
Molecular & Cellular Biomechanics 2025, 22(4), 1450. 

https://doi.org/10.62617/mcb1450 

1 

Article 

Feedback control for biomechanical systems in the presence of 

asynchronous sampling based on high-gain observers 

Liangping Cheng*, Niannian Yan 

Chongqing University of Education, Chongqing 400000, China 

* Corresponding author: Liangping Cheng, cheng_liangping@163.com 

Abstract: In this paper, the problem of designing an asynchronous sampling observer and 

controller for the biomechanical nonlinear systems is investigated. The central nervous system 

controls biomechanical limb movements through complex neurophysiological mechanisms. 

The state sampling input observation obtained by the proprioceptor exhibits asynchronous 

phenomena when transmitted to the central nervous system. The observation information about 

parts of the body suffers unmodeled dynamics and nonlinear dynamics in transmissions to the 

central nervous system. Firstly, unmodeled dynamics are introduced to a class of 

biomechanical hybrid systems, which can be mitigated by increasing the gain of the observer. 

The high-gain observer designed can solve the problem of obtaining the state information of 

various parts of the human body and analyze the stability of the error system. Then, the 

asynchronous sampling controller is structured to realize the nervous system feedback control 

based on the high-gain observer. Sufficient conditions for the existence of controllers for 

observer-based sampled data in discrete time are obtained by using the Lyapunov functions 

and separation principle. Finally, the effectiveness of the method is illustrated by a numerical 

example. 

Keywords: biomechanical limbs movement; central nervous system; unmodeled dynamics; 

high-gain observer; feedback control 

1. Introduction 

The theory of optimal control plays a key role in the study of biological motion. 

In recent years, the signal simulation and control of the hand and tendon system have 

been the focus of scholars’ research. Information measurement and acquisition 

require an observer, while feedback control of the system requires a controller to 

realize it [1–3]. The framework of control theory helps to understand the complex 

limb movements and regulatory mechanisms in the human neuromuscular system. 

The central nervous system receives input information through proprioceptors, 

which helps regulate and maintain the balance of human movement [4]. People can 

use key motion information observed by the observer to construct control models 

that simulate human movement processes. Although there are indeed differences 

between biological neural networks and artificial neural networks, such control 

strategies are useful in studying human motor control. In reference [5], a motion 

control model was proposed and evaluated through neuromechanical simulation, 

which consists of a controller and a musculoskeletal model, representing the central 

nervous system and the body. 

The observer design problem for the nonlinear hybrid system has received more 

and more attention since the eighties [6–8]. High-gain observer is an important tool 

for studying sampling output feedback control of nonlinear systems [9–13]. In the 
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earlier time, Doyle and Steinjiang applied high-gain observers to the design of robust 

observers for linear systems [14]. The early work of high-gain observers in nonlinear 

systems began in the late 1880s [15,16], and after that, this technique has been 

applied to subsequent studies. Gauthier and other scholars devote themselves to the 

study of nonlinear systems under the condition of global Lipschitz to obtain the 

global results [17], the observer is constructed under the assumption that the 

conclusions obtained in this paper can be extended to a wider range of nonlinear 

systems. The observer is suitable for nonlinear systems and autonomous systems that 

can be observed by any input. Esfandiari and Khalil have proved that in the absence 

of the whole local Lipschitz condition, there will be a peak phenomenon, which will 

produce a similar pulse. Therefore, when the design of the observer gain is high 

enough, a high-gain observer may destroy the stability of closed-loop nonlinear 

hybrid systems [18]. 

The problem of information measurement noise and model uncertainties has 

attracted great attention from scholars [19,20]. In order to obtain accurate observation 

information, a switching gain observer is proposed in [21], because of modeling 

uncertainty, the authors construct a switched-gain observer to decrease the 

manifestations of the balance in the system states. The authors of [22] construct the 

observer gain based on the symmetric positive definite matrix with simple structure 

and try to find an algorithm that can calculate the state observer gain. The scholars 

have done in-depth research on high-gain observers in [23]. Based on the above 

discussion, to promote the results mentioned above, we try to consider uncertain 

nonlinear systems with sampled-data output measurements whose nonlinearity terms 

are unknown, and the nominal model of unmodeled dynamics satisfies weaker 

Lipschitz conditions. The conditions in this article about asynchronous sampling 

observation and control are suitable for a wider nonlinear system. 

The main contributions of this article are two points. One is to allow the model 

to be uncertain; the condition in this paper is weaker than the classic Lipschitz 

condition; therefore, the conclusions obtained in this paper can be generalized to a 

wider range of nonlinear hybrid biomechanical systems. The unmodeled dynamics can 

be attenuated by increasing the gain. The other is that we consider the separation 

principle, the design of the asynchronous controller to realize the nervous system 

feedback control based on the state information observed by the high-gain observer. 

The main contents of this paper are as follows: In section 2, materials and 

methods are given. The main result is in section 3. Discussion in section 4. Section 5 

to illustrate the conclusion of this article. 

2. Materials and methods 

In order to better carry out the theoretical analysis, we propose the following 

lemma, which plays a key role in the main results of the study. 

