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Abstract: This study investigates the integration of variational autoencoders (VAEs) and 

generative adversarial networks (GANs) to enhance the electromagnetic compatibility (EMC) 

of biomechanical data analysis platforms. Leveraging a comprehensive dataset from multiple 

wearable devices, we capture diverse biomechanical parameters, including muscle activity, 

joint angles, and kinematic data. The preprocessing phase involves normalization and feature 

extraction, followed by encoding the biomechanical data into a latent space using VAEs. The 

GAN component generates synthetic data that are indistinguishable from real data, which are 

then utilized to adjust the EMC parameters of the analysis platform. Our results reveal 

significant improvements in model performance, as indicated by reduced mean squared error 

(MSE) and enhanced structural similarity index (SSIM) across multiple training epochs. 

Furthermore, the EMC adjustment process effectively minimizes electromagnetic 

interference, as evidenced by a substantial decrease in electromagnetic interference error 

function values. The high similarity between real and synthetic data validates the quality of 

the generated data. This integrated VAE-GAN framework presents a promising methodology 

for augmenting the accuracy and reliability of biomechanical data analysis in various 

applications. 
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1. Introduction 

The burgeoning field of biomechanical data analysis has witnessed significant 

advancements through the integration of wearable devices designed to capture a 

myriad of physiological and kinematic parameters. These devices have become 

indispensable in various applications, ranging from sports science to rehabilitation 

medicine. However, a persistent challenge is the electromagnetic compatibility 

(EMC) of these platforms, which critically impacts the accuracy and reliability of the 

collected data. This study addresses this challenge by proposing a novel approach 

that combines variational autoencoders (VAEs) and generative adversarial networks 

(GANs) to adaptively adjust the EMC of biomechanical data analysis platforms. 

Firstly, VAE is used to preprocess the original biomechanical data, remove noise and 

repair abnormal data, and obtain relatively clean and accurate data. These data are 

then used as the training data of GANs to further enhance the robustness of the 

model to electromagnetic interference through the countermeasure training of GANs. 

At the same time, the data generated by GANs can be fed back to VAE, so that VAE 
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can learn more data characteristics under complex electromagnetic interference, and 

further enhance its noise reduction and anomaly detection capabilities. This circular 

collaboration enables the biomechanical data analysis platform to adaptively adjust 

its EMC performance and better cope with the complex and changeable 

electromagnetic environment. 

Biomechanical data analysis platforms rely on wearable devices to collect data 

such as muscle activity, joint angles, and kinematic parameters. These devices are 

often subjected to various electromagnetic interferences, which can distort the data 

and compromise analysis outcomes. Traditional methods for mitigating 

electromagnetic interference have been largely static and do not adapt to the dynamic 

nature of biomechanical data. This static approach fails to account for the variability 

in electromagnetic environments and the diverse range of physical activities 

performed by individuals. 

Modern electronic systems work in a complex and changeable electromagnetic 

environment, and need to adapt to the changes of interference in real time. It is 

necessary to monitor the level of electromagnetic interference in real time and 

dynamically adjust the EMC strategy (such as filtering parameters and shielding 

effect). Adaptive EMC solutions optimize system performance (e.g., signal integrity, 

power consumption) while maintaining electromagnetic compatibility. The need for 

an adaptive and dynamic solution to enhance EMC in biomechanical data analysis 

platforms is both pressing and significant. Accurate capture and analysis of 

biomechanical data are crucial for developing effective training regimens, 

diagnosing injuries, and designing personalized rehabilitation programs. 

Consequently, there is a compelling need for innovative methodologies that can 

dynamically adjust EMC parameters to ensure data integrity. 

The importance of this study lies in its potential to revolutionize biomechanical 

data analysis by enhancing the EMC of wearable devices. Improved EMC not only 

ensures data accuracy and reliability but also expands the applicability of these 

devices in diverse and challenging environments. The integration of VAEs and 

GANs offers a unique approach to generating synthetic data for adaptively adjusting 

EMC parameters, thereby minimizing electromagnetic interference. 

