use of 

biosensors for the design of intelligent flexible pulse monitoring systems, and flexible 

sensors are prepared using modified multi-walled carbon nanotubes (MWCNTs). 

These materials are chosen for their exceptional electrical conductivity and 

mechanical flexibility, making them ideal for creating sensors that can conform to the 

body’s contours while maintaining high performance. At the same time, a dual 

conductive layer resistive structure combined with a crack structure design is used to 

raise the sensitivity and response speed of the sensors. This innovative design 

approach not only enhances the sensor’s performance but also ensures that it can 

accurately capture subtle changes in pulse characteristics, which are vital for effective 

hypertension monitoring. This study investigates an intelligent, flexible pulse 

monitoring system grounded on biosensors with a view to improving real-time blood 

pressure monitoring accuracy and providing effective technical support for family 

health management and early screening of hypertension. 

2. Design of cardiovascular health monitoring system based on 

biological FPS 

2.1. Design and preparation of FPS monitoring system 

With the rapid development of high-tech such as artificial intelligence, 5G, and 

others, various intelligent devices are entering people’s daily lives in unprecedented 

forms, profoundly changing their way of life [7]. Therefore, wearable devices based 

on biosensors have become a new data traffic portal in the mobile Internet era, 

gradually making people feel the convenience and charm brought by technology [8]. 

As the core component of cardiovascular health monitoring systems, sensors need to 

be designed to balance high sensitivity and good stability to ensure accurate capture 

of pulse signals [9]. Besides, the selection of materials is crucial to ensure the comfort 

and durability of sensors during long-term wear. Therefore, the study chose 

waterborne polyurethane (WPU) with high conductivity and flexibility as the substrate 

material for the sensor. WPU is a polyurethane material dispersed in water, mainly 

composed of polyols, isocyanates, and chain extenders [10]. It not only has good 

biocompatibility but also has the advantages of being environmentally friendly, safe, 
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and easy to process and modify, making it very suitable as a material for long-term 

skin contact. Therefore, WPU was chosen as the substrate material for the sensor, 

possessing ideal flexibility to adapt to complex deformations and movements on the 

skin surface. The preparation of the flexible pulse sensor (FPS) is denoted in Figure 

1. 

Carving circuit 

patterns

Protective 

film
Encapsulation

Coating conductive 

materials

Induction 

layer  

Figure 1. Preparation process of FPS. 

In Figure 1, in the preparation of the FPS, the conductive material is first 

uniformly coated on the WPU substrate to form the sensing layer. At this point, the 

thickness of the conductive coating is controlled at 25 microns to ensure the sensitivity 

and response speed of the sensor. At the same time, laser etching technology is used 

to finely carve the circuit pattern of the sensor. The wavelength of the laser is 355 nm, 

the power is set to 50 mW, and the etching speed is 5 mm/s. By controlling the density 

and speed of the laser scanning, the precision of the circuit pattern is optimized to 

ensure high sensitivity and resolution. To raise the signal-to-noise ratio and anti-

interference ability of the sensor, a protective film with a thickness of 5 microns is on 

the surface of the sensor to enhance its durability and stability. Finally, the sensor was 

integrated into wearable devices through packaging technology, enabling real-time 

monitoring of the user’s pulse waveform and providing continuous and accurate 

cardiovascular health data support. In the selection of conductive materials, MWCNTs 

were chosen for the study. To improve the dispersibility and conductivity of 

MWCNTs, a chemical modification treatment was first carried out during the 

preparation process. 

In the preparation process of modified MWCNTs, 0.5 g of MWCNTs material 

was first weighed and subjected to magnetic stirring to ensure uniform dispersion in 

the solvent. Next, 5 mL of dimethylformamide (DMF) was added to the solvent to 

further assist in the dispersion of carbon nanotubes and provide a suitable environment 

for subsequent chemical reactions. Next, the solution was placed in an ultrasonic 

signal generator for 30 min of high-frequency ultrasonic oscillation to prevent the 

aggregation of carbon nanotubes in the solution. Then, during the slow stirring of the 

solvent, 45 mL of thionyl chloride (SOCl2) was slowly added to introduce chloride 

groups [11]. Subsequently, the solvent was heated and refluxed to react with the 

surface of the carbon nanotubes to ensure sufficient chlorination reaction. Finally, the 

modified MWCNTs solid could be recovered by allowing the mixed solution to cool 

to room temperature. In the coating process of conductive materials, to raise the 

sensitivity and response speed of sensors, a double conductive layer resistive structure 

was adopted to make the electric field distribution more uniform. Besides, the study 

also uses crack design to further raise the sensitivity of flexible sensors. The 

inspiration for the crack structure comes from the narrow, slit-shaped sensory organs 

of arthropods such as spiders and scorpions, which can sense small mechanical stress 
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changes when subjected to external forces. The sensor mechanism based on the double 

conductive layer crack structure is denoted in Figure 2. 
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Figure 2. Sensor mechanism based on double conductive layer crack structure. 