Lemma 1. [24]. For any matrix 𝑈 ∈ ℝ𝑛×𝑛 it has the positive definite property, 𝑎 > 0 

and 𝑏 > 0  are scalars, vector function 𝜙: [𝑎, 𝑏] → ℝ𝑛  such the integrations 

concerned are well defined, the following integral inequality holds: 

∫ 𝜙𝑇
𝑏

𝑎
(𝑠)𝑈𝜙(𝑠)𝑑𝑠 ≥

1

𝑏−𝑎
∫ 𝜙𝑇
𝑏

𝑎
(𝑠)𝑑𝑠𝑈 ∫ 𝜙

𝑏

𝑎
(𝑠)𝑑𝑠. 
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Lemma 2. [25]. For constant matrices with appropriate dimensions 𝑆1, 𝑆12, 𝑆22 , 

where 𝑆1 = 𝑆1
𝑇 > 0, 𝑆2 = 𝑆2

𝑇 > 0  if −𝑆1 + 𝑆12𝑆2
−1𝑆12

𝑇 < 0  and then the following 

inequality holds: 

[
−𝑆1 𝑆12
𝑆12
𝑇 −𝑆2

] < 0. 

3. Main result 

3.1. Systems description and preliminaries 

Consider the nonlinear hybrid biomechanical system proposed below: 

{

�̇�𝑖(𝑡) = 𝑥𝑖+1(𝑡) + 𝑓𝑖(𝑥1(𝑡),⋯𝑥𝑖(𝑡)), 𝑖 = 1⋯𝑛 − 1

�̇�𝑛(𝑡) = 𝜑(𝑤, 𝑥) + 𝑢(𝑡)

𝑦 = 𝑥1(𝑡)

 (1) 

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector about the system above, 𝑢(𝑡) ∈ 𝑅 represents input 

of controller, 𝑦(𝑡) ∈ 𝑅 stands for measurement of the sensor output, 𝑓𝑖(𝑥1⋯𝑥𝑖) is a 

nonlinear functions satisfing the conditions: 

|𝑓𝑖(𝑥1⋯𝑥𝑖) − 𝑓𝑖(𝑥1⋯𝑥𝑖)| ≤∑𝑙𝑗|𝑥𝑗 − 𝑥𝑗|

𝑖

𝑗=1

 (2) 

where 𝑙𝑖 , 𝑖 = 1,2,⋯ , 𝑛 − 1, are nonnegative constants, the unknown function with 

unmodeled dynamics 𝜑(𝑤, 𝑥) satisfies global Lipschtiz conditions. It’s worth noting 

that the only thing that can be measured is the output 𝑦(𝑡) = 𝑥1(𝑡) from the analyzed 

hybrid system in discrete instant 𝑡𝑘, thus, according to obtained the sampled output 

𝑦(𝑡𝑘)  that was obtained at discrete time, a state observer with sampled and 

corresponded to system (1) is proposed as follows: 

{
�̇�𝑖(𝑡) = 𝑥𝑖+1(𝑡) + 𝑓𝑖(�̂�1(𝑡),⋯𝑥𝑖(𝑡)) +

𝛼𝑖
𝜀𝑖
(𝑦(𝑡𝑘) − 𝑥1(𝑡𝑘)), 𝑖 = 1⋯𝑛 − 1, 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1)

�̇�𝑛(𝑡) = 𝜑0(𝑥) +
𝛼𝑛
𝜀𝑛
(𝑦(𝑡𝑘) − 𝑥1(𝑡𝑘)) + 𝑢(𝑡),

  (3) 

where 𝑥(𝑡) ∈ 𝑅𝑛  is the observer state, 𝜑0(�̂�) = 0  is a nominal model of 𝜑(𝑤, 𝑥) 

satisfy the conditions 

|𝜑(𝑤, 𝑥) − 𝜑0(𝑧)| ≤ 𝐿‖𝑥 − 𝑧‖ +𝑀 (4) 

where 𝐿 > 0,𝑀 > 0 are constants. 

In order to suppress and reduce the influence of unmodeled dynamics, a controller 

based on a sample-and-hold Luenberger observer is designed as follows: 

{
 
 

 
 �̇�𝑖(𝑡) = 𝑥𝑖+1(𝑡) + 𝑓𝑖(𝑥1(𝑡), . . . 𝑥𝑖(𝑡)) +

𝛼𝑖

𝜀𝑖
(𝑥1(𝑡𝑘) − 𝑥1(𝑡𝑘)), 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1)

�̇�𝑛(𝑡) = 𝜙0(�̂�) +
𝛼𝑛

𝜀𝑛
(𝑥1(𝑡𝑘) − 𝑥1(𝑡𝑘)) + 𝑢(𝑡)

𝑢(𝑡) = −∑
𝛼𝑗

𝜀𝑗
𝑛
𝑗=1 𝑘𝑛+1−𝑗�̂�𝑛+1−𝑗(𝑠�̃�), 𝑡 ∈ [𝑠�̃� , 𝑠�̃�+1),

 (5) 

where 𝑖 = 1. . . 𝑛 − 1, the time sequences {𝑡𝑘} and {𝑠�̃�} are not any strictly increasing 

but also satisfy the following constraints: 
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𝑡0 = 0, ℎ̄10 ≤ 𝑡𝑘+1 − 𝑡𝑘 ≤ ℎ̄1, 

