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Abstract: This study is centered around optimizing the layout of new railroad energy systems, 

drawing inspiration from biomechanics and integrating deep-learning and big-data 

technologies. The overarching aim is to boost energy utilization efficiency and simultaneously 

minimize the ecological disruptions brought about by energy infrastructure, which contributes 

to the “dual carbon” goals (carbon peaking and carbon neutrality) by enhancing energy 

efficiency and reducing environmental impact. This approach not only promotes green 

transportation but also aligns with sustainable development objectives. Inspired by the complex 

and well-coordinated mechanisms in biomechanics, a comprehensive biological-effect-

inspired evaluation index system is devised. This system takes into account the diverse impacts 

of energy systems on the surrounding environment, similar to how living organisms interact 

with their habitats. Just as a living body’s various parts work in harmony, this index system 

captures the multi-faceted relationships between the energy system and the environment. A 

hybrid neural network model, designed with inspiration from the neural-like processing in 

biological systems, combines advanced convolutional and long short-term memory networks. 

This combination is aimed at effectively extracting both spatial and temporal features, much 

like how biological neural systems process different types of information related to space and 

time. For instance, in the human body, the nervous system can quickly respond to changes in 

the surrounding space and also remember past experiences over time. Additionally, multi-task 

learning techniques are employed to enable simultaneous analysis of multiple environmental 

indicators, such as noise, temperature, and magnetic field strength. Experimental results reveal 

that the proposed biomechanics-inspired approach far surpasses traditional heuristic 

algorithms. It showcases remarkable prediction accuracy and computational efficiency. By 

harnessing the power of advanced machine-learning frameworks inspired by biological 

systems, this method offers precise evaluations and practical insights for optimizing energy 

layouts. This research not only facilitates the scientific planning of railroad energy systems but 

also aids in reducing their ecological footprint, in line with the principles of sustainable 

development. The findings establish a solid foundation for achieving a balance between energy 

requirements and environmental conservation. They underscore the transformative potential of 

intelligent technologies, inspired by the wonders of biomechanics, in modern infrastructure 

planning. 

Keywords: new railroad energy; biomechanics; biological effect optimization; deep learning; 

big data 

1. Introduction 

New railroad energy layout is of great significance in promoting clean energy use 

and reducing carbon emissions, but its potential impact on the biological environment 

along the route needs to be assessed and optimized in depth. Existing methods have 

limitations in dealing with multidimensional data and nonlinear features, making it 

difficult to comprehensively reveal the complex relationship between new energy 
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facilities and ecological effects. For example, traditional heuristic algorithms struggle 

to capture the intricate spatial-temporal dynamics and nonlinear relationships inherent 

in energy systems’ impact on the ecosystem. While these methods are valuable, their 

performance is often limited when handling the vast and complex data typical in this 

field. Moreover, conventional parameter settings such as X and Y in (algorithm name) 

(e.g., learning rate = 0.01, population size = 100) result in limited scalability. 

Combining deep learning and big data technologies can effectively capture the key 

features and achieve accurate assessment and layout optimization of biological effects. 

The optimization of renewable energy systems, particularly in the context of net-

zero goals, has been a subject of increasing interest in recent years. Cosgrove et al. 

emphasized the challenges of intermittency and periodicity in renewable energy 

systems with storage, proposing strategies to stabilize energy outputs and enhance 

efficiency in low-carbon energy grids. Similarly [1], Salto et al. explored the use of 

genetic algorithms to optimize large-scale systems, integrating technologies like 

Hadoop, Spark, and MPI, thus enabling more efficient processing of big data in energy 

systems [2]. Alameen A also highlighted the importance of optimization techniques in 

big data encryption, which can be adapted to energy systems for securing data 

transmission and enhancing system integrity [3]. Kurukuri et al. focused on the 

optimal planning and design of microgrid systems with hybrid renewable 

technologies, underlining their potential for creating sustainable environments in 

urban settings [4]. Swamy et al. underscore the increasing role of bio-inspired 

algorithms and multi-objective optimization approaches in advancing energy system 

planning and optimization [5,6]. However, while these methods offer significant 

promise, their application to the specific context of railway new energy systems 

remains relatively underexplored, highlighting the need for further innovation in this 

field. 

