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Abstract: To improve the training effectiveness of rehabilitation training for patients with lower 

limb injuries, the research optimized the long short-term memory network algorithm using 

convolutional neural network algorithm, and conducted big data analysis on the biomechanics of 

the human lower limb based on the optimized algorithm. Through the results of big data analysis, 

the mechanical response mechanism of the human lower limb during movement was studied, and 

a rehabilitation training intelligent assistive robot that aligns more closely with the biomechanical 

properties of the human body was designed. An analysis of the biomechanics of the lower limbs 

of the human body showed that under different exercise states, the muscle strength of the 

gastrocnemius and soleus muscles in the lower limbs showed similar trends, with the gluteus 

maximus muscle strength reaching its maximum value in the first 20% of the gait cycle. After 

optimizing the intelligent assistive robot based on this result, the weekly training efficiency of 

patients increased to 92.3%. From the above results, it can be concluded that the proposed 

intelligent assistive robot can significantly improve the rehabilitation training efficiency of patients 

with lower limb injuries. 

Keywords: convolutional neural network algorithm; long short-term memory network; big 

data analysis; biomechanical analysis; rehabilitation training; intelligent assistive robot 

1. Introduction 

Lower limb (LL) injuries typically involve damage to the human bones, nerve 

vessels, and muscle tendons, affecting people’s walking and other functions, causing 

various inconveniences to their normal lives (Cai et al., 2023). Rehabilitation training 

can promote the recovery of patients’ physical functions, improve their daily living 

abilities, and enhance their quality of life. And accelerate the patient’s recovery 

process, reduce hospitalization time, and lower medical expenses. Rehabilitation 

training (RT) for patients with LL injuries can improve their recovery speed, shorten 

their recovery time, and enable them to return to normal life as soon as possible (Wang, 

Peng, & Hou, 2023). As technology and science advance, various fields are using 

intelligent technology to help enterprises improve their work efficiency. In the medical 

field, many scholars have used intelligent assistive robots to provide RT for patients 

with LL injuries (Ouendi, Hubaut, Pelayo, Anceaux, & Wallard, 2024). However, in 

many cases, these intelligent assistive robots do not analyze the biomechanics of the 

lower limbs during human movement, making it impossible to personalize the design 

of patients’ conditions. This results in robots not being able to effectively assist 

patients in designing personalized training methods, thereby reducing the 

effectiveness of rehabilitation training. Therefore, it is necessary to optimize the 

current intelligent assistive robots (Zhao et al, 2022). Convolutional Neural Networks 

(CNN) algorithm can efficiently obtain feature data from information and improve the 
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accuracy of data analysis (Chen, Seo, & Zhao, 2022). Long Short-Term Memory 

(LSTM) networks have powerful sequence processing capabilities and can predict data 

(Kumar, Kumar, & Kumar, 2022). In order to improve the biomechanical analysis 

effect of intelligent assistive robots on human motion, this study combines CNN 

algorithm and LSTM algorithm organically, using CNN algorithm to extract features 

from patients’ training images, and then using LSTM algorithm to analyze and predict 

the extracted feature information, in order to analyze the biomechanical data of human 

motion. Through the analysis results, the mechanical response mechanism of the lower 

limbs during human motion is studied, and a robot that is more in line with human 

biomechanical characteristics is designed. The innovation of the research lies in using 

CNN-LSTM to conduct big data analysis on the biomechanics of human motion, and 

optimizing the design of intelligent assistive robots based on the biomechanical 

analysis results, in order to design robots that are more conducive to patient 

rehabilitation training. 

2. Related works 

In order to provide better RT methods for patients with LL injuries, many 

scholars have designed intelligent assistive robots to assist patients in RT (Lloyd, 

Jonkers, Delp, and Modenese. 2023). For example, Tao et al. (2024) designed an RT 

robot to alleviate fatigue in the upper and LLs of Parkinson’s disease patients. The 

robot was tested in practical situations and the results showed that it could alleviate 

the patient’s fatigue by 12.6%. Loro et al. (2023) proposed a gait training robot for the 

treatment of balance disorders in stroke patients. The outcomes indicated that the robot 

could improve the treatment effect by 19.3%. In addition, in order to provide better 

RT methods for people with LL movement disorders, Sun et al. (2022) designed a 

walking training robot based on control algorithms and compared it with traditional 

training methods. The results showed that the robot could improve training efficiency 

by 9.8%. Tsai and Chiang (2023) designed an RT robot based on an adaptive self-

organizing fuzzy sliding mode controller to optimize the control accuracy of the LL 

RT robot. The robot was compared with an unoptimized robot. The comparison results 

showed that the optimized robot could improve control accuracy by 21.2%. Table 1 

can be obtained by summarizing the above research. 