𝑠0 = 0, ℎ̄20 ≤ 𝑠�̃�+1 − 𝑠�̃� ≤ ℎ̄2, 𝑘 ∈ ℕ. 

where ℎ̄10, ℎ̄1, ℎ̄20, ℎ̄2 are positive definite scalars. In addition, for the sake of later 

analysis, we introduce the following notation: 

ψ(𝑡) = 𝑡𝑘+1 − 𝑡, 𝜌(𝑡) = 𝑡 − 𝑡𝑘 , 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), 

�̃�(𝑡) = 𝑠�̃�+1 − 𝑡, �̃�(𝑡) = 𝑡 − 𝑠�̃� , 𝑡 ∈ [𝑠�̃� , 𝑠�̃�+1), 

𝐼1 = [𝐼𝑛 0𝑛], 𝐼2 = [0𝑛 𝐼𝑛], 𝐼3 = [𝐼𝑛 −𝐼𝑛]. 

By setting 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡)  the error dynamics (3) can be converted and 

represented in the following form: 

{
�̇�𝑖(𝑡) = −

𝛼𝑖
𝜀𝑖
𝑒1(𝑡𝑘) + 𝑓𝑖(𝑥1(𝑡), . . . , 𝑥𝑖(𝑡)) − 𝑓𝑖(�̂�1(𝑡), . . . , 𝑥𝑖(𝑡)) + 𝑒𝑖+1(𝑡)

�̇�𝑛(𝑡) = −
𝛼𝑛
𝜀𝑛
𝑒1(𝑡𝑘) + 𝜙(𝑤, 𝑥) − 𝜙0(�̂�),

 (6) 

where the value of 𝑒𝑖(𝑡) are equal to 𝑥𝑖(𝑡) − 𝑥𝑖(𝑡). In order to simplify the analysis in 

subsequent research, coordinate transformation is made as follows 

 𝛾𝑖(𝑡) =
𝑥𝑖(𝑡) − 𝑥𝑖(𝑡)

𝜀𝑛−𝑖
 (7) 

𝛿𝑖(𝑡) =
𝑓𝑖(𝑥1(𝑡), . . . , 𝑥𝑖(𝑡))) − 𝑓𝑖((𝑥1(𝑡), . . . , 𝑥𝑖(𝑡)))

𝜀𝑛−𝑖
, 𝛿𝑛(𝑡) = 𝜙(𝑤, 𝑥) − 𝜙0(𝑥) (8) 

where 𝑖 = 1, . . . . , 𝑛 − 1, therefore, the system (6) and the following system form are 

equivalent, 

𝜀�̇�𝑖(𝑡) = 𝛼𝑖(𝛾1(𝑡) − 𝛾1(𝑡𝑘)) − 𝛼𝑖𝛾1(𝑡) + 𝛾𝑖+1(𝑡) + 𝜀𝛿𝑖(𝑡) 𝑖 = 1,⋯𝑛 − 1, 

𝜀�̇�𝑛(𝑡) = 𝛼𝑛(𝛾1(𝑡) − 𝛾1(𝑡𝑘)) − 𝛼𝑛𝛾1(𝑡) + 𝜀𝛿𝑛(𝑡).  
(9) 

In order to better analyze the system (9), we introduce the following symbols 

𝜀�̇�(𝑡) = 𝜀𝛿(𝑡) + 𝐴𝑟(𝑡) + �̄�(𝛾1(𝑡) − 𝛾1(𝑡𝑘)) (10) 

𝜀�̇�(𝑡) = 𝐴𝜉(𝑡)𝜉(𝑡) (11) 

where 

A =

[
 
 
 
 
−𝛼1 1 0 ⋯ 0 0
−𝛼2 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−𝛼𝑛−1 0 0 ⋯ 0 1
−𝛼𝑛 0 0 ⋯ 0 0]

 
 
 
 

, 

γ(𝑡) = [𝛾1(𝑡) ⋯ 𝛾𝑛(𝑡)]
𝑇 , 𝛿(𝑡) = [𝛿1(𝑡) ⋯ 𝛿𝑛(𝑡)]

𝑇, 

𝛼 = [𝛼1 ⋯ 𝛼𝑛]𝑇,𝐼1 = [1 ⋯ 0]1×𝑛,𝐴 = [𝐴 𝛼𝐼1], 

𝜂(𝑡) = [𝛾(𝑡)  �̃�(𝑡)]𝑇,𝜉(𝑡) = [𝜂(𝑡) 𝜀𝛿(𝑡)]𝑇,𝐴𝜉 = [𝐴  𝐼],�̃�(𝑡) = 𝛾(𝑡) − 𝛾(𝑡𝑘). 
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Therefore, the stability problem of the error system (6) can be transformed into 

the stability problem of the system (9). According to Equations (2) – (4) and Equations 

(8) – (9), we have 

|𝛿(𝑡)| ≤ �̄�‖𝛾(𝑡)‖ + �̄� (12) 

3.2. the stability of error system  

In this section, we will use convex combination techniques and the Lyapunov 

method to solve the stabilization for the error system problem of system (9). 