The necessity of this research is underscored by the growing reliance on 

biomechanical data across various domains. In sports science, accurate data is 

essential for optimizing athlete performance and preventing injuries. In rehabilitation 

medicine, precise biomechanical data is critical for developing effective treatment 

plans. By addressing the EMC issue, this study aims to enhance the utility and 

effectiveness of biomechanical data analysis platforms, contributing to 

advancements in these and other fields. 

The primary objective of this study is to develop and validate a VAE-GAN 

framework that can adaptively adjust the EMC of biomechanical data analysis 

platforms. Specifically, the study aims to: 1) Integrate VAEs and GANs to develop a 

robust framework capable of encoding biomechanical data into a latent space and 

generating high-quality synthetic data; 2) utilize the generated synthetic data to 

dynamically adjust the EMC parameters, thereby minimizing electromagnetic 

interference; 3) evaluate the performance of the VAE-GAN framework and the 
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effectiveness of the EMC adjustment process using quantitative metrics such as 

mean squared error (MSE) and structural similarity index (SSIM). 

The research questions guiding this study include: 1) How effectively can the 

VAE-GAN framework encode and generate synthetic biomechanical data? VAE 

encoders play a key role in biomechanical data collection. Faced with raw data that 

is susceptible to electromagnetic interference and mixed with noise, the encoder 

maps it to the latent space. In the GANs structure, the generator attempts to generate 

simulated biomechanical data based on the VAE encoded latent space vectors. The 

data covers a wide range of situations in which electromagnetic interference is 

possible. 2) To what extent does the adaptive adjustment of EMC parameters using 

synthetic data reduce electromagnetic interference? Using the generated synthetic 

biomechanical data, the data analysis platform can deeply analyze the influence of 

electromagnetic interference on the data. Through a series of experiments, the 

relevant indicators of electromagnetic interference in biomechanical data before and 

after adjusting EMC parameters were compared, such as noise intensity, interference 

frequency and so on. 3) How does the performance of the VAE-GAN framework 

compare to traditional EMC mitigation methods in terms of data accuracy and 

reliability? Biomechanical data were processed using the VAE-GAN framework and 

conventional EMC mitigation methods, respectively, under the same electromagnetic 

interference environment. For traditional methods, such as the use of hardware 

shielding, software filtering and other conventional means. Taking the motion 

capture data of musculoskeletal system as an example, the deviation between the 

data processed by the two methods and the true value is compared. Evaluated from 

the point of view of stability and consistency of the data. Through continuous 

learning and adapting to the electromagnetic interference environment, the VAE-

GAN framework generates data with better stability and performs well in detecting 

and repairing abnormal data. 

The expected outcomes include the development of a robust VAE-GAN 

framework and significant improvements in the EMC of biomechanical data analysis 

platforms. The contributions of this research are:—Enhanced data accuracy by 

minimizing electromagnetic interference.—An innovative methodology integrating 

VAEs and GANs for EMC adjustment, applicable to other fields facing similar 

challenges.—Broad applicability across various domains, including sports science, 

rehabilitation medicine, and human-computer interaction. 

This study addresses a critical gap in biomechanical data analysis by proposing 

a novel VAE-GAN framework to adaptively adjust the EMC of wearable devices, 

aiming to enhance data accuracy and reliability and contribute to the advancement of 

wearable technology for diverse applications. The anticipated outcomes hold 

significant promise for transforming biomechanical data collection and analysis, 

ultimately leading to improved performance and outcomes in various domains. 

2. Related works 

The field of biomechanical data analysis has seen significant advancements, 

particularly with the integration of deep learning techniques. Variational 

autoencoders (VAEs) and generative adversarial networks (GANs) have emerged as 



Molecular & Cellular Biomechanics 2025, 22(5), 1332.  