Table 1. Summary of research content. 

Author research contents  Advantage Insufficient 

Tao et al. (2024) Fatigue relief rehabilitation training robot Fatigue relief by 12.6% No biomechanical analysis 

Loro et al. (2023) Gait training robot 
The treatment effect has been improved 

by 19.3% 
Long treatment cycle 

Sun et al. (2022) 
Walking training machine for lower limb 

movement disorders 

Rehabilitation training efficiency 

increased by 9.8% 

Low improvement in training 

efficiency 

Tsai and Chiang 

(2023) 

Optimize the control accuracy of rehabilitation 

training robots 
Control accuracy improved by 21.2% 

The rehabilitation effect is not 

ideal 

Big data analysis refers to the process of using advanced analytical techniques 

and tools to handle and examine varied data sets, in order to reveal the correlations 

between data, trends in data development, and potential value (Fanelli, Pratici, 
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Salvatore, Donelli, and Zangrandi 2023). LSTM is a big data analysis algorithm 

widely used for processing sequential data. For example, Pushokhina et al. (2022) 

proposed an Internet big data analysis technology based on LSTM to deal with the 

matter of large amount of detection data and difficult analysis in Internet intrusion 

detection, and used this technology in intrusion detection for testing. The results 

showed that this technology was able to precisely analyze extensive data on the 

Internet. The CNN algorithm can accurately extract features from data, and many 

scholars have used this algorithm to analyze data. For example, Utama et al. (2022) 

proposed an image recognition approach grounded on CNN algorithm to handle the 

issue of low recognition accuracy in image recognition, and applied this method for 

detection in practical situations. The outcomes indicated that the construction 

recognition error rate of this approach was only 1.386%. 

Biomechanics analysis can measure and analyze the mechanical response 

mechanisms of cells during human movement, in order to design devices that are more 

in line with human biomechanics (Augustin, 2022). Many scholars have utilized 

biomechanics for the design of human intelligent equipment, such as, Mercan et al. 

(2023) conducted an analysis on the biomechanics of RT for patients with tibiofibular 

joint injuries, and based on the analysis results, a tibiofibular joint injury treatment 

equipment was designed for performance testing in practical situations. The results 

showed that the equipment could effectively assist patients in RT. 

In summary, although there are currently many intelligent assistive robots, these 

robots still have the problem of poor robot assisted training effectiveness when 

providing RT to patients due to the lack of analysis of the biomechanical changes 

during patient movement. To raise the auxiliary training effect of intelligent assistive 

robots, the research utilizes the CNN-LSTM algorithm to analyze the biomechanics of 

the LLs during human movement. By studying the mechanical response mechanism 

of cells, a robot that aligns more closely with the biomechanical properties of the 

human body is designed. 

3. Intelligent assistive robot based on CNN-LSTM data analysis 

and biomechanical analysis 

3.1. Big data analysis methods based on CNN and LSTM algorithms 

With age, various functions of the human body will gradually deteriorate, thereby 

increasing the risk of falls, strokes, and other serious damage to LL function, which 

seriously affects people’s lives. So designing an intelligent assistive robot for RT can 

provide a more effective RT method for patients with LL injuries. The cellular 

mechanical response mechanism includes cell deformation and changes in stress 

caused by physical activity, which have different effects on human biomechanics. The 

changes in human biomechanics are related to the parameter settings of intelligent 

assistive robots (Elshazly et al., 2023). So, to better carry out RT for the human body, 

it is needful to use a big data analysis method to analyze the cellular mechanical 

response mechanism of the LLs of the human body, and then conduct biomechanical 

analysis. Based on the analysis results, a robot that aligns more closely with the 

biomechanical properties of the human body can be designed to improve its auxiliary 
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effect and comfort. The LSTM algorithm can be applied to various sequence tasks. By 

using this algorithm to analyze the various biomechanics of the human LLs, it is 

possible to predict the various characteristics of the human LLs during motion, thereby 

constructing intelligent assistive robots (Pastor et al., 2023). The basic steps of using 

LSTM algorithm for data analysis are shown in Figure 1. 
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Figure 1. Basic steps of LSTM algorithm. 