By introducing advanced algorithms and multi-task modeling methods, it can not 

only improve the efficiency of new energy layout, but also minimize the disturbance 

to the ecosystem and promote the green development of the railroad system. 

2. Railway new energy system and biological effect analysis 

2.1. Railway new energy system composition 

The new railroad energy system harnesses renewable energy sources for 

optimized energy use and minimal environmental impact. It primarily comprises solar 

power generation, wind power generation, energy storage devices, and an intelligent 

energy dispatching platform. Each component plays a key role in the system’s 

functionality and sustainability, with solar power deployed in sunlight-abundant areas 

and wind power harnessed in high-wind regions. To streamline the presentation, the 

solar and wind energy systems operate through intelligent energy platforms that 

facilitate efficient integration and storage, ensuring continuous, reliable energy supply 

even in periods of intermittent generation. The description of energy sources is 

simplified here for clarity; detailed technical specifications are available in the 

supplementary section. The adaptability of photovoltaic panels makes them a viable 

solution for various geographic conditions, enabling a consistent supply of renewable 

energy. In parallel, the wind power generation system employs advanced turbines to 
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capture wind energy, especially in regions rich in wind resources. These turbines 

convert kinetic energy from the wind into electrical energy, contributing significantly 

to the renewable energy mix. Their installation in strategic areas maximizes energy 

production while reducing dependency on traditional fossil fuels. To address energy 

intermittency issues inherent in renewable sources, the system incorporates energy 

storage devices, such as lithium-ion or liquid flow batteries. These storage solutions 

ensure a stable energy supply by storing excess electricity generated during peak 

production times and releasing it during periods of high demand or low production. 

This not only enhances the reliability of the system but also mitigates potential energy 

waste. 

At the core of the system lies the intelligent energy dispatching platform, which 

integrates big data and artificial intelligence technologies. By analyzing real-time data 

from multiple sources, this platform optimizes energy production, distribution, and 

storage, achieving a seamless synergy among the various components. It facilitates 

adaptive decision-making, ensuring that energy is allocated efficiently to meet the 

fluctuating demands of railroad operations. Furthermore, this platform minimizes 

energy losses and reduces carbon emissions, aligning with the objectives of low-

carbon development and green transportation. 

Together, these components work in harmony to achieve efficient, low-carbon 

energy utilization, meeting the growing energy demands of modern railroads while 

promoting the sustainable development of regional ecosystems. This system not only 

enhances energy efficiency but also contributes to the broader goal of mitigating 

environmental impacts and fostering ecological balance. Figure 1 illustrates the 

detailed composition and interaction of these components. 

 
Figure 1. Flow chart of new railroad energy system composition. 

2.2. Biological effect evaluation index system 

This section elaborates on the methods used for biological effect feature 

extraction based on big data technologies. The feature extraction process employs 

advanced deep learning models for analyzing the biological effects induced by the new 

railroad energy system. To ensure the efficiency and accuracy of the model, we use a 

Bayesian optimization framework to fine-tune the hyperparameters. 



Molecular & Cellular Biomechanics 2025, 22(4), 1344.  

4 

Mathematically, the optimization problem can be expressed as follows: 

𝐿(𝜃) =∑

𝑛

𝑖=1

(�̂�𝑖 − 𝑦𝑖)
2 + 𝜆(∑𝜃2𝑗

𝑚

𝑗=1

) (1) 

where: �̂�𝑖 is the predicted value, 𝑦𝑖 is the actual value, 𝜃𝑗 represents the weights of the 

model, 𝜆 is the regularization parameter that prevents overfitting. 

The first term represents the mean squared error (MSE), which evaluates the 

difference between the model’s predictions and the true values. The second term 

introduces L2 regularization, which penalizes large weights, ensuring that the model 

remains generalizable. 

This framework not only improves predictive accuracy but also enhances the 

model’s ability to handle complex, multi-dimensional biological data. 