In Figure 2, in the initial state, the crack gap of the sensor can be almost ignored, 

and the current mainly flows through the upper conductive layer. When cracks change 

under pressure from the outside, the path for electricity forms an S-shaped path. This 

structure ensures that even under high strain, the conductive path remains unobstructed 

[12]. In addition, cracks can cause significant changes in resistance during the cracking 

and closing process, thereby improving the response speed and sensitivity of sensors. 

The calculation for sensor sensitivity is denoted in Equation (1). 

𝑆𝐸 =
𝑅 − 𝑅0
𝜀𝑅0

=
𝑛𝛥𝑅

𝜀𝑅0
 (1) 

In Equation (1), 𝑆𝐸 represents sensitivity, 𝑅 represents sensor resistance, 𝑅0 

represents initial resistance, 𝜀 represents strain, 𝑛 means the amount of cracks, and 

𝛥𝑅 means the increased resistance of the lower conductive layer. The resistance of 

the lower conductive layer is shown in Equation (2). 

𝑅2 = 𝑛𝛥𝑅 + 𝑅1 (2) 

In Equation (2), 𝑅2  and 𝑅1  represent the resistance of the lower and upper 

conductive layers, respectively [13]. 

2.2. Blood pressure prediction model based on improved BPNN 

On the basis of the design and preparation of FPSs, one of the core tasks of 

cardiovascular health monitoring systems is to accurately predict blood pressure 

values. Therefore, the study is based on signal data obtained from FPSs and utilizes 

neural network structures for blood pressure prediction (BPP) and analysis. 

Backpropagation neural network (BPNN) can optimize network parameters through 

the backpropagation algorithm [14]. Its multi-layer structure design has feedback and 

memory functions and can handle high-dimensional and nonlinear data, thus 

exhibiting excellent performance in complex data prediction [15]. Therefore, the 

construction of a BPP model based on BPNN is studied. BPNNs are typically 

comprised of three layers: an inputting layer, a hidden layer (HL), and an outputting 

layer. The function of the HL is to enhance the predictive ability of the model [16]. 

The study extracts effective features from signals collected by FPSs, normalizes them, 

and sends them as input data to the BPNN for training. By continuously adjusting 

weights and biases in the network to minimize prediction errors, the accuracy of BPP 
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can be improved. The specific formula for the forward propagation process is shown 

in Equation (3). 

𝐻𝑗 = 𝜎 × (∑ 𝐼𝑖 × 𝜔𝑖𝑗 + 𝑏𝑗
𝐻

𝑚

𝑖=1
) , 𝑗 = 1,2, . . . , 𝑘 (3) 

In Equation (3), 𝐻𝑗 denotes the output of the 𝑗-th neuron in the HL, 𝑘 denotes 

the amount of neurons in the HL, 𝜎 means the activation function, 𝐼𝑖 denotes the 

input value of the 𝑖-th feature in the input layer, 𝑚 indicates the total amount of 

features in the input layer, 𝜔𝑖𝑗 refers to the weight between the 𝑖-th feature and the 

𝑗-th neuron in the inputting layer, and 𝑏𝑗
𝐻 denotes the bias of the 𝑗-th neuron in the 

HL [17]. The calculation formula for the loss function is denoted in Equation (4). 

𝐿 =
1

2
∑ 𝑒𝑎

2𝑟
𝑎=1   (4) 

In Equation (4), 𝐿 represents the loss function, 𝑟 denotes the amount of output 

layer neurons, and 𝑒𝑎 represents the error of the 𝑎-th output neuron. The study uses 

the gradient descent method for weight adjustment, and the update amount of weight 

adjustment is shown in Equation (5). 