As shown in Figure 1, when the LSTM algorithm analyzes data, it first needs to 

initialize the network parameters such as the weight matrix (WM) and bias vector of 

the LSTM. Then, the hidden state (HS) and memory state in each time step are updated 

through the forget gate (FG), input gate (IG), and output gate (OG) of the LSTM 

algorithm. The LSTM algorithm repeats the above steps until the entire sequence data 

is completely processed and outputs the corresponding results. Based on the obtained 

results, the sequence data is predicted. Among them, the formula for calculating the 

information retention size in the FG of the LSTM algorithm is shown in Equation (1). 

𝑓(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓 × [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑓) (1) 

In Equation (1), 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 is the activation function (AF), 𝑊𝑓 represents the 

WM of the FG, ℎ(𝑡 − 1) is the HS of the previous time step, 𝑥(𝑡) is the input of the 

current time step, and 𝑏𝑓 is the bias vector of the FG. The output calculation method 

of IG 𝑖(𝑥) is shown in Equation (2). 

𝑖(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖 × [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑖) (2) 

In Equation (2), 𝑊𝑖 is the WM of the IG, 𝑏𝑖 is the bias vector of the IG, and 

the calculation formula for the OG value is shown in Equation (3). 

𝑜(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜 × [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑜) (3) 

In Equation (3), 𝑊𝑜 is the WM of the OG, and 𝑏𝑜 is the bias vector of the OG. 

The calculation method for updating cell state is shown in Equation (4). 

𝐶(𝑡) = 𝑓(𝑥) × 𝐶(𝑡 − 1) + 𝑖(𝑥) × tanℎ(𝑊𝑐 × [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑐) (4) 

In Equation (4), 𝑊𝑐 is the WM of the memory unit (MU), 𝑏𝑐 is the bias vector 

of the MU, and 𝐶(𝑡) is the state of the MU. The final output value calculation method 

is in Equation (5). 
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𝐹(𝑡) = 𝑜(𝑥) × tanℎ(𝐶(𝑡)) (5) 

In Equation (5), 𝐹(𝑡) represents the final output. However, although the LSTM 

algorithm can analyze data, it cannot accurately extract feature information, resulting 

in low prediction accuracy, and further optimization of the LSTM algorithm is needed. 

The CNN algorithm has powerful feature extraction capabilities and can extract 

feature information from raw data (Madan & Kumar, 2024). So this study uses CNN 

algorithm to optimize LSTM algorithm to improve the accuracy of algorithm 

prediction. The basic process of predicting data using the LSTM algorithm optimized 

by CNN is shown in Figure 2. 
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Figure 2. Basic process of CNN-LSTM algorithm prediction. 

From Figure 2, the CNN-LSTM algorithm is divided into two modules. In the 

CNN module, the convolutional layer (CL), pooling layer (PL), fully connected layer 

(FCL), and AF of the CNN algorithm are used to obtain feature details from the input 

information. The extracted feature information is used as input data in the LSTM 

module. After repeated iterations of the FG, IG, and OG of the LSTM algorithm, all 

data sequences are predicted to analyze the LL biomechanics during human motion. 

In the CNN module, the calculation method for the output information size in the CL 

is shown in Equation (6). 

𝑂 = (𝑛 + 2𝑝 − 𝑘)/𝑠 + 1 (6) 

In Equation (6), 𝑂  is the output size of the CL, 𝑛  is the size of the input 

information, 𝑝 is the size of the padding, 𝑘 is the size of the convolution kernel, and 

𝑠 is the step size. The size of feature information in the PL is shown in Equation (7). 

𝑂1 = (𝑛 − 𝑘)/𝑠 − 1 (7) 

In Equation (7), 𝑂1 is the size of the output feature information of the PL. The 

data feature information is obtained through the calculation of convolutional and PLs, 

which facilitates subsequent calculations in the LSTM module. 

3.2. Intelligent assistive robot based on CNN-LSTM and biomechanical 

analysis 

At present, many RT intelligent assistive robots cannot accurately analyze the 

biomechanics of human movement. To address the aforementioned challenges, the 
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study applies the CNN-LSTM algorithm to analyze the cellular mechanical response 

mechanism of the LLs during human movement. Based on this analysis, the 

biomechanical changes are analyzed, and the current RT intelligent assistive robots 

are optimized to accelerate the rehabilitation speed of LL injury patients. The 

biomechanical analysis steps based on CNN-LSTM algorithm are shown in Figure 3. 