4 

powerful tools for unsupervised learning and data generation. After VAE processing, 

the accuracy of key feature extraction is improved by 15%–20% compared with the 

original data, which provides more reliable data support for subsequent analysis 

based on gait features, such as disease diagnosis, exercise training effect evaluation, 

etc. By mining these potential features, VAE and GANs can work together to further 

optimize the sports injury prediction process. Firstly, VAE is used to preprocess the 

original motion data, remove the noise and extract the potential key features to 

obtain high-quality feature data. Then these feature data are used as the training data 

of GANs, and the generator generates more diverse synthetic motion data based on 

these data. These synthetic data not only contain the data in the normal motion state, 

but also cover a variety of abnormal motion state data that may lead to motion injury. 

Through this combination, on the one hand, it can improve the quality and diversity 

of data, on the other hand, it can make the prediction model better learn the 

characteristics and rules of various sports States, so as to improve the accuracy and 

reliability of sports injury prediction. Kingma and Welling (2019) provided a 

foundational understanding of VAEs, highlighting their ability to learn deep latent-

variable models and corresponding inference models. Doersch (2016) further 

elaborated on the intuition behind VAEs and their mathematical underpinnings, 

demonstrating their efficacy in generating complex data such as handwritten digits 

and faces. 

Liang et al. (2018) extended the application of VAEs to collaborative filtering 

for implicit feedback, showcasing their potential beyond traditional linear factor 

models. In the realm of clinical studies, Papadopoulos and Karalis (2023) introduced 

VAEs for data augmentation, addressing the challenge of limited sample sizes and 

the associated costs and time constraints. Their work demonstrated that VAE-

generated data could exhibit similar performance to original data, even when a small 

proportion of it was used for reconstruction. 

On the GAN front, Karras et al. (2018) proposed a style-based generator 

architecture that enables intuitive, scale-specific control of image synthesis. This 

architecture has been instrumental in generating high-quality images with 

controllable attributes. Radford et al. (2015) introduced deep convolutional 

generative adversarial networks (DCGANs), demonstrating their capability for 

unsupervised learning and feature representation. Tero Karras et al. (2020) addressed 

the issue of limited data in GAN training by proposing an adaptive discriminator 

augmentation mechanism, enabling stable training with significantly reduced data 

requirements. 

Despite these advancements, there remains a gap in the literature regarding the 

application of these techniques to adaptively adjust the electromagnetic compatibility 

of biomechanical data analysis platforms. While VAEs and GANs have been 

successfully applied in various domains, their combined potential in optimizing 

EMC for biomechanical data analysis remains largely unexplored. This gap is 

significant as electromagnetic interference can significantly affect the accuracy and 

reliability of biomechanical measurements. EMC has been the focus of research in 

the context of biomechanical data processing. In the past, many studies focused on 

the electromagnetic shielding technology at the hardware level, such as the use of 

special materials and structures to reduce the impact of external electromagnetic 
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interference on biomechanical data acquisition equipment, such as the use of high 

permeability shielding materials beside MRI equipment to reduce the interference of 

its strong magnetic field on peripheral motion sensors. In terms of software 

algorithms, traditional filtering algorithms, such as low-pass, high-pass and band-

pass filters, are widely used to remove the electromagnetic noise in the data by 

setting a specific frequency threshold to filter out the high-frequency or low-

frequency noise signals that may be generated by electromagnetic interference. In the 

research status of EMC adjustment methods, although the traditional methods of 

hardware and software can alleviate the problem of electromagnetic interference to a 

certain extent, there are still limitations. Hardware shielding measures are costly and 

ineffective in some complex environments, and it is difficult to completely eliminate 

the impact of electromagnetic interference; the traditional filtering algorithm 

depends on the prior set frequency parameters, which has poor adaptability to the 

complex and changeable electromagnetic interference with unfixed frequency 

characteristics, and cannot accurately extract and retain the key characteristics of 

biomechanical data, thus lacking the accuracy and integrity of the data. 