𝛥𝜔𝑗𝑎(𝑡) = −
𝜂 × 𝜕𝐿(𝑡)

𝜕𝜔𝑗𝑎(𝑡)
 (5) 

In Equation (5), 𝛥𝜔𝑗𝑎(𝑡) denotes the update amount of weights in the 𝑡-th 

iteration, 𝑗  and 𝑎  represents the neurons in the HL and outputting layer, 𝜂 

represents the learning rate, and 𝜕 represents the partial derivative [18]. The update 

amount of bias adjustment is shown in Equation (6). 

𝛥𝑏𝑎(𝑡) = −
𝜂 × 𝜕𝐿(𝑡)

𝜕𝑏𝑎(𝑡)
 (6) 

In Equation (6), 𝛥𝑏𝑎(𝑡)  represents the update amount of bias in the 𝑡 -th 

iteration. However, although the HL structure of BPNNs increases the expressive 

power of the model, it may also lead to slower training speed and cause overfitting. 

To address this issue, a genetic algorithm was used to improve the BPNN and construct 

a BPP model based on the improved BPNN. The workflow of this model is denoted 

in Figure 3. 
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Figure 3. Process of BPP model based on improved BPNN. 

In Figure 3, in the improved BPNN process, the error value is first trained using 

the BPNN and input as the fitness value into the genetic algorithm. Next, genetic 

algorithms optimize fitness values through operations such as selection, crossover, and 

mutation. For the optimized fitness values, it is determined whether the set threshold 

requirements are met. If the conditions are met, it will be input into the BPNN for 

optimal weight calculation. If the conditions are not met, it will return to the previous 

layer of the genetic algorithm and perform operations such as selection, crossover, and 

mutation again. After calculating the optimal weights, BPNN is used for error 

calculation, and the weights are updated based on the error. Finally, it is necessary to 

judge whether the updated weights satisfy the conditions. If it is satisfied, the optimal 

weights are output, and the process ends; otherwise, it will continue to recalculate the 

errors and adjust the weights until the requirements are satisfied. The key parameters 

of the genetic algorithm optimization process include population size and iteration 

times. In the study, the population size of the genetic algorithm was set to 50, and the 

number of iterations was set to 100. These parameters play an important role in the 

optimization process, ensuring the algorithm’s global search capability and 

convergence speed. Among them, the population size determines the number of 

candidate solutions involved in optimization in each iteration, and the number of 

iterations determines the optimization depth of the algorithm. By introducing genetic 

a algorithm to optimize BPNN, research can effectively avoid overfitting caused by 

overly complex network structures, thereby achieving real-time blood pressure change 

prediction of pulse data while ensuring prediction accuracy. The calculation for the 

fitness function is denoted in Equation (7). 

𝐹 =
2

∑ (𝐷𝑜𝑢𝑡 − 𝐴𝑜𝑢𝑡)
𝑟
𝑎=1

 (7) 
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In Equation (7), 𝐹 represents the fitness function value, and 𝐷𝑜𝑢𝑡 and 𝐴𝑜𝑢𝑡 

respectively represent the expected output and actual output results of the BPNN 

structure. The probability of selecting the genetic operator is shown in Equation (8). 

𝑃 =
𝑓(𝛼)

∑ 𝑓(𝛼)𝑢
𝛼=0

 (8) 

In Equation (8), 𝑃 denotes the probability of selecting the genetic operator, 𝛼 

means the fitness value of the genetic operator, 𝑓(𝛼) represents the area occupied by 

the selected genetic operator in all individuals, and 𝑢  means the total amount of 

genetic operators. The monitoring system design is shown in Figure 4. 
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Figure 4. Monitoring system design. 

In Figure 4, the designed monitoring system collects electronic signals through 

flexible sensors, which are stored in random access memory after analog-to-digital 

conversion. Subsequently, the signal is transmitted serially through the serial bus 

interface and transmitted to the upper computer through the serial bus communication 

module. Finally, the upper computer processes, stores, and displays the data. 

3. Verification of cardiovascular health monitoring system based on 

flexible pulse biosensor 

3.1. Experimental environment setup 

To assess the effectiveness of the cardiovascular health monitoring system based 

on flexible pulse biosensors, an experimental environment for static and dynamic 

characteristic testing was established. In a static testing environment, real-time data 

analysis was conducted through a data acquisition computer, data acquisition was 

carried out using a data acquisition card, and external strain force was provided 

through a tensile and compressive testing machine. At the same time, a DC resistance 

tester was used to test the resistance changes of sensors. The dynamic testing 

environment added a signal generator to generate electrical signal excitation on the 

basis of static testing and used a test box vibration platform to simulate pulse vibration. 