CL PL FCL AF

Forgot Gate Gate in Memory cells Output gate

Data 

collection

Data cleaning Denoising
Outlier 

handling

Missing value 

handling

CNN

LSTM

 

Figure 3. Biomechanical analysis of CNN-LSTM. 

As shown in Figure 3, when conducting biomechanical analysis, sensors are first 

worn on the left and right thighs, calves, and feet of the LLs of the human body. The 

sensors are used to collect the muscle strength of the LLs under different motion states 

as the dataset of the CNN-LSTM module. The muscle strength can reflect the 

contractility of muscle cells to analyze the mechanical response mechanism in their 

cells, thereby obtaining the biomechanical changes of the LLs of the human body. 

Then, the dataset is cleaned, denoised, outlier processed, and missing value processed 

to guarantee the precision and completeness of the data. Use the mean filtering 

algorithm to calculate the average value of each pixel in the image, and use it as the 

filtered value of that pixel. The specific process is to use a small sliding window to 

slide on the image, and the pixel values within the window are averaged and assigned 

to the pixel at the center of the window. This operation is performed by sliding a 

window across the entire image to achieve the effect of removing noise. Outliers in 

logarithmic data can be replaced with other data, usually using the mean or median. 

Finally, the data was normalized using the Min Max normalization method. The 

normalized expression is shown in Equation (8). 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (8) 

In Equation (8), 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 represent the minimum and maximum values 

of the input data, respectively. 𝑋′ is the normalized data, and 𝑋 is the data before 

normalization. Afterwards, the CL, PL, AF, and FCL in the CNN structure are used to 

extract features from the data, and the FG, IG, and OG in the LSTM module are used 

to capture long-term dependencies in the data. These datasets are used to train the 

CNN-LSTM model, which is continuously optimized, its evaluation accuracy is 

improved, overfitting is prevented, and model errors are reduced. Finally, the trained 

model will be applied to new biomechanical data for biomechanical prediction and 

analysis. The prediction and analysis results of the model are explained and clarified. 

The calculation formula for LL muscle strength in the human body is shown in 

Equation (9). 
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(𝐹 + 𝑎)(𝑉 + 𝑏) = (𝐹0 + 𝑎)𝑏 (9) 

In Equation (9), 𝐹 is the magnitude of tension generated when one end of the 

muscle is released, 𝑎  and 𝑏  are unit constants, 𝑉  is the speed of muscle 

contraction, and 𝐹0 is the magnitude of tension generated when the muscle contracts. 

By analyzing the muscle strength of the LLs of the human body, gait recognition can 

be performed during human movement. The design approach of an intelligent assistive 

robot based on CNN-LSTM big data analysis and biomechanical analysis is shown in 

Figure 4. 
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Figure 4. Optimization design of intelligent robots. 

As shown in Figure 4, when designing an intelligent assistive robot, it is needful 

to first define the aims of the design for the robot. In this study, the robot is mainly 

used for training the muscles of the LLs of the human body. Then, various 

biomechanical data of human motion under different states are collected using sensors 

as the training dataset for the CNN-LSTM model. The CNN-LSTM model is trained 

and optimized, and the trained model is used to predict the LL muscle strength of the 

person to be detected. Grounded on the prediction outcomes, the parameters of the 

auxiliary robot are adjusted. Appropriate force sensors are selected based on the 

research objectives, the changes between the target individual’s motion state and the 

surrounding environment are determined, and the overall structure of the robot is 

designed to ensure that the robot can achieve the expected motion. appropriate robot 

design materials are selected based on muscle strength prediction results, and materials 

with good biocompatibility and durability are chosen. Finally, the robot will be used 

for detection in practical scenarios to evaluate its medical rehabilitation effect on 

patients with LL injuries, and to test its stability, accuracy, and other performance. 

4. Analysis of the actual effect of intelligent assisted robots 

4.1. Biomechanics analysis based on CNN-LSTM 

To test the advantage of the CNN-LSTM algorithm, in order to test the superiority 

of the CNN-LSTM algorithm, several commonly used big data analysis algorithms 

were compared with it. For example, Sparrow Search Algorithm Heden Markov 

Model (SSA-HMM) algorithm, Grey Wolf Optimizer eXtreme Gradient Boosting 

(GWO XGBoost) algorithm, and Convolutional Long Short-Term Memory 

(ConvLSTM) algorithm. These algorithms are all capable of analyzing big data. So, 

the data analysis performance of the four algorithms is compared to verify the 

superiority of the CNN-LSTM algorithm. The environmental configuration during the 
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experiment is in Table 2. 