2.3. Biological effect feature extraction with big data 

Biological effect feature extraction relies on big data technology to analyze and 

process multi-source data along the railroad, including sensor data, remote sensing 

images and historical monitoring records. 

Data acquisition and cleaning, real-time acquisition of noise, temperature, 

magnetic field and other data through the sensor network, combined with remote 

sensing images to obtain information on ecological changes, using interpolation to 

deal with missing data, the formula is: 

𝑥𝑖 = 𝑥𝑖−1 +
𝑥𝑖+1 − 𝑥𝑖−1

2
 (2) 

where 𝑥𝑖 denotes the value of the 𝑖 first position. 𝑥𝑖−1 and 𝑥𝑖+1 denote the values of the 

first 𝑖 − 1 and 𝑖 + 1 second positions, respectively. 

Feature screening and dimensionality reduction, high correlation features are 

screened using principal component analysis (PCA), and the dimensionality reduction 

formula is: 

𝑍 = 𝑋𝑊 (3) 

where, 𝑍 is the post-decimation feature, 𝑋 is the original data matrix and 𝑊 is the 

feature vector matrix. 

Spatio-temporal feature extraction, spatial feature extraction using Convolutional 

Neural Network (CNN), and analysis of biological effect dynamics in combination 

with time series models. 

2.4. Application of deep learning in effect analysis 

The application of deep learning in biological effect analysis has emerged as a 

transformative approach, leveraging advanced machine learning techniques to extract 

meaningful insights from complex datasets. This method employs Convolutional 

Neural Networks (CNNs) to extract spatial features, which are particularly adept at 

identifying intricate patterns and relationships within data that are structured in space. 

By combining CNNs with Long Short-Term Memory (LSTM) networks, the approach 

also effectively captures temporal dynamics, enabling a comprehensive understanding 
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of time-dependent changes in biological effects. This integration of spatial and 

temporal modeling is a key strength of deep learning in this context, as it allows for a 

holistic analysis of factors such as noise, temperature, and other environmental 

indicators that impact biological systems. 

At the core of this methodology is the use of a multi-task learning framework. 

Unlike traditional single-task models, multi-task learning enables the simultaneous 

modeling of multiple related indicators, such as noise levels, temperature fluctuations, 

and their combined effects on biological outcomes. By sharing information across 

tasks, this framework enhances predictive accuracy and robustness, ensuring that the 

interdependencies between different factors are adequately captured [2]. This joint 

modeling approach provides a more comprehensive prediction of biological effects, 

accounting for both individual and combined influences of environmental variables. 

Data enhancement techniques play a critical role in improving the performance and 

reliability of the deep learning model. In biological effect analysis, data availability is 

often a significant challenge, with small sample sizes limiting the ability to train robust 

models. To address this limitation, data augmentation methods are employed, 

artificially increasing the size and diversity of the training dataset. These techniques 

include transformations such as rotation, scaling, and noise addition, which simulate 

variations in the data and improve the model’s ability to generalize to new, unseen 

scenarios. By creating a richer and more varied dataset, data enhancement significantly 

boosts the model’s performance, particularly in scenarios where experimental data 

collection is resource-intensive or constrained. 

Another pivotal component of this framework is transfer learning, a technique 

that optimizes the model’s suitability for small sample sizes. Transfer learning 

involves leveraging pre-trained models that have been developed on large, related 

datasets and fine-tuning them for the specific biological effect analysis task. This 

approach enables the model to benefit from previously learned features and 

representations, reducing the need for extensive training on limited data. The result is 

a model that is both highly accurate and efficient, capable of delivering reliable 

predictions even in data-scarce conditions. Transfer learning is particularly valuable 

for emerging applications such as analyzing the biological effects of new energy 

layouts, where historical data may be sparse or unavailable [3]. 

The integration of these advanced techniques not only enhances the model’s 

performance but also provides accurate and actionable support for the development of 

new energy strategies. In the context of biological effect analysis, this means enabling 

precise predictions of how noise, temperature, and other environmental factors interact 

to influence biological systems. For instance, when designing layouts for renewable 

energy installations, such as wind farms or solar arrays, understanding the potential 

biological impacts is critical [4]. The insights provided by this deep learning 

framework allow for more informed decision-making, ensuring that new energy 

layouts are both effective and environmentally sustainable. 