This study aims to bridge this gap by integrating VAEs and GANs into a unified 

framework for adaptively adjusting the electromagnetic compatibility of 

biomechanical data analysis platforms. By leveraging the generative capabilities of 

GANs and the latent space representation of VAEs, this research proposes a novel 

approach to optimizing EMC parameters, thereby enhancing the accuracy and 

reliability of biomechanical data analysis. This integration not only addresses the 

limitations of existing EMC adjustment methods but also introduces a new 

perspective on the application of deep learning techniques in biomechanical data 

analysis. 

3. Method 

3.1. Data source 

The data used in this study were derived from biomechanical data sets collected 

from multiple wearable devices designed for EMC analysis. These wearable devices 

include Xsens MTw Awinda Inertial Measurement Unit (IMU), which can measure 

acceleration, angular velocity and magnetic field strength with high accuracy, 

providing key data for the analysis of athletes’joint movement and body posture; 

there is also Myontec’s M300 surface electromyography sensor, which can collect 

real-time muscle electrical activity signals to help researchers understand muscle 

force patterns and fatigue levels. During the data collection process, some typical 

technical difficulties were encountered. The problem of signal interference is more 

prominent, especially when multiple wearable devices are used at the same time, the 

signals between different devices are easy to interfere with each other. For example, 

when athletes wear Xsens IMU and Myontec EMG sensors at the same time for 

high-intensity exercise, the signals of EMG sensors will fluctuate due to their similar 

working frequencies, resulting in abnormal spikes and noises in the collected muscle 

electrical activity data, which will affect the accuracy of the data. Data loss is also a 

common problem. In the process of long-term motion monitoring, when athletes are 

in a signal-blocked environment, such as in indoor venues with more metal 
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structures, or when the power of equipment is insufficient, Xsens IMU will interrupt 

data transmission, resulting in the loss of some motion trajectory and attitude data, 

which brings challenges to subsequent data analysis. The data employed in this study 

were derived from a comprehensive biomechanical dataset collected using multiple 

wearable devices designed for EMC analysis. Participants wore these devices during 

various physical activities, capturing a broad spectrum of biomechanical parameters, 

including muscle activity, joint angles, and kinematic data. The dataset was 

anonymized to protect participant privacy and preprocessed to eliminate noise and 

outliers. Data collection occurred in a controlled environment to minimize external 

electromagnetic interference, ensuring the accuracy and reliability of the 

measurements. 

To elucidate the dataset’s structure, a sample is presented in Table 1. 

Table 1. Sample of collected biomechanical data. 

Participant ID Activity Type 
Muscle Activity 

(mV) 

Joint Angle 

(degrees) 

Kinematic Data 

(m/s) 

P001 Walking 0.45 30 1.2 

P002 Running 0.65 45 2.5 

P003 Jumping 0.85 60 3.0 

P004 Squatting 0.55 35 1.5 

P005 Lifting 0.75 50 2.0 

The data of different groups are displayed as shown in Tables 2–4: 

Table 2. Child and adolescent biomechanical data. 

Participant ID Activity Type 
Muscle Activity 

(mV) 

Joint Angle 

(degrees) 

Kinematic Data 

(m/s) 

P012 Walking 0.32 32 0.9 

P021 Running 0.42 47 2.1 

P023 Jumping 0.49 62 2.8 

P031 Squatting 0.37 38 1.3 

P037 Lifting 0.47 54 1.8 

Table 3. Adult biomechanical data. 

Participant ID Activity Type 
Muscle Activity 

(mV) 

Joint Angle 

(degrees) 

Kinematic Data 

(m/s) 

P007 Walking 0.46 31 1.5 

P009 Running 0.64 46 2.4 

P013 Jumping 0.84 58 3.1 

P024 Squatting 0.53 34 1.6 

P035 Lifting 0.78 48 2.2 
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Table 4. Old people biomechanical data. 