To ensure good representativeness of the experimental results, a total of 10 sensor 

samples were used for static testing. Each sensor sample is measured under external 



Molecular & Cellular Biomechanics 2025, 22(5), 1457.  

8 

strain ranging from 0 to 100%, ensuring that the measurement data covers the working 

range of the sensor. The resistance change data of all sensors is transmitted and 

analyzed in real-time through a data acquisition card to ensure high-precision data 

collection and processing. After collecting the data, all signal data is first preprocessed 

through filtering and denoising operations to improve the accuracy of analysis. Then, 

the 10-fold cross-validation method is used to train the data, with the input of the 

model being the time-frequency characteristics of the pulse signal and the output being 

the corresponding blood pressure value. The experimental environment configuration 

is denoted in Table 1. 

Table 1. Experimental environment configuration. 

Equipment name Specification Purpose 

Data Acquisition Card NI USB-6211 Used for data acquisition 

Tensile and Compression Testing 

Machine 
TH2515 Provides external strain force for testing 

DC Resistance Tester TH2515 Measures the resistance change of the sensor 

Signal Generator Agilent 33220A Generates electrical signal excitation 

Vibration Platform LK-2003A Simulates pulse vibration 

3.2. Performance verification of FPS 

To verify the effectiveness of the FPS, the sensitivity coefficients of the designed 

dual conductive layer crack structure sensor (DCLCSS), single-layer sensor structure, 

and double-layer crack-free sensor structure were compared and studied. The 

sensitivity coefficient comparison of different sensor designs is denoted in Figure 5. 

From Figure 5a, in the static characteristic test, when the tensile strain was only 2%, 

the single-layer sensor structure was prone to fracture, and its maximum sensitivity 

coefficient was 3 × 102. However, the two double-layer structures did not show a trend 

of fracture with the increase of tensile strain, and the sensitivity coefficient gradually 

increased with the increase of strain. The maximum sensitivity coefficients of the 

DCLCSS and the double-layer crack-free structure studied reached 1 × 103 and 5 × 

102, respectively. From Figure 5b, in the dynamic characteristic test, the maximum 

sensitivity coefficient of the double conductive layer crack structure sensor studied is 

1.1 × 103, while the maximum sensitivity coefficients of the single-layer sensor 

structure and the double-layer crack-free sensor structure are 4 × 102 and 8 × 102, 

respectively. In summary, the DCLCSS exhibits higher sensitivity coefficients in both 

static and dynamic tests, verifying its superior performance. 
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Figure 5. Sensitivity coefficient comparison of different sensor designs. 

The dynamic response performance of the FPS is denoted in Figure 6. From 

Figure 6a, under both high and low strain testing environments, the resistance of the 

sensor steadily increased, indicating that the sensor can stably capture dynamic 

signals. In the large strain range, the maximum response time of the sensor was only 

41.25 ms, while in the small strain range, the response time was only 56.14 ms, 

indicating that the sensor has excellent sensitivity. From Figure 6b, during the stress 

loading and unloading process of the sensor, the strain coefficient gradually increased 

with the increase of strain. When the stress reached the maximum value of 10%, the 

maximum strain coefficient generated was 1572.4. In addition, the strain coefficient 

changes during the loading and unloading processes exhibited a high degree of 

symmetry, indicating that under the same loading and unloading strain conditions, the 

resistance changes are relatively small, further verifying that the sensor has good 

recovery performance. 
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Figure 6. Dynamic response performance of FPS. 

To prove the effectiveness of FPSs in practical applications, a study was 

conducted by wearing the sensor on the wrist and using repetitive movements of the 

wrist to verify the response effect of the sensor. The sensor response results for 

different wrist movements are shown in Figure 7. From Figure 7a, during wrist 

flexion and extension movements, the sensor resistance exhibited a regular, repetitive 

response with changes in movement. The resistance during wrist bending and 

extension was 110 Ω and 100 Ω, respectively. This is because when the wrist bent, the 

sensor resistance gradually increased, and when the wrist returned to its original state 
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or extended, the resistance gradually decreased. From Figure 7b, under wrist rotation, 

the sensor resistance changed in a stepwise pattern with the rotation angle. When the 

wrist’s rotation angle was 90 degrees, the resistance reached its maximum value of 

