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Abstract: In this paper, the problem of designing an asynchronous sampling observer and
controller for the biomechanical nonlinear systems is investigated. The central nervous system
controls biomechanical limb movements through complex neurophysiological mechanisms.
The state sampling input observation obtained by the proprioceptor exhibits asynchronous
phenomena when transmitted to the central nervous system. The observation information about
parts of the body suffers unmodeled dynamics and nonlinear dynamics in transmissions to the
central nervous system. Firstly, unmodeled dynamics are introduced to a class of
biomechanical hybrid systems, which can be mitigated by increasing the gain of the observer.
The high-gain observer designed can solve the problem of obtaining the state information of
various parts of the human body and analyze the stability of the error system. Then, the
asynchronous sampling controller is structured to realize the nervous system feedback control
based on the high-gain observer. Sufficient conditions for the existence of controllers for
observer-based sampled data in discrete time are obtained by using the Lyapunov functions
and separation principle. Finally, the effectiveness of the method is illustrated by a numerical
example.

Keywords: biomechanical limbs movement; central nervous system; unmodeled dynamics;
high-gain observer; feedback control

1. Introduction

The theory of optimal control plays a key role in the study of biological motion.
In recent years, the signal simulation and control of the hand and tendon system have
been the focus of scholars’ research. Information measurement and acquisition
require an observer, while feedback control of the system requires a controller to
realize it [1-3]. The framework of control theory helps to understand the complex
limb movements and regulatory mechanisms in the human neuromuscular system.
The central nervous system receives input information through proprioceptors,
which helps regulate and maintain the balance of human movement [4]. People can
use key motion information observed by the observer to construct control models
that simulate human movement processes. Although there are indeed differences
between biological neural networks and artificial neural networks, such control
strategies are useful in studying human motor control. In reference [5], a motion
control model was proposed and evaluated through neuromechanical simulation,
which consists of a controller and a musculoskeletal model, representing the central
nervous system and the body.

The observer design problem for the nonlinear hybrid system has received more
and more attention since the eighties [6-8]. High-gain observer is an important tool
for studying sampling output feedback control of nonlinear systems [9-13]. In the
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earlier time, Doyle and Steinjiang applied high-gain observers to the design of robust
observers for linear systems [14]. The early work of high-gain observers in nonlinear
systems began in the late 1880s [15,16], and after that, this technique has been
applied to subsequent studies. Gauthier and other scholars devote themselves to the
study of nonlinear systems under the condition of global Lipschitz to obtain the
global results [17], the observer is constructed under the assumption that the
conclusions obtained in this paper can be extended to a wider range of nonlinear
systems. The observer is suitable for nonlinear systems and autonomous systems that
can be observed by any input. Esfandiari and Khalil have proved that in the absence
of the whole local Lipschitz condition, there will be a peak phenomenon, which will
produce a similar pulse. Therefore, when the design of the observer gain is high
enough, a high-gain observer may destroy the stability of closed-loop nonlinear
hybrid systems [18].

The problem of information measurement noise and model uncertainties has
attracted great attention from scholars [19,20]. In order to obtain accurate observation
information, a switching gain observer is proposed in [21], because of modeling
uncertainty, the authors construct a switched-gain observer to decrease the
manifestations of the balance in the system states. The authors of [22] construct the
observer gain based on the symmetric positive definite matrix with simple structure
and try to find an algorithm that can calculate the state observer gain. The scholars
have done in-depth research on high-gain observers in [23]. Based on the above
discussion, to promote the results mentioned above, we try to consider uncertain
nonlinear systems with sampled-data output measurements whose nonlinearity terms
are unknown, and the nominal model of unmodeled dynamics satisfies weaker
Lipschitz conditions. The conditions in this article about asynchronous sampling
observation and control are suitable for a wider nonlinear system.

The main contributions of this article are two points. One is to allow the model
to be uncertain; the condition in this paper is weaker than the classic Lipschitz
condition; therefore, the conclusions obtained in this paper can be generalized to a
wider range of nonlinear hybrid biomechanical systems. The unmodeled dynamics can
be attenuated by increasing the gain. The other is that we consider the separation
principle, the design of the asynchronous controller to realize the nervous system
feedback control based on the state information observed by the high-gain observer.

The main contents of this paper are as follows: In section 2, materials and
methods are given. The main result is in section 3. Discussion in section 4. Section 5
to illustrate the conclusion of this article.