Theorem 1. consider the system of (9),assume the conditions of (2) and (4) are 

established, given α1 > 0, if there exist matrices P1 > 0,R1 > 0 which dimensions 

are all n × n, the matrix M1 has dimensions 2n × n, n × n matrices X1 = X1
T, X2 > 0, 

scalars β1, β0, L,M > 0, such that the LMIs satisfy the following form: 

[

𝛷(𝑡) + 𝛱(𝑡) 𝛺(𝑡) ℎ̄1�̄�
𝑇𝑅1

∗ −𝛽0𝐼 ℎ̄1𝐼
𝑇𝑅1

∗ ∗ −ℎ̄1𝑅1

] < 0 (13) 

[
 
 
 
 𝛷(𝑡) + 𝛱(𝑡) 𝛺(𝑡) ℎ̄1�̄�

𝑇𝑅 ℎ̄1𝑀1𝑒
𝛼1ℎ̄1

∗ −𝛽0𝐼 ℎ̄1𝑅1 0

∗ ∗ −ℎ̄1𝑅1 0

∗ ∗ ∗ −ℎ̄1𝑅1 ]
 
 
 
 

< 0 (14) 

where 

Φ(𝑡) = 2𝜀𝛼1𝐼1
𝑇𝑃1𝐼1 + (2𝜀𝛼1ℎ̄1 − 𝜀)𝐼2

𝑇𝑋1𝐼2 + (4𝜀𝛼1ℎ̄1 − 2𝜀)𝐼3
𝑇𝑋2𝐼2 + 𝜀

2𝐿2(1 + 𝛽1)𝛽0𝐼1
𝑇𝐼1 + 2ℎ̄1𝐼2

𝑇𝑋1�̄� +

4ℎ̄𝐼3
𝑇𝑋2�̄�, 𝛱(𝑡) = 𝐼1

𝑇𝑃1�̄� + �̄�
𝑇𝑃1𝐼1 + 𝜀𝑀1𝐼2 + 𝜀𝐼2

𝑇𝑀1
𝑇 , 𝛺(𝑡) = 𝐼1

𝑇𝑃1 + ℎ̄1𝐼2
𝑇𝑋1 + 2ℎ̄1𝐼3

𝑇𝑋2. 

Then, for some constants 𝑎, 𝑏, 𝑐  they are all satisfied with the positive 

definiteness condition and 𝜀 ,with 𝜀 ≪ 1 such that the solution from 𝛾0 is satisfied as 

follows estimates: 

‖𝛾(𝑡)‖ ≤ 𝑎‖𝛾(𝑡0)‖𝑒
−𝑏𝑡 + 𝜀

1
2𝑀𝑐 (15) 

Proof of Theorem 1. In order to carry out the stability analysis of system (9), we 

introduce the following Lyapunov functional: 

𝑉(𝑡) = 𝛾𝑇(𝑡)𝜀𝑃1𝛾(𝑡) + 𝜀
2𝜓(𝑡)∫ 𝑒2𝛼1(𝑠−𝑡)

𝑡

𝑡−𝜌(𝑡)

�̇�𝑇(𝑠)𝑅1�̇�(𝑠)𝑑𝑠 + 𝜀𝜓(𝑡)(�̃�
𝑇(𝑡)𝑋1�̃�(𝑡) + 2(𝛾(𝑡)

− �̃�(𝑡))𝑇𝑋2�̃�(𝑡)) 

(16) 

We can deduce that the time derivative of 𝑉(𝑡) along the trajectory of (9) is given 

by 

�̇�(𝑡) = 2𝛾𝑇(𝑡)𝑃1𝜀�̇�(𝑡) − 𝜀
2∫ �̇�𝑇(𝑠)𝑒2𝛼1(𝑠−𝑡)𝑅1�̇�(𝑠)

𝑡

𝑡−𝜌(𝑡)

𝑑𝑠 + �̇�𝑇(𝑡)𝜓(𝑡)𝜀2𝑅1�̇�(𝑡)

− 2𝜀2𝛼1𝜓(𝑡)∫ �̇�𝑇(𝑠)𝑒2𝛼1(𝑠−𝑡)𝑅1�̇�(𝑠)
𝑡

𝑡−𝜌(𝑡)

𝑑𝑠 − 𝜀[�̃�𝑇(𝑡)𝑋1�̃�(𝑡) + 2(𝛾(𝑡) − �̃�(𝑡))
𝑇𝑋2�̃�(𝑡)]

+ 2𝜓(𝑡)�̃�(𝑡)𝑋1𝜀�̇�(𝑡) + 2𝜓(𝑡)(𝛾(𝑡) − �̃�(𝑡))
𝑇𝑋2𝜀�̇�(𝑡) 

(17) 
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Considering (16) we obtain: 

−2∫ �̇�𝑇(𝑠)𝜀2𝛼1𝜓(𝑡)𝑒
2𝛼1(𝑠−𝑡)𝑅1�̇�(𝑠)

𝑡

𝑡−𝜌(𝑡)
𝑑𝑠 = 2𝛾𝑇(𝑡)𝜀𝛼1𝑃1𝛾(𝑡) + 2𝜀𝜓(𝑡)𝛼1(�̃�

𝑇(𝑡)𝑋1�̃�(𝑡) + 2(𝛾(𝑡) −

�̃�(𝑡))𝑇𝑋2�̃�(𝑡)) − 2𝛼1𝑉(𝑡). 