From a broader perspective, the use of CNNs and LSTMs within this framework 

exemplifies the power of deep learning to address complex, multi-dimensional 

challenges. CNNs excel in capturing spatial correlations, identifying patterns in 

structured data that might otherwise go unnoticed. For example, they can detect spatial 

patterns in noise distribution or temperature gradients that influence biological 
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systems in specific regions. Meanwhile, LSTMs provide a complementary capability, 

modeling how these spatial features evolve over time. This combination ensures that 

the analysis captures both static and dynamic aspects of the data, delivering a 

comprehensive understanding of the underlying processes. The multi-task learning 

framework further elevates this approach, allowing for the simultaneous prediction of 

multiple biological effects. This is particularly valuable in real-world scenarios, where 

environmental factors rarely operate in isolation. By modeling these interactions, the 

framework provides a more realistic and nuanced analysis, enabling predictions that 

are both accurate and actionable. Moreover, the ability to incorporate transfer learning 

and data augmentation ensures that the model remains effective even in the face of 

practical constraints such as limited data availability. 

In conclusion, the application of deep learning in biological effect analysis 

represents a significant advancement in the field. By integrating CNNs for spatial 

feature extraction, LSTMs for temporal dynamics, and a multi-task learning 

framework for comprehensive modeling, this approach delivers unparalleled 

predictive capabilities. Data enhancement techniques and transfer learning further 

enhance the model’s robustness, making it well-suited for data-limited scenarios. The 

resulting framework provides critical support for analyzing the biological impacts of 

environmental factors, with particular relevance to new energy layout planning [5]. As 

the world increasingly shifts toward sustainable energy solutions, these capabilities 

will play a vital role in ensuring that technological progress aligns with ecological 

preservation. This fusion of advanced machine learning and domain-specific expertise 

paves the way for more informed, effective, and sustainable decision-making. 

3. Deep learning model design and optimization 

3.1. Model architecture design 

The architecture design of the deep learning model is meticulously tailored to 

meet the demands of analyzing the biological effects associated with the new railroad 

energy system [6]. This design not only considers the inherent complexity of the data 

features but also ensures the scalability and adaptability of the model to diverse 

scenarios. At its core, the architecture leverages a hybrid neural network framework 

that combines the strengths of convolutional neural networks (CNNs) and long short-

term memory networks (LSTMs), enabling a robust and comprehensive approach to 

extracting spatial and temporal features. 

The CNN component is specifically responsible for processing remote sensing 

images and sensor data collected along the railroad. By focusing on local spatial 

features, the CNN efficiently captures patterns such as the distribution of noise, 

temperature variations, and the spatial dynamics of magnetic field changes. This 

capability is particularly critical in understanding how energy infrastructure impacts 

localized ecological variables. The extracted spatial features provide a granular view 

of the biological environment, forming the foundation for deeper analysis. 

Complementing the CNN, the LSTM network is tasked with capturing temporal 

dependencies and dynamic changes in the data. This is essential for analyzing time-

series data such as noise fluctuations, temperature trends, and the temporal evolution 

of magnetic field strengths [7]. The LSTM’s ability to retain information over 
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extended periods allows the model to predict and assess biological effects with 

heightened accuracy and relevance. 

To further enhance the model’s analytical capabilities, a multi-task learning 

module is integrated. This module allows the simultaneous modeling of multiple 

bioeffect indicators, including noise, temperature, and magnetic field strength. By 

addressing these indicators collectively, the module improves the comprehensiveness 

of predictions and ensures that interdependencies among different factors are 

effectively captured. 

Addressing the common issue of data imbalance, the model incorporates a 

weighted loss function within the input layer. This function prioritizes the learning of 

important regions or features, ensuring that underrepresented data points are 

adequately considered during training. This not only improves the model’s predictive 

accuracy but also enhances its generalization across diverse datasets. 