110 Ω. In summary, the sensors studied can still maintain excellent monitoring 

sensitivity and stability during wrist movements. The sensor used in the study is a 

crack structure, which undergoes deformation under external stress, especially when 

the contact pressure changes. The opening and closing of the crack can adjust the 

current path and maintain smooth conductivity. Therefore, sensors can dynamically 

adapt to pressure changes when in contact with the skin, reducing signal fluctuations 

caused by uneven pressure distribution or poor adhesion. In addition, cracks can cause 

significant changes in resistance during the cracking and closing process. This means 

that even if the sensor makes small changes in contact with the skin, such as skin 

surface deformation, pressure changes, etc., the crack structure can effectively amplify 

these changes and provide a more sensitive response. 
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Figure 7. Sensor response results of different wrist movements. 

3.3. Performance verification of BPP model based on improved BPNN 

To prove the effect of the BPP system, the study collected the system’s 

effectiveness in practical use, and the findings are denoted in Table 2. In Table 2, the 

data acquisition error of the monitoring system was controlled within ± 3 mmHg, 

indicating a high accuracy of data acquisition. The response time of the entire system 

process was about 0.2 s, and in actual operation testing, the response of the user 

interface was smooth, with an operation time of less than 1 s, reflecting the high 

fluency of the system. In addition, during the long-term running test, the system did 

not experience any crashes, indicating its high stability. 

Table 2. System performance results. 

Verification item Verification method Result Remarks 

Data acquisition accuracy Blood pressure sensor test Error ≤ ±3 mmHg Sensor performance is good 

System response time Full system process test Approximately 0.2 s Includes data acquisition and prediction process 

System stability Long-term operation test No crashes The system operates stably 

User interface response Actual operation test Response time < 1 s The user interface is smooth 
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To validate the effect of the BPP model grounded on the improved BPNN, the 

pulse signals collected by the FPS were preprocessed and broken into training and 

testing sets in a 3:7 ratio. Then, the study compared and analyzed the improved BPNN 

prediction model with other advanced prediction models. Other models included 

traditional BPNN models, long short term memory (LSTM) network models, and 

random forest (RF) models [19,20]. In all experiments, the improved BP neural 

network model used the same hyperparameter settings and cross-validation strategy as 

the traditional BP neural network model, LSTM network model, and RF model. All 

models were trained with a learning rate of 0.001, two hidden layers, 10 nodes per 

layer, and 50 rounds of training. In addition, in order to reduce overfitting issues during 

model training, all models underwent 5-fold cross-validation to ensure the reliability 

and universality of the results. The comparison of mean arterial pressure errors 

between different prediction models is denoted in Figure 8. From Figure 8a, in the 

training set, the average arterial pressure error of the research model was only −0.080 

mmHg, while the average errors of the traditional BPNN model, LSTM model, and 

RF model were −0.120 mmHg, −0.100 mmHg, and −0.110 mmHg, respectively. The 

average errors of the research model were reduced by 33.33%, 20%, and 27.27%, 

respectively. The differences reached a statistically significant level (P < 0.05). From 

Figure 8b, in the test set, the mean arterial pressure error of the research model was 

only −0.070 mmHg, while the errors of other models were −0.130 mmHg, −0.120 

mmHg, and −0.115 mmHg. The error of the research model on the test set was also 

relatively small, with reductions of 46.15%, 41.66%, and 39.13%, respectively. The 

difference is also statistically significant (P < 0.05). In summary, the improved BPNN 

model has low arterial pressure prediction errors in both the training and testing sets, 

verifying its accuracy and robustness in predicting blood pressure values. 
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Figure 8. Comparison of mean arterial pressure error between different prediction models. 

* indicates P < 0.05. 