Considering �̃�(𝑡) can be expressed equivalently as ∫𝑡−𝜌(𝑡)
𝑡

�̇�(𝑠)𝑑𝑠. Therefore, the 

following relationship is reasonable: 

0 = 2𝜂𝑇(𝑡)𝜀𝑀1(�̃�(𝑡) − ∫ �̇�
𝑡

𝑡−𝜌(𝑡)

(𝑠)𝑑𝑠)

≤ 𝜂𝑇(𝑡)(𝜀𝑀1𝐼2 + 𝜀𝐼2
𝑇𝑀1

𝑇)𝜂(𝑡) + ℎ̄1𝜂
𝑇(𝑡)𝑀1𝑅1

−1𝑒2𝛼1ℎ̄1𝑀1
𝑇𝜂(𝑡)

+ ∫ �̇�𝑇
𝑡

𝑡−𝜌(𝑡)

(𝑠)𝜀2𝑅1𝑒
2𝛼1(𝑠−𝑡)�̇�(𝑠)𝑑𝑠 

(18) 

Form Equation (12), one can deduce that 

0 ≤ 𝜀2(𝐿2(1 + 𝛽1)𝛾
𝑇(𝑡)𝛾(𝑡) +𝑀2(1 +

1

𝛽1
)−∥ 𝛿(𝑡) ∥2)𝛽0 (19) 

where 𝛽1 > 0, 𝛽0 > 0, for 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), combine (17), (18) with (19), we obtain that 

�̇�(𝑡) ≤ −2𝛼1𝑉(𝑡) + 𝜀
2𝛽0𝑀

2(1 +
1

𝛽1
). 

Further, 

‖𝛾(𝑡)‖ ≤ √
𝜆2
𝜆1
𝑒−𝛼1𝑡‖𝛾(𝑡0)‖ + √

1

𝜆1

1

2𝛼1
(1 +

1

𝛽
0

𝛽1)𝜀𝑀 (20) 

where 𝜆1 = 𝜆𝑚𝑖𝑛(𝑃1), 𝜆2 = 𝜆𝑚𝑎𝑥(𝑃1). Therefore, we can obtain (15), where the 𝜀 >

0, 𝜀 ≪ 1. 

The proof is completed. □ 

3.3. Feedback control based on high-gain observer  

In this section, we will implement asynchronous feedback control of the system. 

To achieve robust stabilization of the system (1) based on the high-gain observer 

obtained from previous research, we first perform the following transformation: 

𝜗𝑖 =
𝑥𝑖
𝜀𝑛−𝑖

, 𝑖 = 1⋯𝑛, 𝛿𝑖 =
𝑓(𝑥1(𝑡),⋯ , 𝑥𝑖(𝑡))

𝜀𝑛−𝑖
, 𝑖 = 1⋯𝑛 − 1, �̃�𝑛 =

𝜙(𝑤, 𝑥)

𝜀0
 (21) 

Substituting the controller designed (5) into (1), we have 

{

�̇�𝑖(𝑡) = 𝑥𝑖+1(𝑡) + 𝑓𝑖(𝑥1(𝑡), . . . 𝑥𝑖(𝑡)),

�̇�𝑛(𝑡) = −∑
𝛼𝑖
𝜀𝑖

𝑛

𝑖=1

𝑘𝑛+1−𝑖𝑥𝑛+1−𝑖(𝑠�̃�) + 𝜙(𝑤, 𝑥) +∑
𝛼𝑖
𝜀𝑖

𝑛

𝑖=1

𝑘𝑛+1−𝑖𝑒𝑛+1−𝑖(𝑠�̃�),
 (22) 

where 𝑖 = 1⋯𝑛 − 1 , coordinate transformation (22) can be converted to closed-loop 

system (23) into the following form 
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{
 
 
 

 
 
 𝜀�̇�𝑖(𝑡) = 𝜗𝑖+1(𝑡) + 𝜀 ⋅

𝑓𝑖(𝑥1(𝑡)⋯𝑥𝑖(𝑡))

𝜀𝑛−𝑖
, 𝑖 = 1⋯𝑛 − 1

𝜀�̇�𝑛(𝑡) =∑−

𝑛

𝑖=1

𝛼𝑖𝑘𝑛+1−𝑖𝜗𝑛+1−𝑖(𝑡) +∑𝛼𝑖

𝑛

𝑖=1

𝑘𝑛+1−𝑖(𝜗𝑛+1−𝑖(𝑡) − 𝜗(𝑛+1−𝑖)(𝑠�̃�))

+∑𝛼𝑖

𝑛

𝑖=1

𝑘𝑛+1−𝑖𝛾𝑛+1−𝑖(𝑠�̃�) + 𝜙(𝑤, 𝑥),

 (23) 

Therefore, we can obtain the form below 

𝜀�̇�(𝑡) = 𝐵𝜗(𝑡) + �̃��̃�(𝑡) + 𝜀𝛿(𝑡) + �̃�𝛾(𝑠�̃�) = 𝐵𝑘𝜁(𝑡) (24) 

where 𝐵𝑘 = [�̄� 𝐼 �̃�], �̄� = [𝐵 �̃�]. 