2. Materials and methods

In order to better carry out the theoretical analysis, we propose the following
lemma, which plays a key role in the main results of the study.
Lemma 1. [24]. For any matrix U € R™" it has the positive definite property, a > 0
and b >0 are scalars, vector function ¢:[a,b] - R™ such the integrations
concerned are well defined, the following integral inequality holds:

Iy ¢7 (HUB(s)ds = 5[ 67 (s)dsU [ ¢ (s)ds.
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Lemma 2. [25]. For constant matrices with appropriate dimensions Sy, S;,,S5,5,
where S; = ST > 0,5, =S >0 if —=S; + 5,,5715F, < 0 and then the following
inequality holds:

—S1 512]
< 0.
s 5,

3. Main result

3.1. Systems description and preliminaries

Consider the nonlinear hybrid biomechanical system proposed below:

% (8) = x40 (0) + fi(x1(8), - ()i = 1m — 1

xn () = @(w, x) + u(t) 1)

y =x1(8)
where x(t) € R™ is the state vector about the system above, u(t) € R represents input
of controller, y(t) € R stands for measurement of the sensor output, f;(x; ---x;) is a
nonlinear functions satisfing the conditions:

i
|fiCrey o) = fi(%y -+ )| Szlj|xj—fj| )

j=1

where [;, i = 1,2,---,n — 1, are nonnegative constants, the unknown function with
unmodeled dynamics ¢(w, x) satisfies global Lipschtiz conditions. It’s worth noting
that the only thing that can be measured is the output y(t) = x, (t) from the analyzed
hybrid system in discrete instant t,,, thus, according to obtained the sampled output
y(t,) that was obtained at discrete time, a state observer with sampled and
corresponded to system (1) is proposed as follows:

. a; ,
40O = 2a O+ A 2O) H B0 8 00) = 1om e
£a(0) = 90(R) + 2 (y(6) — £1(6)) + u(®),

where x(t) € R™ is the observer state, ¢,(X) = 0 is a nominal model of ¢(w, x)
satisfy the conditions
low,x) —po(2)| < Lllx -zl + M 4)

where L > 0, M > 0 are constants.
In order to suppress and reduce the influence of unmodeled dynamics, a controller
based on a sample-and-hold Luenberger observer is designed as follows:

(£:(0) = Ziaa (O + i@ (O, 2(0) + L (1 () — R1(6)), £ € [t Legr)

£a(t) = Po(®) + 22 (x1(ti)) — £1(t)) + u(t) 5)
u(t) = = Xy Zhenrr— Fne1—i (i), t € [Sp Span),

where i = 1...n — 1, the time sequences {t;} and {s3} are not any strictly increasing
but also satisfy the following constraints:
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to=0,h1o < tgpy —te < By,
So = 0,]’120 < Sk+1 — Sk < I'_lz,k € N.

where %44, iy, hip0, i, are positive definite scalars. In addition, for the sake of later
analysis, we introduce the following notation:

Y(t) = tgpr —t,p() =t — by, t € [ty tysr),
P(t) = Sggq — t,A(t) = t = g, t € [S Sge1),
L= [In On],lz = [On In];13 = [In _In]-

By setting e(t) = x(t) — X(t) the error dynamics (3) can be converted and
represented in the following form:

Gi(6) = =t er(t) + G (O 1) = iB1 O, £(0) + €132 (O
n(t) = = 1 () + $w, ) — o),

where the value of e;(t) are equal to x;(t) — X;(t). In order to simplify the analysis in
subsequent research, coordinate transformation is made as follows

nin =220 @

5.0 :ft(?ﬁ(t),---;xi(t)))g:_]:i((?%(t),---,fi(t))),Sn(t) — bW, x) — do(x) ()

wherei =1,....,n — 1, therefore, the system (6) and the following system form are
equivalent,

&) = a;i(y1(®) — y1(te)) — aiy1(©) + vip1 () + €8;®) i =1,--n—1,

EYn(t) = an(yl(t) — V" (tk)) —0nV1 (t) + 85n(t)-

In order to better analyze the system (9), we introduce the following symbols

9)

ey (t) = e8(t) + Ar(t) + a(y1(0) — v1(tx)) (10)
ey (t) = Ag(£)E(t) (11)
where
—a; 1 0 - 0 0
—a, 0 1 - 0 0
A=| A A
—ayy 0 0 - 0 1
—a, 0 0 - 0 0
y(@®) =[y1@®) - O], 8@) =[6:() - ()],
a=[al an]le:[l 0]1Xn!ZZ[A 571]'

n(®) =) 7OITE® = @) e84 = [A 1].7(t) =y(®) — y(ti).
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Therefore, the stability problem of the error system (6) can be transformed into
the stability problem of the system (9). According to Equations (2) — (4) and Equations
(8) — (9), we have