Ultimately, the hierarchical structure of the deep learning model achieves an 

efficient fusion of multi-dimensional data features. The integration of advanced 

algorithms and carefully calibrated parameters ensures that the model operates with 

both precision and efficiency. This design approach facilitates accurate and reliable 

analysis of the biological effects of railroad energy systems, laying a foundation for 

data-driven optimization and sustainable development [8]. Figure 2 provides a visual 

representation of this sophisticated model architecture, illustrating the interplay 

between its components and their contributions to the overall analytical process. 

 
Figure 2. Flowchart of model architecture design. 

3.2. Feature extraction and parameter optimization 

To address the multi-dimensional data obtained along the railroad, a 

comprehensive approach utilizing advanced data processing and machine learning 

techniques is employed. Principal Component Analysis (PCA) is first applied to 

reduce the dimensionality of the data, which includes variables such as noise, 

temperature, magnetic field, and other environmental parameters. This method 
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effectively identifies the most relevant features while minimizing the loss of critical 

information. Specifically, features contributing to over 90% of the total variance are 

retained, ensuring that the essential characteristics of the data are preserved while 

eliminating redundant and less significant dimensions. This step reduces 

computational complexity and enhances the efficiency of subsequent analyses. 

Following dimensionality reduction, the spatial features of the data are extracted 

using a Convolutional Neural Network (CNN), which has proven highly effective in 

processing and analyzing structured data such as images and spatial grids [9]. In the 

implemented CNN architecture, the convolutional layer is configured to generate 64 

feature maps, effectively capturing diverse patterns and spatial correlations within the 

data. Each convolution operation employs a kernel size of 3 × 3, which strikes a 

balance between capturing fine-grained local features and maintaining computational 

efficiency. The stride, set to 1, ensures a detailed exploration of the input data, 

allowing the model to detect intricate spatial relationships. The extracted spatial 

features provide a rich representation of the data, laying the foundation for further 

integration with temporal dynamics. 

To handle the temporal aspects of the dataset, a Long Short-Term Memory 

(LSTM) network is employed. LSTM networks are particularly adept at capturing 

dynamic dependencies and sequential patterns in time-series data. The architecture 

includes a hidden layer comprising 128 nodes, enabling the network to model complex 

temporal dependencies effectively. This design allows the LSTM to learn and retain 

information over extended time intervals, which is crucial for accurately capturing the 

evolving trends and relationships inherent in the railroad data. The performance of the 

integrated model, combining CNN for spatial feature extraction and LSTM for 

temporal dynamics, is further enhanced through parameter optimization. This 

optimization is conducted using the Bayesian Optimization Algorithm, a robust and 

efficient technique for hyperparameter tuning. The Bayesian approach systematically 

explores the hyperparameter space by constructing a probabilistic model of the 

objective function, enabling it to identify optimal configurations with fewer 

evaluations. The primary objective of this optimization process is to maximize the 

model’s validation accuracy, ensuring its reliability and generalizability [10]. 

During the optimization process, key hyperparameters are fine-tuned to achieve 

optimal performance. For instance, the learning rate is set to 0.001, a value that ensures 

stable convergence during training while avoiding excessive oscillations or stagnation. 

The batch size, another critical parameter, is configured at 32, striking a balance 

between computational efficiency and the stability of gradient updates. Additionally, 

the kernel size and stride values in the CNN layers, as well as the number of nodes in 

the LSTM hidden layers, are also carefully selected to enhance the model’s ability to 

capture both spatial and temporal features. Cross-validation is employed throughout 

the optimization process to ensure the robustness of the model. This technique divides 

the dataset into multiple subsets, iteratively training and validating the model on 

different combinations of these subsets. This approach mitigates the risk of overfitting 

and provides a reliable estimate of the model’s generalization performance. Through 

this iterative process, the validation set loss is systematically minimized, ultimately 

reduced to below 0.05, demonstrating the model’s ability to achieve high accuracy and 

low error rates [11]. 
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The integration of PCA, CNN, and LSTM, combined with the precision of 

Bayesian optimization, creates a powerful framework for analyzing the multi-

dimensional data associated with the railroad environment. PCA ensures that only the 

most informative features are retained, significantly reducing the data’s 

dimensionality and complexity. The CNN captures the spatial correlations within these 

features, while the LSTM models their temporal evolution. The result is a 

comprehensive model capable of accurately identifying patterns and trends in 

complex, multi-dimensional datasets. Moreover, the use of Bayesian optimization 

guarantees that the model operates at peak efficiency, with hyperparameters finely 

tuned to maximize performance. The details are shown in Table 1. 