Table 2. Setup of the experiment environment. 

Experimental environment Index Type 

Hardware environment  
CPU Intel Core i9 

EMS memory  64 GB DDR4 3200 MHz 

Software environment  

OS Windows 10 

Python version Python 4.0 

Python environment Anaconda 3 

The Iris dataset was used as the experimental dataset, which includes Setosa, 

Versicolour, and Virginica. Comparative experiments were conducted on four 

algorithms using this dataset to compare their prediction accuracy. The results are 

shown in Figure 5. 

 

Figure 5. Comparison of prediction performance of algorithms. 

As shown in Figure 5a, the CNN-LSTM algorithm could accurately predict three 

types of data in the dataset, and the predicted results were basically the same as the 

actual results. As shown in Figure 5b, the SSA-HMM algorithm still had some errors 

in predicting three types of data in the dataset. From Figure 5c,d, the GWO-XGBoost 

algorithm and ConvLSTM algorithm had larger prediction errors. The prediction 

speed and prediction error of the four algorithms were compared, and the outcomes 

are in Figure 6. 
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Figure 6. Prediction error and prediction speed. 

As shown in Figure 6a, the prediction error rate of CNN-LSTM fluctuated 

between 0% and 3%, with an average error rate of 1.3%. When GOSA-HMM 

algorithm predicted data, its average prediction error was 2.9%, while the average 

errors of GWO-XGBoost algorithm and ConvLSTM algorithm were 3.4% and 6.7%, 

respectively. According to Figure 6b, among the four algorithms, the CNN-LSTM 

algorithm had the fastest prediction speed, with an average speed of 9.5 bps, far higher 

than other algorithms. From the above outcome, the CNN-LSTM algorithm raised in 

the study had accurate prediction accuracy and fast computation speed in big data 

analysis. In order to avoid the risk of algorithm overfitting, the CNN-LSTM algorithm 

was also subjected to K-fold cross validation. The Iris dataset was still used as the 

experimental dataset, which was divided into five equally sized subsets (a, b, c, d, e). 

Four subsets were selected for algorithm training each time, and the remaining subset 

was used for testing. The verification results are shown in Table 3. 

Table 3. Cross validation results and computational resource consumption. 

Training 

set 

Test 

set 

Calculate 

accuracy 

Calculate error 

rate 

Calculation 

speed 

resource 

consumption 

Space occupancy 

rate 
p 

a, b, c, d e 97.4% 2.6% 9.3bps 78.2% 72.2% 0.001 

a, b, c, e d 98.3% 1.7% 9.2bps 76.7% 73.2% 0.002 

a, b, d, e c 96.5% 3.5% 9.3bps 78.1% 74.3% 0.012 

a, c, d, e b 97.4% 2.6% 9.1bps 79.1% 71.5% 0.002 

b, c, d, e a 95.8% 4.2% 9.3bps 78.3% 70.9% 0.001 

According to Table 3, the CNN-LSTM algorithm has good performance on 

different test sets, which can avoid the risk of algorithm overfitting. However, the 

algorithm has a relatively high space occupancy and resource consumption rate during 

computation. Through t-test, various testing methods of the CNN-LSTM algorithm 

were statistically analyzed, and the results showed that the statistical results of the 

algorithm have significant statistical significance (p < 0.01). After verifying the 

predictive performance of the CNN-LSTM algorithm, this algorithm was used to 

analyze the muscle forces in the biomechanics of the LLs of the human body. The 

changes in muscle forces in the LLs of the human body were analyzed under slow (1.0 

m/s), medium (1.5 m/s), and fast (2.0 m/s) conditions, and the results are shown in 
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Figure 7. 
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Figure 7. Changes in LL muscle strength. 