B =

[
 
 
 
 

0 1 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 1

−𝛼𝑛𝑘1 −𝛼𝑛−1𝑘2 ⋯ −𝛼2𝑘𝑛−1 −𝛼1𝑘𝑛]
 
 
 
 

, 

�̃� =

[
 
 
 
 
0 0 0 ⋯ 0 0
0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 0

𝛼𝑛𝑘1 𝛼𝑛−1𝑘2 𝛼𝑛−2𝑘3 ⋯ 𝛼2𝑘𝑛−1 𝛼1𝑘𝑛]
 
 
 
 

, 

�̃�(𝑡) = [𝜗1(𝑡) − 𝜗1(𝑠�̃�) ⋯ 𝜗𝑛(𝑡) − 𝜗𝑛(𝑠�̃�)]
𝑇 , 𝜗(𝑡) = [𝜗1(𝑡) ⋯  𝜗𝑛(𝑡)]

𝑇 , 

𝛾(𝑠�̃�) = [𝛾1(𝑠�̃�)⋯𝛾𝑖(𝑠�̃�)⋯𝛾𝑛(𝑠�̃�)]
𝑇 , 

𝜀𝛿 = 𝜀 [
𝑓1(𝑥1(𝑡))

𝜀𝑛−1
⋯

𝑓𝑛−1(𝑥1(𝑡)⋯𝑥𝑛−1(𝑡))

𝜀1
𝜙(𝑤, 𝑥)

𝜀0
]
𝑇

, 

ζ(𝑡) = [𝜁0(𝑡) 𝜀𝛿 𝛾(𝑠�̃�)]
𝑇
, 𝜁0(𝑡) = [𝜗(𝑡) �̃�(𝑡)]𝑇 . 

Theorem 2. Consider the system of (24), given 𝛼2 > 0, if there exist matrices with 

dimension 𝑛 × 𝑛  , 𝑃2 > 0, 2𝑛 × 𝑛  matrices 𝑀2 > 0 , matrices 𝑅2 > 0  which has 

dimension 𝑛 × 𝑛, 𝑛 × 𝑛  matrices �̄�1 = �̄�
𝑇
1, �̄�2and scalars �̃�0 > 0, 𝛾0 > 0, 0

~
M , 

such that the following LMIs are satisfied, 

𝛯1 = [

𝛩(𝑡) + ϒ(𝑡) 𝛹(𝑡) ℎ̄2�̄�
𝑇𝑅2

∗ −�̃�0𝐼 ℎ̄2𝐼
𝑇𝑅2

∗ ∗ −ℎ̄2𝑅2

] < 0  (25) 

𝛯2 = [

𝛩(𝑡) + ϒ(𝑡) 𝛹(𝑡) ℎ̄2𝑀2𝑒
𝛼2ℎ̄2

∗ −�̃�0𝐼 0

∗ ∗ −ℎ̄2𝑅2

] < 0 (26) 

where 𝛩(𝑡) = 𝐼1
𝑇𝑃2�̄� + �̄�

𝑇𝑃2𝐼1 + 𝜀𝑀2𝐼2 + 𝜀𝐼2
𝑇𝑀2

𝑇 , 𝐼1, 𝐼2, 𝐼3  are Same as before 

descriptions. 

ϒ(𝑡) = 2𝛼2𝜀𝐼1
𝑇𝑃2𝐼1 + (2𝛼2ℎ̄2𝜀 − 𝜀)𝐼2

𝑇�̄�1𝐼2 + (4𝛼2ℎ̄2𝜀 − 2𝜀)𝐼3
𝑇�̄�2𝐼2 + 2ℎ̄2𝐼2

𝑇�̄�1�̄� + 2ℎ̄2𝐼3
𝑇�̄�2�̄� + �̄�

2(1 +

�̄�)𝜀2�̄�0                  𝛹(𝑡) = 𝐼1
𝑇𝑃2𝐼 + ℎ̄2𝐼2

𝑇�̄�1𝐼 + ℎ̄𝐼3
𝑇�̄�2𝐼. 
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Then system (24) is stable. 

Proof of Theorem 2. We introduce the following Lyapunov functional. 

𝑉(𝑡) = 2(𝜗(𝑡) − �̃�(𝑡))𝑇�̄�2�̃�(𝑡)) + 𝜗
𝑇(𝑡)𝜀𝑃2𝜗(𝑡) + 𝜀

2�̃�(𝑡)∫
𝑡

𝑡−�̃�(𝑡)

�̇�𝑇(𝑠)𝑒2𝛼2(𝑠−𝑡)𝑅2�̇�(𝑠)𝑑𝑠

+ 𝜀�̃�(𝑡)(�̃�𝑇(𝑡)�̄�1�̃�(𝑡) 

(27) 

�̇�(𝑡) = 2𝜀𝜗𝑇(𝑡)(𝑡)𝑃2�̇�(𝑡) − 𝜀
2∫ �̇�𝑇(𝑠)𝑒2𝛼2(𝑠−𝑡)𝑅2�̇�(𝑠)𝑑𝑠

𝑡

𝑡−�̃�(𝑡)

+ �̇�(𝑡)𝜀2ℎ�̃�(𝑡)𝑅2�̇�(𝑡)