Table 1. Main parameter adjustment results. 

Parameter Initial Value Optimized Value 

Learning Rate 0.01 0.001 

Batch Size 64 32 

Number of Convolution Kernels 32 64 

Number of LSTM Hidden Nodes 64 128 

In summary, this approach effectively addresses the challenges posed by the 

complexity and multi-dimensionality of railroad data. By combining the strengths of 

dimensionality reduction, advanced neural network architectures, and state-of-the-art 

optimization techniques, the framework achieves remarkable accuracy and robustness. 

This methodology holds significant potential for applications in railroad monitoring, 

predictive maintenance, and anomaly detection, providing valuable insights and 

enhancing the overall safety and efficiency of railroad operations. 

3.3. Model training and validation methods 

The training process for the deep learning model follows a systematic step-by-

step optimization approach, ensuring efficient convergence and robust performance. 

A multi-stage validation strategy is employed to monitor the model’s learning progress 

at various stages, providing iterative feedback for fine-tuning. This ensures that the 

model generalizes well across diverse datasets and avoids issues such as overfitting or 

underfitting. 

Data enhancement techniques are applied during the training phase to improve 

the model’s robustness and adaptability. These techniques include random cropping 

and rotation, which simulate variations in data appearance and reduce the risk of over-

reliance on specific features. By generating augmented data, the model is exposed to 

a broader range of input scenarios, enhancing its capacity to handle real-world 

complexities and variations in environmental indicators [12]. 

The Adam optimizer is selected for its efficiency and adaptability in optimizing 

neural networks. With an initial learning rate set at 0.001, the optimizer employs 

dynamic decay, which gradually reduces the learning rate as training progresses. This 

approach helps maintain a balance between exploring new solutions and refining 

existing ones, ensuring a stable and efficient optimization process. Additionally, the 

weighted multi-task loss function is utilized to address the diverse range of biological 
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effect indicators, such as noise levels, temperature changes, and magnetic field 

strength. By assigning appropriate weights to each task, the loss function ensures that 

the model prioritizes critical features without neglecting less prominent but still 

significant aspects [13]. 

Model performance is rigorously evaluated using a five-fold cross-validation 

method, which involves partitioning the dataset into five subsets. The model is trained 

on four subsets and validated on the remaining one, with this process repeated five 

times to ensure comprehensive evaluation. This technique provides a reliable 

assessment of the model’s ability to generalize to unseen data while minimizing biases 

caused by the specific partitioning of the dataset. The evaluation results consistently 

show a mean square error (MSE) below 0.04, demonstrating the model’s precision and 

reliability in predicting multidimensional biological effects. 

To enhance the model’s applicability to small-sample regions, migration learning 

is incorporated into the training process. By leveraging pre-trained models on similar 

datasets, migration learning transfers knowledge and adapts it to the target dataset, 

enabling the model to perform effectively even in scenarios with limited training data. 

This approach significantly reduces the data requirements while maintaining high 

prediction accuracy. 

Overall, the combination of step-by-step optimization, advanced data 

enhancement techniques, dynamic parameter adjustment, and robust validation 

strategies ensures that the deep learning model achieves high accuracy, efficiency, and 

adaptability. These methods collectively underscore the model’s potential for 

addressing complex challenges in biological effect analysis and new energy layout 

optimization. 

4. Experimental results and analysis 

4.1. Data set and experimental environment 

The dataset utilized in this study is derived from a sophisticated multi-

dimensional real-time acquisition system deployed along a railroad line. Data 

preprocessing steps included outlier handling through threshold filtering to address 

extreme values caused by noise interference. This ensured a cleaner dataset, 

minimizing the risk of skewed analysis results. This system captures diverse 

environmental indicators, including noise levels, temperature fluctuations, magnetic 

field strength, remote sensing imagery, and historical records of new energy layout 

planning. The dataset is comprehensive, covering data from 100 monitoring stations 

strategically positioned along the railroad. Spanning a period of two years, the dataset 

encompasses approximately 10 terabytes (TB) of information, making it one of the 

most extensive and detailed datasets for analyzing the biological effects of railroad 

energy systems. 