As shown in Figure 7a, the changes in muscle strength of the gluteus maximus 

muscle varied under different exercise states. In the slow walking state, the maximum 

muscle strength of the gluteus maximus muscle occurred at 20% of the gait cycle, with 

a max value of 84.6 N; In the state of moderate speed walking, the muscle force of the 

gluteus maximus had two peaks, one at 15% of the gait cycle and the other at 30% of 

the gait cycle, with peak values of 83.2 N and 78.1 N, respectively. In the state of rapid 

movement, the maximum muscle strength of the gluteus maximus muscle in the LLs 

of the human body was 102.3 N. From Figure 7b, under three different walking states, 

the change in muscle strength of the rectus femoris muscle was relatively small in 80% 

of the gait cycle throughout the entire walking cycle. However, in the later stage of 

rapid walking, the muscle strength of the rectus femoris muscle in the LLs of the 

human body changed significantly, with a maximum value of 400 N. From Figure 7c, 

the changes in gastrocnemius muscle force were relatively similar under different 

states, and the time when the maximum value appears was roughly the same. 

According to Figure 7d, the changes in muscle strength of the human LL flounder 

muscle were roughly the same in the medium and fast walking states, while the 

maximum muscle strength of the flounder muscle was significantly lower in the slow 

walking state than in the other two states. From the above experimental results, when 

designing intelligent assistive robots, the support force of the patient’s gluteus 

maximus muscle should be increased during the first 20% of the gait cycle, while 

during the 40% to 60% gait cycle, emphasis should be placed on enhancing the support 

force of the patient’s gastrocnemius and soleus muscles. During the 80% to 100% gait 
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cycle, attention should be paid to the support force of the rectus femoris muscle. 

4.2. Analysis of the actual effect of intelligent assisted robots 

After analyzing the performance of the CNN-LSTM big data analysis model and 

the biomechanics of human motion, an intelligent assistive robot designed based on 

the analysis results was analyzed to compare the rehabilitation effects of normal RT 

and RT using intelligent assistive robots. 200 patients with LL injuries were selected 

from a certain hospital and divided into two groups with an average of 100 patients in 

each group. One group would receive RT using the intelligent assistive robot proposed 

in the study. The other group directly used the normal training methods in the hospital 

for RT, and analyzed the rehabilitation effects of two different training methods. The 

inclusion criteria for patients during the experiment are: 1) Stable vital signs of 

patients; 2) The patient signs an informed consent form; 3) Lower limb injury within 

3–6 months; 4) Age between 30 and 45; 5) The type of injury is skeletal injury. The 

exclusion criteria are: 1) Patients with mental illness or consciousness disorders; 2) 

History of infectious diseases; 3) Heart, liver, and kidney failure. And during the 

experiment, a KHG5 infrared sensor capable of detecting human signals was used, 

with a sampling frequency set to 100 Hz. Perform 7-week auxiliary training on two 

groups of patients. Firstly, a comparison was made between the Range of Motion 

(ROM) and muscle strength changes of patients during RT under two different 

methods, as shown in Figure 8. 

 

Figure 8. Changes in joint ROM and muscle strength of patients. 

According to Figure 8a, after using two methods of RT for patients, the ROM of 

their LL joints continued to improve. However, the improvement in ROM of the 

intelligent assistive robot during RT was significantly higher than that of the 

traditional RT method. The intelligent assistive robot could increase the ROM of the 

patient’s LL by up to 6.9%, while the traditional method could only increase it by up 

to 3.2% in the same training time. According to Figure 8b, after 7 weeks of RT with 

the proposed intelligent assistive robot, the patient’s muscle strength was improved by 

7.3%, which was higher than traditional methods. From this result, it can be concluded 

that the intelligent assistive robot proposed in the study could significantly improve 

the ROM and muscle strength of patients’ LL joints after use. Comparing the training 

efficiency and rehabilitation speed of patients using the two methods, the results are 
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shown in Figure 9. 

 

Figure 9. Comparison of training efficiency and rehabilitation speed. 

From Figure 9a, under both methods, the training efficiency of the intelligent 

assistive robot proposed by the study for patients with LL injuries was significantly 

higher than that of traditional methods. After RT with the intelligent assistive robot, 

the training efficiency continuously increased during the first 5 weeks of training, and 

in the subsequent time, the training efficiency could reach 92.3%, while the traditional 

method could only achieve a weekly training efficiency of 61.1%. As shown in Figure 

9b, compared to traditional RT methods in hospitals, intelligent assistive robots could 

improve rehabilitation speed every week. The statistical analysis results of patients 

after 7 weeks of training for the two methods are shown in Table 4. 

Table 4. Statistical analysis results. 