To verify the fitting effect of the blood pressure value prediction model grounded 

on the improved BPNN, different prediction models were compared and validated 
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using the same pulse signal. The fitting effect between the predicted values of different 

models and the true values is shown in Figure 9. From Figure 9a, the predicted values 

of systolic and diastolic blood pressure by the research model highly coincided with 

the expected values, with the maximum error occurring only at the 5th second. At this 

time, the predicted value of diastolic blood pressure was 75.0 mmHg, the expected 

value was 73.1 mmHg, and the maximum error was 2.59%. In the fitting effect of the 

traditional BPNN model in Figure 9b, at the 15th second, the predicted value of 

systolic blood pressure was 105.7 mmHg and the expected value was 112.5 mmHg, 

with a maximum error of 6.43%. In the fitting effect of the LSTM model in Figure 

9c, the predicted value of diastolic blood pressure was 56.6 mmHg, the expected value 

was 66.8 mmHg, and the maximum error was 18.02%. In the fitting effect of the RF 

model in Figure 9d, the predicted value of systolic blood pressure was 105.8 mmHg, 

the expected value was 113.5 mmHg, and the maximum error was 7.27%. In summary, 

the BPP model based on the improved BPNN has higher prediction accuracy, lower 

errors, and better fitting effects compared to other models. 
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Figure 9. The fitting effect between predicted values and true values of different models. 
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To further identify the superiority of the BPP model based on the improved 

BPNN, the performance of different prediction models was compared and studied, as 

denoted in Table 3. From Table 3, the effectiveness of the research model was 

significantly better than the other three models. On the training set, the mean squared 

error (MSE) and mean absolute error (MAE) of the research model were both the 

lowest, at 0.010 and 0.085, respectively, while the MSE and MAE of other models 

were above 0.10. On the test set, the root mean square error (RMSE) of the research 

model was the lowest at 0.093, which was reduced by 19.13%, 30.59%, and 25.60% 

compared to traditional BPNN models, LSTM models, and RF models, respectively. 

The coefficient of determination R2 was an important indicator for measuring the fit 

of a model, and the closer the value was to 1, the better the fit between the model and 

the data. In the training and testing sets, the R2 values of the research model were as 

high as 0.975 and 0.981, while the R2 values of other models did not exceed 0.95. In 

terms of prediction accuracy, the research model achieved a prediction accuracy of 

93.4% and 94.1% on the training and testing sets, respectively, while the prediction 

accuracy of other models did not exceed 90%. In summary, the BPP model based on 

the improved BPNN has strong generalization ability and prediction accuracy. 

Table 3. Performance comparison of different prediction models. 

Model MSE RMSE (mmHg) MAE (mmHg) R2 Prediction accuracy/% 

Training set 

Improved BPNN 0.010 0.100 0.085 0.975 93.4 

Traditional BPNN 0.016 0.129 0.112 0.945 87.6 

LSTM network 0.023 0.153 0.145 0.925 82.4 

RF 0.018 0.134 0.121 0.940 85.7 

Test set 

Improved BPNN 0.008 0.093 0.178 0.981 94.1 

Traditional BPNN 0.013 0.115 0.101 0.946 89.3 

LSTM network 0.018 0.134 0.127 0.935 85.7 

RF 0.015 0.125 0.113 0.942 88.2 

In order to further verify the superiority of the blood pressure prediction model 

based on the improved BP neural network, a comparative analysis was conducted with 

existing commonly used blood pressure monitoring techniques. The performance 

comparison of different blood pressure monitoring technologies is shown in Table 4. 

From Table 4, it can be seen that existing blood pressure monitoring technologies 

have their own advantages and disadvantages. The cuff-type blood pressure monitor 

is currently the most common method for measuring blood pressure, but it has 

limitations such as requiring manual operation, discomfort, and long measurement 

time. Wrist blood pressure monitors are easily affected by exercise and have unstable 

accuracy. Although the dynamic blood pressure monitoring system can provide round-

the-clock monitoring, the equipment is bulky, inconvenient to wear, and costly. In 

contrast, the research method can predict blood pressure in real-time while ensuring 

high accuracy, and the system based on flexible sensors is more comfortable, suitable 

for long-term wearing, and can adapt to daily activities. Compared to traditional 

technology, this system has a cost advantage and is particularly suitable for long-term 

use. 
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Table 4. Comparison of performance of different blood pressure monitoring technologies. 

Technology Advantage Disadvantage Accuracy Real-time Comfort 

Cuff-type blood pressure 

monitor 

Accurate measurement, widely used 

in clinical practice 

Manual operation is required, and the 

measurement process is 

uncomfortable. 

Tall Medium Differ from 

Wrist blood pressure 

monitor 

Easy for household use and relatively 

low price 

Accuracy is easily affected and 

susceptible to motion interference. 
Medium Faster Medium 

Dynamic blood pressure 

monitoring system 

Provide all-weather blood pressure 

data, suitable for hypertension 

diagnosis 

The equipment is heavy, 

inconvenient to wear, and costly. 
Tall Tall Differ from 

Improved BPNN 
High precision, real-time prediction, 

suitable for wearable devices 

Requires sensor and algorithm 

support, relying on pulse signal 

acquisition. 