To ensure the dataset is optimally prepared for deep learning tasks, rigorous 

preprocessing and standardization steps are employed. The data is divided into three 

subsets: 80% is allocated for training the model, enabling it to learn complex patterns 

and relationships; 10% is reserved for validation to fine-tune hyperparameters and 

prevent overfitting; and the remaining 10% is designated for testing to evaluate the 

model’s performance and generalization capabilities. Standardization techniques are 
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applied to normalize the range of feature values, improving convergence during 

training and ensuring compatibility across diverse data sources. 

The experimental environment is built on high-performance computing 

infrastructure to handle the computational demands of deep learning and big data 

processing. A dedicated deep learning server, equipped with NVIDIA A100 GPUs, 

forms the backbone of the environment. Each GPU is paired with 128GB of RAM, 

enabling efficient parallel processing of complex computations. Additionally, the 

server is supported by 2TB of SSD storage, ensuring rapid data access and reducing 

input/output bottlenecks. 

The operating system utilized is Ubuntu 20.04, a stable and widely adopted 

platform for machine learning research. TensorFlow, a leading framework in the field 

of deep learning, is employed for model construction, training, and optimization. Its 

flexibility and extensive library support allow the seamless implementation of 

advanced neural network architectures and optimization techniques [14]. 

To address the challenges posed by the large-scale dataset, the Hadoop 

distributed computing framework is deployed. Hadoop efficiently processes and 

manages the massive data volume, facilitating parallelized data preprocessing, 

cleaning, and feature extraction. This distributed approach significantly enhances 

computational efficiency, reducing the time required to process multi-terabyte 

datasets. 

By combining an advanced dataset with a robust experimental environment, this 

setup provides the foundation for the accurate analysis and optimization of new 

railroad energy layouts. The integration of state-of-the-art hardware and software 

ensures that the model is trained effectively, producing reliable predictions and 

actionable insights for sustainable railroad development. 

4.2. Model performance evaluation 

The performance of the deep learning model is evaluated using a comprehensive 

set of metrics to ensure the accuracy and reliability of its predictions. Key evaluation 

metrics include the mean square error (MSE), accuracy, and F1 score. The MSE serves 

as a critical measure of prediction error, quantifying the average squared difference 

between predicted and actual values, thereby providing insights into the model’s 

precision in handling continuous variables. Accuracy, on the other hand, assesses the 

proportion of correctly predicted instances out of the total, offering a clear indicator 

of the model’s classification performance. The F1 score combines precision and recall 

into a single metric, particularly useful for evaluating the comprehensive performance 

of the model across multi-category tasks [15]. 

Experimental results demonstrate the model’s robust ability to predict 

multidimensional biological effects with high accuracy and efficiency. The low MSE 

values highlight the model’s precision in handling complex environmental indicators 

such as noise levels, temperature changes, and magnetic field strength. The high 

accuracy and F1 scores further validate the model’s capacity to deliver consistent and 

reliable predictions across various scenarios. These outcomes underscore the model’s 

effectiveness in addressing the intricate challenges associated with the analysis and 
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optimization of biological effects, marking a significant advancement in leveraging 

deep learning for sustainable development. The details are shown in Table 2. 

Table 2. Model performance evaluation table. 

Metric MSE Accuracy F1 Score 

Noise Prediction 0.042 93.50% 0.92 

Temperature Prediction 0.035 95.10% 0.94 

Magnetic Field 

Prediction 
0.038 94.00% 0.93 

As can be seen in Table 2, the temperature prediction has the lowest MSE (0.035) 

and the highest accuracy (95.1%), indicating that the model performs best when 

dealing with features with high stability. Noise and magnetic field predictions have 

MSEs of 0.042 and 0.038, respectively, indicating that the model is able to accurately 

capture complex environmental features [16]. Overall, the F1 scores are all higher than 

0.9, which further validates the comprehensive performance advantage of the model 

in multi-task prediction. The details are shown in Figure 3. 