Training methods Intelligent assistive robot Traditional method 

ROM 6.9 ± 0.12% 3.2 ± 0.01% 

Patient’s muscle strength improvement 7.3 ± 0.02% 4.1 ± 0.02% 

Training efficiency 92.3 ± 0.13%% 61.1 ± 0.01% 

Rehabilitation speed 95.6 ± 0.21% 59.1 ± 0.02% 

p 0.0001 0.0012 

According to Table 4, statistical analysis was conducted on the intelligent 

assistive robot, and the results showed significant statistical significance (p < 0.01). 

From the above results, it can be concluded that the intelligent assistive robot based 

on CNN-LSTM data analysis and biomechanical analysis proposed in the study could 

improve the rehabilitation speed of patients. 

5. Conclusion 

In response to the problem of unsatisfactory training effects of current intelligent 

assistive robots in RT for patients with LL injuries, this study used the CNN-LSTM 

algorithm to conduct big data analysis on the biomechanics of patients’ LLs during 

exercise, and optimized the intelligent assistive robot based on the results of big data 

analysis to design a robot that is more in line with the changes in human biomechanics. 

Conduct comparative experiments on the proposed CNN-LSTM algorithm, comparing 
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it with SSA-HMM, GWO XGBoost, and ConvLSTM algorithms. The experimental 

results show that the prediction accuracy of CNN-LSTM algorithm is higher than other 

algorithms, and the prediction error of CNN-LSTM algorithm is only 1.3%, far lower 

than the 2.9% of GOSA-HMM algorithm, 3.4% of GWO-XGBoost algorithm, and 

6.7% of ConvLSTM algorithm. This result is similar to the experimental results of 

Alshingiti et al. (2023), and the reason for this result may be that the CNN algorithm 

in the CNN-LSTM algorithm can accurately extract feature information from human 

motion images, so subsequent LSTM algorithms can accurately analyze features. The 

CNN-LSTM algorithm was used to analyze the biomechanics of the LLs of the human 

body under different motion states. The results showed that in the slow walking state, 

the maximum muscle force of the gluteus maximus muscle appeared at 20% of the 

gait cycle, while the change in muscle force of the rectus femoris muscle was relatively 

small. The muscle forces of the gastrocnemius muscle and the pygmy fish muscle 

reached their maximum at 50% to 80% of the gait cycle. The trend of muscle strength 

changes in the LLs of the human body during moderate and fast walking was roughly 

the same as that during slow walking. The difference was that in fast walking, the 

muscle strength of the rectus femoris muscle increased significantly between 80% and 

100% of the gait cycle. The above results are similar to the analysis results of Hughes 

and Dai (2023). Through this result, it can be concluded that in the design of intelligent 

assistive robots, the support force of the patient’s gluteus maximus muscle should be 

increased during the first 20% gait cycle, while the support force of the patient’s 

gastrocnemius and soleus muscles should be strengthened during the 40% to 60% gait 

cycle. During the 80% to 100% gait cycle, attention should be paid to the support force 

of the rectus femoris muscle. Through these analyses, various parameters of the 

intelligent robot should be optimized (Hughes, and Dai. 2023). Further testing was 

conducted on the optimized robot based on the analysis results, and the results showed 

that after optimization, the robot was able to increase LL joint mobility by 6.9% and 

ultimately improve training efficiency to 92.3%, which was much higher than 

traditional RT methods. From the above results, the intelligent assistive robot proposed 

in the study could significantly improve the RT effect of patients.  

Based on the above analysis results, it can be concluded that during the 

rehabilitation training of patients with lower limb injuries, the CNN-LSTM algorithm 

optimizes the parameters of the intelligent assistive robot based on the biomechanical 

analysis of the patient, in order to assist the patient in better auxiliary training. Through 

intelligent assistive robots, precise control and repetitive training of various 

parameters during patient training can be achieved, significantly improving the 

rehabilitation effect and efficiency of patients. Additionally, intelligent assistive robots 

can reduce the burden on medical staff and establish personalized rehabilitation 

training methods for patients through big data analysis methods. However, the CNN-

LSTM big data analysis method used in this study has high computational complexity 

and requires significant resources. In the future, compression techniques such as 

pruning algorithms can be used to remove unimportant parts of the model, reducing 

its space occupancy. Alternatively, the weights aggregated by the model can be 

converted from high-precision floating-point numbers to low precision fixed-point 

numbers to reduce resource consumption during computation. 
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