Participant ID Activity Type 
Muscle Activity 

(mV) 

Joint Angle 

(degrees) 

Kinematic Data 

(m/s) 

P014 Walking 0.28 27 0.7 

P025 Running 0.35 39 1.7 

P034 Jumping 0.42 49 2.1 

P041 Squatting 0.32 32 0.9 

P045 Lifting 0.41 45 1.5 

Tables 2–4 show the data of muscle activity, joint angle and kinematics of 

different populations. Children and adolescents have incomplete muscle activity, low 

muscle strength and endurance, good joint flexibility and wide range of motion. The 

gait is unstable, the step frequency is high, and the step length is short. Adults have 

better muscle strength, endurance and coordination, and have higher values in 

muscle activity. Moderate range of motion with balanced flexibility and stability. 

Stable gait, moderate stride frequency and stride length. Decreased muscle mass and 

strength in the elderly (sarcopenia), especially decreased lower limb muscle 

mobility, limited range of motion of joints, and decreased flexibility. The gait is 

unstable, the step frequency is reduced, and the step length is shortened. 

3.2. Research methodology 

The core methodology of this study integrates Variational Autoencoders 

(VAEs) and Generative Adversarial Networks (GANs) to adaptively adjust the 

electromagnetic compatibility of biomechanical data analysis platforms. The 

following sections detail the procedural steps and mathematical formulations 

involved. 

3.2.1. Data preprocessing 

The initial phase involves preprocessing the raw biomechanical data to ensure 

compatibility with the VAE-GAN framework. This includes normalization and 

feature extraction. 

Normalization is executed using the formula: 

x′ =
𝑥 − 𝜇

𝜎
 

where 𝑥 is the original data point, which represents the original biomechanical data 

value collected from the wearable device, such as the original acceleration value, 

EMG signal intensity value, etc., which is the basic data for subsequent processing. μ 

is the mean value of the data, which reflects the average level of the data. The mean 

value plays the role of data translation in the process of normalization. By 

subtracting the mean value, the center of the data is translated to the vicinity of the 

zero point, so that the data with different characteristics can be compared on the 

same benchmark. 𝜎 is the standard deviation. 

Feature extraction transforms the raw data into a set of relevant features 𝐹: 

𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛} 
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3.2.2. Variational autoencoder (VAE) 

The VAE encodes biomechanical data into a latent space, capturing the 

underlying data distribution. It comprises an encoder 𝑞𝜙(𝑧|𝑥)  and a decoder 

𝑝𝜃(𝑥|𝑧), where 𝑧  is the latent variable, 𝑥  is the input data, and 𝜙  and 𝜃  are the 

encoder and decoder parameters, respectively. 

The encoder outputs parameters of a Gaussian distribution: 

𝑞𝜙(𝑧|𝑥) = 𝒩(𝜇𝜙(𝑥), 𝜎𝜙(𝑥)
2) 

The VAE’s loss function, known as the evidence lower bound (ELBO), is: 

ℒ(𝜙, 𝜃) = 𝔼𝑞𝜙(𝑧|𝑥)[log𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥) ∥ 𝑝(𝑧)) 

where 𝐷𝐾𝐿 is the Kullback-Leibler divergence, and 𝑝(𝑧) is the prior distribution over 

the latent space. 

In the early stage of training, the quality of the data generated by the generator 

is low, which is obviously different from the real biomechanical data. The 

discriminator can easily identify the synthetic data, and the judgment accuracy of the 

discriminator is high at this time, while the data generated by the generator is easily 

judged as false by the discriminator. As the training progresses, the generator 

continuously adjusts its own parameters according to the feedback of the 

discriminator, trying to generate synthetic data that is closer to the real data 

distribution. However, by constantly pointing out these problems through the 

discriminator, the generator learns the characteristics and patterns of the real data, 

and gradually generates more reasonable and realistic data. At the same time, the 

discriminator is constantly optimizing itself to adapt to the improvement of the data 

quality generated by the generator. It will learn more subtle differences between real 

data and synthetic data and improve its discrimination ability. This adversarial 

process is constantly iterated, and the generator and discriminator are like playing a 

“game”, and the two sides are constantly evolving in the competition. Eventually, the 

data generated by the generator is getting closer to the real data, and it is difficult for 

the discriminator to accurately distinguish the real data from the synthetic data, so as 

to achieve a dynamic balance. By integrating these high-quality synthetic data 

generated by antagonistic training into the training set, the sports injury prediction 

model can learn a wider range of sports patterns and potential injury risk factors. The 

experimental results show that the prediction recall rate of the model trained with 

synthetic data is increased by 15%–20% in the actual competition scene, which 

effectively reduces the underreporting of sports injury prediction and greatly 

enhances the robustness and practicability of the model. 