− 2𝛼2𝜓(𝑡)𝜀
2∫ �̇�𝑇(𝑠)𝑒2𝛼2(𝑠−𝑡)𝑅2�̇�(𝑠)𝑑𝑠

𝑡

𝑡−�̃�(𝑡)

− 𝜀[2(𝜗(𝑡) − �̃�(𝑡))𝑇�̄�2�̃�(𝑡) + �̃�
𝑇(𝑡)�̄�1�̃�(𝑡)]

+ 2�̃�(𝑡)�̃�𝑇(𝑡)�̄�1𝜀�̇�(𝑡) + 4�̃�(𝑡)(𝜗(𝑡) − �̃�(𝑡))
𝑇�̄�2𝜀�̇�(𝑡) 

(28) 

set 

𝛯(𝑡) = [
𝜇𝛯1 + (1 − 𝜇)𝛯2 𝛹(𝑡)

∗ −�̃�0𝐼
], 

where 𝜇 ∈ (0,1) in view of Schur complement, from (25) and (26), we have 

�̃� = [
𝛯(𝑡) �̃�(𝑡)�̃�

∗ �̃�𝑇𝑅�̃� − 𝛾0𝐼
] < 0 (29) 

�̃�(𝑡) = [
𝐼1
𝑇

0
0

] 𝑃2 + ℎ̄2 [
𝐵𝑇

𝐼𝑇

0

]𝑅2 + ℎ̄2 [
𝐼2
𝑇

0
0

] �̄�1 + ℎ̄2 [
𝐼3
𝑇

0
0

] �̄�2.  (30) 

From (30), it follows that 

�̇� ≤ −2𝛼2𝑉(𝑡) + 𝛾0
2‖𝛾(𝑠�̃�)‖

2 + �̃�2(1 +
1

�̃�
)𝜀2�̃�0, 

From Theorem 1, we can obtain that there exists a scalar �̄� > 0 such that the 

following inequality holds ‖𝜗(𝑡)‖2 ≤ �̄�2‖𝜗(0)‖2𝑒−2𝛼2𝑡 + 𝑜(𝜀), ∀𝑡 ≥ 0, where �̄� =

√
𝜆𝑃2𝑚𝑎𝑥

𝜆𝑃2𝑚𝑖𝑛
. 

When 𝜀 is arbitrary small, the sampled-data control strategy based on a high-gain 

sampled-data observer realizes the robust stabilization of the closed-loop system. □ 

3.4. A numerical example  

In the next part, we illustrate effectiveness with a numerical example about the 

developed methodology. First, we consider the below proposed nonlinear 

biomechanical system. 

{
 
 
 

 
 
 
�̇�1 = 𝑥2(𝑡)

�̇�2 = −
𝐹2(𝑡)

𝐽2
𝑥2(𝑡) −

𝐾

𝐽2
𝑥1(𝑡) −

𝑚𝑔𝑑

𝐽2
(cos(𝑥1(𝑡)) − 1) + 𝑥3(𝑡)

�̇�3 = 𝑥4(𝑡)

�̇�4 =
𝐾2

𝑁2𝐽1𝐽2
𝑥1(𝑡) −

𝐾

𝑁𝐽2
𝑥3(𝑡) −

𝐹1(𝑡)

𝐽1
𝑥4(𝑡) +

1

10
(|𝑥3(𝑡) + 1| − |𝑥3(𝑡) − 1|) + 𝑢(𝑡)

𝑦(𝑡𝑘) = 𝑥1(𝑡𝑘),

 (30) 
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According to the previous observer design method, in order to achieve system 

stability, we construct a feedback controller with discrete time output  

{
 
 
 
 
 

 
 
 
 
 �̇�1 =

𝑎1
𝜀
(𝑦(𝑡𝑘) − 𝑥1(𝑡𝑘)) + 𝑥2(𝑡), 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1)

�̇�2 =
𝑎2
𝜀2
(𝑦(𝑡𝑘) − 𝑥1(𝑡𝑘)) + 𝑥3(𝑡) −

𝐾

𝐽2
𝑥1(𝑡) −

𝐹2(𝑡)

𝐽2
𝑥2(𝑡) −

𝑚𝑔𝑑

𝐽2
(cos(�̂�1(𝑡)) − 1)

�̇�3 =
𝑎3
𝜀3
(𝑦(𝑡𝑘) − 𝑥1(𝑡𝑘)) + 𝑥4(𝑡)

�̇�4 =
𝑎4
𝜀4
(𝑦(𝑡𝑘) − 𝑥1(𝑡𝑘)) +

𝐾2

𝐽1𝐽2𝑁
2
𝑥1(𝑡) −

𝐾

𝐽2𝑁
𝑥3(𝑡) −

𝐹1(𝑡)

𝐽1
𝑥4(𝑡) +

1

10
(|𝑥3(𝑡) + 1| − |𝑥3(𝑡) − 1|)

+𝑢(𝑡)

𝑢(𝑡) = −[𝑘1
𝑎4
𝜀4
𝑥1(𝑠�̃�) + 𝑘2

𝑎3
𝜀3
𝑥2(𝑠�̃�) + 𝑘3

𝑎2
𝜀2
𝑥3(𝑠�̃�) + 𝑘4

𝑎1
𝜀
𝑥4(𝑠�̃�)], 𝑡 ∈ [𝑠�̃� , 𝑠�̃�+1),

  (31) 

System parameters 𝐾/(𝐽2𝑁) = 3, 𝐾
2/(𝐽1𝐽2𝑁

2) = 2, 𝑚𝑔𝑑/𝐽2 = 4, 𝐾/𝐽2 = 5. 