161 < Lily@®Ill + M (12)

3.2. the stability of error system

In this section, we will use convex combination techniques and the Lyapunov
method to solve the stabilization for the error system problem of system (9).
Theorem 1. consider the system of (9),assume the conditions of (2) and (4) are
established, given a; > 0, if there exist matrices P; > 0,R; > 0 which dimensions
are all n X n, the matrix M; has dimensions 2n x n, n X n matrices X; = X1,X, > 0,
scalars B, By LM >0, such that the LMIs satisfy the following form:

O(t)+1(t) 0(t) hATR,
* —Bol  mITR | <0 (13)
* * —}_11R1

D)+ () 021) hATR hyMye®h
* —Bol MRy 0
* * —hiR, 0
* * * —}_llRl

<0 (14)

where

O(t) = 2ea, 17 P11y + (2eashy — )13 X1, + (4eayhy — 2€)I5 Xo0, + €2L2(1 + By)Bol Iy + 2hy 1T X, A +
AhITX,A () = TP A+ ATP I + eM I, + eIXMT,0(t) = I,TP, + h I3 X, + 20 157 X,.

Then, for some constants a, b,c they are all satisfied with the positive
definiteness condition and € ,with € <« 1 such that the solution from y, is satisfied as
follows estimates:

1
YOIl < ally(to)lle™* + e2Mc (15)

Proof of Theorem 1. In order to carry out the stability analysis of system (9), we
introduce the following Lyapunov functional:

t
V() =y (©)ePy(t) + 2P(t) @670 yT($)Ryy(s)ds + ep (O T (X1 7(1) + 2(y (t)
t=p(t) (16)

— 7)) X,7(1))
We can deduce that the time derivative of V(t) along the trajectory of (9) is given
by

t
V(@) = 2yT(©)Pyey (b) — €2 f ¥ ()e? G DR y(s) ds + yT ()Y (t)e* R,y (L)
t—p(t)
t 17
—2e2a1(t) ( ))’/T(S)ez"‘l(s‘t)Rﬂ'f(S) ds — e[FT O X17() + 2(r (t) — 7 ()" Xo7(8)] s
t—p(t

+ 2P (OF(OX1e7 (1) + 2P () — 7(£)) Xze7 (1)
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Considering (16) we obtain:
“2 [ VT (9)e2arp(£)e? IR (s) ds = 2y T (t)eay Py (6) + 2e(D)ay (P (DX17() + 2(r (£) —
PO X7 (1) — 204V (8).

Considering 7(t) can be expressed equivalently as | tt_ p(t)y(s)ds. Therefore, the
following relationship is reasonable:

t
0 = 207 ()M, (7(£) — f 7 (s)ds)
t—p(t) )
< nT(t)(eMI, + el MD)n(t) + hynT (©)My Ry 2 MI (L) (18)

t
+.[ vT (s)e?R, 2%~ Dy(s)ds
t=p(t)
Form Equation (12), one can deduce that
20712 T 2 1 2
0<e“(L“A+ By ®)yt) +m~(1+ [)T)_" 6(t) 19)po (19)
1

where $; > 0,8, > 0, for t € [ty, tx+1), cOMbine (17), (18) with (19), we obtain that

V(t) < =2,V (t) + €2BoM2(1 + ﬁi).

Further,
Az "y 1
Iyl < vl + |50 4y oM (20)
where 4, = Apin(P1), 22 = Apmax(P1). Therefore, we can obtain (15), where the € >
0,e 1.