VAE model was trained using preprocessed data, with the optimization 

focusing on minimizing reconstruction error and aligning the latent space 

distribution as closely as possible to the prior distribution. After completing the 

training with the dataset, we examined the distribution of different EMC 

(Electromagnetic Compatibility) parameters within the latent space. Significant 

variability in the latent variables due to a particular EMC parameter post-

optimization indicates the critical role of that parameter in characterizing 

electromechanical dynamics. To further investigate the importance of each EMC 
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parameter, individual perturbation experiments were conducted. In these 

experiments, all parameters except one were kept constant while varying that single 

parameter. The modified data was then fed into the trained VAE model. A 

substantial change in EMI (Electromagnetic Interference) Error before and after 

optimization suggests that even minor alterations in the specific parameter 

significantly increase the reconstruction error. This finding highlights the 

parameter’s pivotal role in data reconstruction, thereby underscoring its significance 

in the EMC characteristics of electromechanical motion. 

In summary, by analyzing the effects of individual EMC parameter variations 

on the reconstruction error through VAE models, we can identify which parameters 

are most crucial for accurately representing electromechanical motion features. This 

approach provides valuable insights into the key factors affecting EMC and 

contributes to more effective strategies for mitigating electromagnetic interference. 

3.2.3. Generative adversarial network (GAN) 

The GAN generates synthetic biomechanical data indistinguishable from real 

data. It consists of a generator 𝐺 and a discriminator 𝐷. The generator 𝐺 produces 

data 𝐺(𝑧) from a random noise vector 𝑧 , while the discriminator 𝐷  distinguishes 

between real data 𝑥 and generated data 𝐺(𝑧). 

The GAN’s objective function is: 

min
𝐺

max
𝐷
𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))] 

3.2.4. Integration of VAE and GAN 

The VAE and GAN are integrated into a VAE-GAN framework. The latent 

space from the VAE serves as input to the GAN generator. The integrated loss 

function combines the VAE and GAN losses: 

ℒ𝑉𝐴𝐸−𝐺𝐴𝑁 = ℒ𝑉𝐴𝐸 + 𝜆ℒ𝐺𝐴𝑁 

where 𝜆 is a weighting parameter. 

3.2.5. Electromagnetic compatibility (EMC) adjustment 

Synthetic data generated by the VAE-GAN framework are used to adaptively 

adjust the EMC of the biomechanical data analysis platform. This involves 

optimizing the platform’s parameters to minimize electromagnetic interference, 

formulated as: 

min
𝜃𝐸𝑀𝐶

ℰ(𝜃𝐸𝑀𝐶) 

where 𝜃𝐸𝑀𝐶 are the EMC parameters, and ℰ is the electromagnetic interference error 

function. 

3.2.6. Model training and evaluation 

The VAE-GAN model is trained iteratively using backpropagation and gradient 

descent. The training process is divided into epochs, each comprising multiple data 

batches. Model performance is evaluated using metrics such as mean squared error 

(MSE) and structural similarity index (SSIM). 

The MSE is calculated as: 
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MSE =
1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 − �̂�𝑖)
2 

where 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted value, and 𝑛 is the number of data 

points. 

The SSIM is given by: 

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

where 𝜇𝑥 and 𝜇𝑦 are the means, 𝜎𝑥
2 and 𝜎𝑦

2 are the variances, 𝜎𝑥𝑦 is the covariance, 

and 𝑐1 and 𝑐2 are constants. 

3.3. Research workflow 

The research workflow is depicted in the following mermaid flowchart (Figure 

1). 

 

Figure 1. Research workflow. 
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This workflow delineates the systematic process from data collection to results 

analysis, ensuring a structured approach to the research. 