𝐹2(𝑡)/𝐽2 = 10, 𝐹1(𝑡)/𝐽1 = 10, We set the value of controller gain 𝑘1, 𝑘2, 𝑘3,𝑘4 

and the observer gain of the representative about 𝑎1, 𝑎2, 𝑎3, 𝑎4 are 40, 78, 49, 12, 4, 6, 

4, 1 respectively. The value 𝑥1(0) = −5, 𝑥2(0) = −1, 𝑥3(0) = 4, 𝑥4(0) = 20 takes 

the form. 

Initial estimate 𝑥1(0) = 5, 𝑥2(0) = 3, 𝑥3(0) = −1, 𝑥4(0) = −4 With the choice 

of value about 𝜀 = 0.41, the actuator sampling {𝑠�̃�} and the sensor sampling {𝑡𝑘} are 

randomly generated, ℎ̄1 = 0.003, ℎ̄2 = 0.003. The numerical simulation results are as 

follows for Figure 1–3. 

 

Figure 1. The simulation results: 𝑥(𝑡) and its estimate 𝑥(𝑡). 
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Figure 2. The simulation results of 𝑒(𝑡). 

 

Figure 3. The simulation results of 𝑥(𝑡). 

4. Discussion 

Remark 1. Noting that 𝛾𝑖(𝑡) = 𝑒𝑖(𝑡)/𝜀
𝑛−𝑖, the ‖𝛾(𝑡)‖ can be estimated implies 

𝑒(𝑡) can be estimated. Therefore, 

‖𝛾(𝑡)‖ =
1

𝜀𝑛−1
√𝑒1

2(𝑡) + 𝜀2𝑒2
2(𝑡) + ⋯+ (𝜀𝑛−1)2𝑒𝑛

2(𝑡) ≤
1

𝜀𝑛−1
‖𝑒(𝑡)‖, 

‖𝛾(𝑡)‖ ≤ 𝑎‖𝛾(𝑡0)‖𝑒
−𝑏𝑡 + 𝜀

1

2𝑀𝑐 ≤
1

𝜀𝑛−1
𝑎𝑒−𝑏𝑡‖𝑒(0)‖ + 𝜀

1

2𝑀𝑐. 

Which shows that 

‖𝑒𝑖(𝑡)‖ ≤
1

𝜀𝑖−1
𝑎𝑒−𝑏𝑡‖𝑒(0)‖ + 𝜀𝑛−(𝑖−

1
2
)𝑀𝑐 (32) 

For all 𝑡 ≥ 0 . Hence, ‖𝑒𝑖(𝑡)‖ decay exponentially fast and are ultimately 

bounded. 

Remark 2. Noting that 𝜗𝑖(𝑡) is obtained from 𝑥𝑖(𝑡) Through the coordinate 

transformation mentioned earlier 𝜗𝑖(𝑡) = 𝑥𝑖(𝑡)/𝜀
𝑛−𝑖 , the 𝜗𝑖(𝑡)  can be estimated 

implies 𝑥𝑖(𝑡) can be estimated. Therefore, 
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‖𝜗(𝑡)‖ =
1

𝜀𝑛−1
√∑ 𝑥𝑖

2(𝜀𝑖−1)2𝑛
𝑖=1 ≤

1

𝜀𝑛−1
‖𝑥(𝑡)‖, 

‖𝜗(𝑡)‖ ≤ �̄�‖𝜗(0)‖𝑒−𝛼2𝑡 + 𝑜(𝜀) ≤ �̄�𝑒−𝛼2𝑡
1

𝜀𝑛−1
‖𝑥(0)‖ + 𝑜(𝜀). 

Which shows that 

‖𝑥𝑖(𝑡)‖ ≤
1

𝜀𝑖−1
�̄�𝑒−𝛼2𝑡‖𝑥(0)‖ + 𝑜(𝜀) (33) 

For all 𝑡 ≥ 0 . Hence, ‖𝑥𝑖(𝑡)‖  decay exponentially fast and are ultimately 

bounded. 

5. Conclusion 

In life, human beings perform various action tasks. The central nervous system 

coordinates all aspects of body movements through control to ensure successful 

execution [26–30]. In this article, we presented a high-gain observer-based controller 

for modeling the movement of biomechanical limbs. Our controller model reconstructs 

movement information data with unmodeled dynamics and nonlinear dynamics. It is 

beneficial to regulate and maintain the balance of human movement. Firstly, a discrete 

time sampling high-gain observer is proposed for a class of biomechanical systems 

with unmodeled dynamics. Then, a Lyapunov function has been introduced to deeply 

analyze the stability of the composite system; the new condition is expressed by 

solving LMIs (linear matrix inequality). The asynchronous controller for the 

separation principle is designed to realize the nervous feedback system control based 

on the sampling discrete time high-gain observer. Finally, the last numerical example 

illustrates the feasibility and effectiveness of the results presented in this paper. 
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