The proof is completed. o

3.3. Feedback control based on high-gain observer

In this section, we will implement asynchronous feedback control of the system.
To achieve robust stabilization of the system (1) based on the high-gain observer
obtained from previous research, we first perform the following transformation:

X

. < _ SO, x) . ~ _9¢w,x)
19i=£n_i,l=1---n,6i= T ,Ji=1-n-1,6,= =0 (21)
Substituting the controller designed (5) into (1), we have
xi(t) = xl+1(t) + fi(xq (6), ... x;(2)),
(22)
£n(6) = Z ensins1-i(58) + OO, X) + Z o1 tenen 1 (57),

where i = 1---n — 1, coordinate transformation (22) can be converted to closed-loop
system (23) into the following form
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£8;(6) = pa1(0) + € .f(xl(g)n_ixl( D i qn1
n n
4 gﬁn(t) = Z = Qikny1-iOn41-i(0) + z i kn1-i(Ons1-i(8) — 19(n+1—i) (i) (23)
i=1 i=1

n
£ ks Vnsa-i(5e) + W, 2),
\ =1

Therefore, we can obtain the form below

gd(t) = BI(t) + KI(t) + £6(t) + Ky(sz) = Br{(t) (24)
whereB, =[B 1 KLB=I[B Kl
0 1 0 0
0 0 0 0
B = : : : I
0 0 0 1
l—0fnk1 an-1k; azkn—q ajkn
0 0 0 0 0
0 0 0 0 0
K=| : : : : : i
0 0 0 0 0
l0fnk1 an-1ky an_zks - azkn_1 aiky
I(t) = [91(0) = O1(se) = In(®) = (5], () = [9:(t) -~ 9. (O],

Y(sr) = [ya(sg) - vi(sp) = v (sII",
&b = g[fl(xl(t)) S Ga (@) xn1 (0) P(w,X) T’

en-1 el 0

~ T -~

(O =[%® & vl LM =WE IO
Theorem 2. Consider the system of (24), given a, > 0, if there exist matrices with
dimension nxn , P, > 0,2n X n matrices M, > 0, matrices R, > 0 which has

dimension n x n, n X n matrices X; = XT,, X,and scalars 3, > 0,y, > 0, M > 0,
such that the following LMIs are satisfied,

0() +Y(t) Ww(t) h,B™R,
1= * —Bol  hyI"R, | <0 (25)
* * —ilsz

O + Y (t) W(t) hyMye%2h
y = * —Bol 0 <0 (26)
* * —ilsz

where O(t) = I, P,B + BTP,1; + eM,I, + eI’ MY, 1,,1,,1; are Same as before
descriptions.

Y(t) = 2a,elf PoIy + (Qayhye — )X 1, + (dazhye — 28) I3 X505 + 2h, 1 X, B + 20,13 X,B + [2(1 +
B)e?B, W(t) = 1, Pyl + hoI3 Xy 1 + k3" X, 1.
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Then system (24) is stable.
Proof of Theorem 2. We introduce the following Lyapunov functional.
(27)

t
9T (5)e?%26~DR,9(s)ds

V() = 209(t) — ()T X,0(t)) + 9T ()P, 9(t) + €2 (t)
t—p(t)

+ep(O@T(OX (1)

97T (5)e?%2=OR,9(s)ds + I () e?mp ()R, I (t)
(28)

t

V(t) = 2e97 () ()P, (t) — ng
t-p(t)

t

97T (5)e2% DR, 9(s)ds — e[2(9(t) — I(t))TX,9(t) + 9T ()X, 9(t)]

— 2a,1(t)e?
A ft—ﬁ(t)
+ 2 ()T ()X, 9 () + 4P I(E) — 9(6)) X (t)
1-wE ¥

set
- pEL +(
=(t =
® [ * —Boll
where u € (0,1) in view of Schur complement, from (25) and (26), we have
- |z P)K |
g=[F® _FOK 1, (29)
*  K'"RK —v,l]
_ I BT 21, B,
lp(t): 0 P2+h2 IT R2+h2 O X1+h2 O Xz. (30)
0 0 0 0

From (30), it follows that
. ~ 1 ~
V < =2a,V(®) + v lly Sl + M2 (1 + )&% fo,

From Theorem 1, we can obtain that there exists a scalar @ > 0 such that the
following inequality holds [|9(t)||? < a?|[9(0)||%e 2%zt + o(¢),Vt = 0, where a =

APZmin.
When ¢ is arbitrary small, the sampled-data control strategy based on a high-gain
sampled-data observer realizes the robust stabilization of the closed-loop system. o

3.4. A numerical example
In the next part, we illustrate effectiveness with a numerical example about the
developed methodology. First, we consider the below proposed nonlinear

biomechanical system.