Tall Tall Tall 

In order to verify the long-term durability and environmental stability of the 

sensor, cyclic loading tests and environmental stability tests were conducted. The 

long-term durability and environmental stability tests of the sensor are shown in Table 

5. From Table 5, it can be seen that in the cyclic loading test, the sensor underwent 

10,000 cycles of testing at 50% strain, and the results showed no significant changes 

in sensitivity and response time. The maximum strain coefficient remained above 

1570, demonstrating its durability in long-term use. In the environmental stability test, 

the sensor underwent a 30-day performance test under different temperature 

conditions of −20 ℃ to 60 ℃ and humidity conditions of 20% to 90%. The results 

showed that the sensitivity and response time of the sensor under extreme 

environmental conditions varied within 5%, indicating its good environmental 

stability. From the above, it can be seen that the sensor not only has excellent 

performance in the short term but also maintains stability under long-term use and 

complex environmental conditions, thus verifying the feasibility of the sensor in 

practical applications. 

Table 5. Long-term durability and environmental stability tests of the sensor. 

Test type Test condition Result Performance change 

Cycle Load Test 50% strain, 10,000 cycles 

Sensitivity and response time remained stable. No significant change 

Maximum strain coefficient remained above 

1570. 
Stable performance after 10,000 cycles 

Environmental 

Stability Test 

Temperature range: −20 ℃ to 

60 ℃ 
Sensitivity and response time changes within 5%. 

Stable performance across the 

temperature range 

Humidity range: 20% to 90% Sensitivity and response time changes within 5%. 
Stable performance across humidity 

range 

Test duration: 30 days The sensor performed well in extreme conditions. Stable performance after 30 days 

4. Conclusion 

As the social economy continuously develops, people’s living standards have 

significantly improved, and their health awareness is also increasing. To achieve real-

time and accurate monitoring of cardiovascular diseases, a non-invasive blood 

pressure monitoring system was designed using biosensors. The system combined 

WPU flexible material and MWCNTs conductive material and adopted a double 
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conductive layer crack structure to design a pulse sensor. It also used an improved 

BPNN model to predict blood pressure. The outcomes denoted that the sensor 

achieved sensitivity coefficients of 1 × 103 and 1.1 × 103 in static and dynamic tests, 

respectively. The response time of the sensor was 41.25 ms in the large strain range 

and 56.14 ms in the small strain range, indicating its high response speed and 

sensitivity. When the stress reached the maximum value of 10%, the maximum strain 

coefficient of the sensor reached 1572.4. In addition, sensors can stably capture 

dynamic signals during wrist flexion, extension, and rotation movements, 

demonstrating strong stability and recovery performance in practical applications. In 

terms of BPP performance, the research model showed high prediction accuracy with 

prediction errors of −0.080 mmHg and −0.070 mmHg on the training and testing sets. 

Meanwhile, the R2 values of the model in the training and testing sets were 0.975 and 

0.981, with prediction accuracies of 93.4% and 94.1%, further demonstrating its 

excellent predictive performance. In summary, the intelligent, flexible pulse 

monitoring system based on biosensors has high accuracy, stability, and real-time 

performance in blood pressure monitoring and has broad application prospects. 

However, despite achieving good experimental results. In current research, the 

validation process mainly focused on a limited population sample and did not fully 

consider the potential impact of individual differences such as age, gender, and skin 

elasticity on the performance of blood pressure monitoring systems. Therefore, 

although the predictive performance of the research model in the current dataset is 

good, its universality and reliability in different populations still need further 

validation. Future research should include extensive testing of different individual 

characteristics to ensure that the monitoring system can work stably and accurately in 

diverse populations, further enhancing its clinical reliability and generalizability. 

However, current research also has potential limitations and challenges. For 

example, although sensors perform stably in most static and dynamic environments, 

their long-term stability still needs further verification, especially the issue of 

performance degradation after prolonged use. In addition, although the system has 

good comfort and is suitable for long-term wear, further optimization is still needed 

for the comfort requirements and adaptability of different individuals. Therefore, 

future research should consider the challenges in these practical applications and 

further improve system design to enhance its reliability and wide applicability in 

complex environments. 
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