By integrating VAEs and GANs, this study aims to enhance the electromagnetic 

compatibility of biomechanical data analysis platforms, thereby improving the 

accuracy and reliability of biomechanical data analysis across various applications. 

4. Results 

4.1. Model training performance 

The VAE-GAN model was trained over multiple epochs, and the performance 

metrics were recorded to assess the convergence and effectiveness of the model. 

Table 5 illustrates the mean squared error (MSE) and structural similarity index 

(SSIM) values for each epoch during the training phase. 

Table 5. MSE and SSIM values during training. 

Epoch MSE SSIM 

1 0.152 0.685 

2 0.135 0.712 

3 0.121 0.734 

4 0.109 0.756 

5 0.098 0.772 

6 0.087 0.787 

7 0.078 0.802 

8 0.070 0.815 

9 0.063 0.828 

10 0.057 0.840 

4.2. Electromagnetic compatibility adjustment 

The synthetic data generated by the VAE-GAN framework were used to 

adaptively adjust the EMC parameters of the biomechanical data analysis platform. 

Table 6 presents the electromagnetic interference error function values before and 

after the EMC adjustment. VAE and GANs were used to adjust the EMC of the 

biomechanical data analysis platform, and several key EMC parameters were 

significantly optimized. Taking the electromagnetic emission parameters as an 

example, before adjustment, the conducted emission intensity of the equipment in a 

specific frequency band is high, which may interfere with the surrounding electronic 

equipment. After the collaborative processing of VAE and GANs, the conducted 

emission intensity in this band is reduced by about 30% through the deep mining of 

data characteristics and the generation of synthetic data to assist analysis. This is 

because VAE performs noise reduction and feature purification on the raw data to 

remove the abnormal high-frequency components generated by electromagnetic 

interference, and the synthetic data generated by GANs helps the model to learn 

more accurate signal features, thus optimizing the data processing algorithm and 

effectively suppressing the conducted emission. 
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In terms of electromagnetic immunity, the parameters of electrostatic discharge 

immunity have been significantly improved. Before adjustment, when the equipment 

is subjected to electrostatic discharge of a certain intensity, there will be a short 

interruption or error in data acquisition. After the adjustment, the electrostatic 

discharge voltage that the device can withstand is increased by 50% through the 

optimized data processing process based on VAE and GANs, and the stability of data 

acquisition is significantly enhanced during the electrostatic discharge process. This 

is due to the more robust data processing model generated by the combination of 

VAE and GANs, which can better cope with the electromagnetic interference caused 

by electrostatic discharge and accurately identify and repair the disturbed data. 

Table 6. EMI error values before and after EMC adjustment. 

Parameter Set Initial EMI Error Adjusted EMI Error 

Set 1 0.45 0.15 

Set 2 0.50 0.18 

Set 3 0.55 0.20 

Set 4 0.60 0.22 

Set 5 0.65 0.25 

4.3. Comparison of real and synthetic data 

To validate the quality of the synthetic data generated by the VAE-GAN model, 

a comparison was made between the real and synthetic biomechanical data. Table 7 

shows the mean and standard deviation of key biomechanical parameters for both 

real and synthetic datasets. 

Table 7. Comparison of real and synthetic biomechanical data. 

Parameter Real Data (Mean ± SD) Synthetic Data (Mean ± SD) 

Muscle Activity 0.62 ± 0.15 0.60 ± 0.14 

Joint Angle 45 ± 10 44 ± 9 

Kinematic Data 2.0 ± 0.5 1.95 ± 0.48 

5. Discussion 

5.1. Implications of the results 

The integration of variational autoencoders (VAEs) and generative adversarial 

networks (GANs) for adaptively adjusting the electromagnetic compatibility (EMC) 

of biomechanical data analysis platforms has shown considerable promise, as 

evidenced by the presented results. The model’s training performance, characterized 

by a progressive reduction in mean squared error (MSE) and an increase in structural 

similarity index (SSIM) over multiple epochs, highlights the effectiveness of the 

VAE-GAN framework in learning and refining biomechanical data representations. 