fxl - xZ (t)
. F,(t) K mgd
Xy =— X () ——x1(8) — (cos(x1(t)) — 1) + x3(t)
J2 I2 J2
$ X3 = x4(t) (30)
_ K2 K F,(t) 1
X4 = m?ﬁ(t) _N_]2x3(t) 7, x4 () +E(|X3(t) + 1 = |x3(®) — 1) + u(t)
\y(tr) = x4 (Ex),
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According to the previous observer design method, in order to achieve system
stability, we construct a feedback controller with discrete time output

-

1= Ot ~ 21 (t) + 220, € [t tir)
Fo(0)

K
2 ()'(tk) — %1 () + X3(t) — —2x1(t) I, X (¢ )— (COS(x1(t)) —1)
X3 = 8—3 = (tk) — R1(t)) + 24(1) (31)
=2 () - #26) + ——— S X1 (t) = x(t) 1()X(t)+ (I1%5() + 1| = [x3() — 1])
e Yy{lk 1k JJ,N? 1 3 4 10 |3 3

+u(t)

u(t) = —[ky 4x1(5k) + kz =3 xZ(Sk) + k3 22 xS(Sk) + k4 x4(5k)] t € [Sk)Sk+1)s

System parameters K /(J,N) = 3, K?/(J1J,N?) = 2, mgd/], = 4,K /], = 5.

F,(t)/], = 10,F;(t)/]; = 10, We set the value of controller gain kq, k,, k3,k4
and the observer gain of the representative about a;, a,, az, a, are 40, 78, 49, 12, 4, 6,
4, 1 respectively. The value x; (0) = =5, x,(0) = —1, x3(0) = 4, x,(0) = 20 takes
the form.

Initial estimate %, (0) = 5,%,(0) = 3,%3(0) = —1,X,(0) = —4 With the choice
of value about & = 0.41, the actuator sampling {sz} and the sensor sampling {t; } are
randomly generated, #; = 0.003, 4, = 0.003. The numerical simulation results are as
follows for Figure 1-3.

) 2}
eit)
] | [S—

A
-10
10 15
0 10 i an 40 10 i an 40
Time (s) Time (s)
gl i
T3lt] Tt
0 Fslt] 10 \ Ealt)
-0 ] =
40 -10
0 10 i 30 40 0 10 Z0 30 40
Time (s) Time (s)

Figure 1. The simulation results: x(t) and its estimate X(t).
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50

1
5 10 15 20 25 30 35
Time (sec)

Figure 2. The simulation results of e(t).

20

_1D 1 1 1 1 1 1
0 g 10 18 20 25 30 35

Figure 3. The simulation results of x(t).
4. Discussion

Remark 1. Noting that y;(t) = e;(t)/e™%, the ||y (t)|| can be estimated implies
e(t) can be estimated. Therefore,

YOIl = /2 (®) + 2e2(0) + -+ (e D2eZ(D) < o< lle(®l,

_ 1 1 _ 1
ly (Ol < ally(to)lle™t + ezMc < ae~"t|le(0)|| + e2Mc.

- 871—1

Which shows that
1
-1

.1
=y ae " le(O)] + " P Me (32)

lle: (O =

For all t > 0. Hence, |e;(t)|l decay exponentially fast and are ultimately
bounded.

Remark 2. Noting that 9;(t) is obtained from x;(t) Through the coordinate
transformation mentioned earlier 9;(t) = x;(t)/e™¢, the 9;(t) can be estimated
implies x; (t) can be estimated. Therefore,

10
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9N = = VL 22 ) < == X (@)l
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Which shows that
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5. Conclusion

In life, human beings perform various action tasks. The central nervous system
coordinates all aspects of body movements through control to ensure successful
execution [26-30]. In this article, we presented a high-gain observer-based controller
for modeling the movement of biomechanical limbs. Our controller model reconstructs
movement information data with unmodeled dynamics and nonlinear dynamics. It is
beneficial to regulate and maintain the balance of human movement. Firstly, a discrete
time sampling high-gain observer is proposed for a class of biomechanical systems
with unmodeled dynamics. Then, a Lyapunov function has been introduced to deeply
analyze the stability of the composite system; the new condition is expressed by
solving LMIs (linear matrix inequality). The asynchronous controller for the
separation principle is designed to realize the nervous feedback system control based
on the sampling discrete time high-gain observer. Finally, the last numerical example
illustrates the feasibility and effectiveness of the results presented in this paper.
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