 
Figure 3. Comparison of model performance evaluation. 

4.3. Analysis of new energy layout optimization results 

The experiments compared the improvement of the biological effect of the new 

energy layout before and after optimization, involving key indicators such as noise 

range, vegetation coverage and temperature difference changes. The optimization 

scheme significantly improved the environmental friendliness, with reductions in the 

noise disturbance range by 20% and improvements in vegetation coverage by 15%. 

Further analysis reveals that these improvements are particularly pronounced in 

regions with dense vegetation and low energy production zones. This demonstrates 

the model’s adaptability to diverse geographical scenarios [17]. For example, the noise 

disturbance range of a site area was reduced by 20%, the vegetation coverage increased 

by 15%, and the local temperature fluctuation was reduced by 0.5 ℃. The specific 

values are shown in Table 3 below. 

Table 3. Analysis of new energy layout optimization results. 
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Metric Before Optimization After Optimization Improvement Rate 

Noise Range (km2) 12 9.6 −20% 

Vegetation Coverage (%) 45 60 15% 

Temperature Variation (°C) ±2 ±1.5 −0.5 ℃ 

As seen in Table 3, the optimized noise interference range is significantly 

reduced and the vegetation coverage is significantly increased, indicating that the new 

energy layout is effective in environmental protection. At the same time, the reduction 

of local temperature fluctuation indicates that the ecological balance is improved. This 

result verifies the practical application value of the deep learning optimization method 

and promotes the synergistic development of new energy and ecological environment. 

The details are shown in Figure 4. 

 
Figure 4. Comparison of optimization results. 

4.4. Comparative validation with traditional methods 

The results of the comparative validation of the deep learning optimization 

method with the traditional heuristic algorithm clearly show that the deep learning 

method exhibits significant advantages in terms of accuracy and efficiency. The 

performance metrics of the traditional heuristic algorithm, due to its limitations in 

nonlinear and multidimensional data processing, show a mean square error (MSE) of 

0.082 and an accuracy rate of 85.3%. In contrast, the deep learning model significantly 

enhances the accuracy of the optimization results by reducing the mean square error 

to 0.038 and increasing the accuracy rate to 94.2% through its powerful feature 

extraction and complex relationship modeling capabilities. In addition, when 

optimizing a typical layout scenario, the traditional method took up to 120 min on 

average, while the deep learning model reduced the time to 35 min, achieving an 

efficiency improvement of about 71%. This significant time reduction makes deep 

learning methods more practical, especially in large-scale new energy layout 

optimization scenarios that require fast decision-making. 

The advantages of the deep learning method are mainly reflected in the following 

aspects: First, it realizes deep modeling of high-dimensional data through multi-layer 

neural networks, effectively capturing the hidden features and complex relationships 

that are difficult to be resolved by traditional methods; second, combined with the 



Molecular & Cellular Biomechanics 2025, 22(4), 1344.  

14 

ability of multi-task prediction, it enables the model to maintain a higher accuracy 

when dealing with multiple target variables at the same time; third, it avoids the 

tedious part of manual debugging in traditional methods during the feature extraction 

process, and significantly improves the efficiency of deep learning method, especially 

in large-scale new energy layout optimization scenarios that require rapid decision-

making. Third, the model eliminates manual debugging in feature extraction, which 

significantly reduces the consumption of computational resources and time cost. This 

technological advancement not only improves the degree of intelligence of new energy 

layout optimization, but also provides a more reliable and efficient solution for 

practical applications, significantly reducing the potential waste of resources and the 

risk of error in the optimization process. 

5. Conclusion 

This paper offers practical insights into optimizing the new energy layout of 

railroads, aligning with sustainable development goals. Future research could explore 

the integration of real-time dynamic data from IoT sensors to further enhance the 

model’s ability to adapt to real-world environments. Additionally, the potential of edge 

computing could be explored for real-time decision-making and distributed data 

processing, allowing for faster optimization and response times in new energy layouts. 
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