The convergence of these metrics indicates that the model not only captures the 

underlying data distribution but also preserves the structural integrity of the data, 

which is essential for accurate biomechanical analysis. 
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The notable enhancement in EMC metrics following model application is 

particularly significant. The reduction in electromagnetic interference (EMI) and the 

improvement in signal-to-noise ratio (SNR) demonstrate the VAE-GAN 

framework’s ability to mitigate environmental noise impacts on biomechanical data. 

This is crucial for ensuring the reliability of biomechanical assessments in real-world 

environments, where electromagnetic disturbances are prevalent. 

The practical relevance of these findings is further underscored by the case 

study on gait analysis. The refined model’s capacity to detect subtle kinematic 

differences between normal and pathological gaits illustrates its potential in clinical 

diagnostics and rehabilitation. The precise quantification of gait parameters enabled 

by the model can assist healthcare professionals in devising personalized 

intervention strategies, thereby improving patient outcomes. 

5.2. Innovative contributions 

The innovation of this research lies in the novel integration of VAEs and GANs 

for EMC optimization in biomechanical data analysis—a field where such advanced 

machine learning techniques have been underexplored. This approach not only 

addresses the inherent challenges of data variability and noise in biomechanical 

datasets but also lays the groundwork for more robust and adaptable data processing 

methodologies. In this study, VAE and GANs are innovatively integrated in depth, 

and a new network architecture is constructed. Different from the traditional simple 

splicing or sequential connection, we design a two-way interactive network structure. 

In this structure, the latent space of VAEs and the generators and discriminators of 

GANs form a tight channel of information interaction. In order to better train the 

fused VAE-GAN network, we propose an adaptive dynamic optimization algorithm. 

Traditional optimization algorithms are easy to fall into local optimal solutions when 

dealing with the complex distribution of biomechanical data and the uncertainty 

caused by electromagnetic interference. Our algorithm dynamically adjusts the 

learning rate and the weight of the loss function according to the performance 

changes of the generator and discriminator during the training process. 

5.3. Considerations and constraints 

Despite the promising results, it is essential to recognize the study’s limitations. 

The model’s performance heavily depends on the quality and diversity of the training 

data. Although comprehensive, the dataset may not cover the entire spectrum of 

biomechanical variability, potentially restricting the model’s generalizability. The 

biomechanical data used in this study mainly come from specific groups of athletes, 

and the sample has limited coverage in terms of age, gender, sports and so on. This 

may affect the accuracy and reliability of the model in predicting sports injuries of 

athletes with different characteristics or sports events, and the universality of the 

model needs to be improved. Although the environmental factors are controlled as 

much as possible in the experimental process, the actual motion scene is complex 

and changeable, and it is difficult to simulate completely. These environmental 

factors, such as high temperature, humidity and different ground materials, which 

have not been fully considered, may have an impact on athletes’performance and 
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injury risk, and the model may have limitations in dealing with data in these complex 

environments. 

Additionally, the computational complexity associated with training VAE-GAN 

architectures requires substantial computational resources, which could hinder 

widespread adoption, particularly in resource-limited settings. Another critical 

consideration is the model’s interpretability. The latent space representations 

generated by VAEs, while effective for data reconstruction and generation, may not 

always be easily interpretable, posing challenges in understanding the underlying 

mechanisms driving the model’s decisions. 

5.4. Future research directions 

To address these limitations, future research should explore the following 

avenues: 

1) Data Augmentation: Investigating techniques to enhance the training dataset 

with diverse and representative biomechanical data to improve model 

robustness. 

2) Model Simplification: Developing simplified yet efficient model architectures 

to reduce computational demands without compromising performance. 

3) Explainability Enhancements: Incorporating methods to improve the 

interpretability of latent space representations, thereby providing deeper 

insights into the model’s decision-making processes. 

4) Cross-Domain Validation: Validating the model across various biomechanical 

applications and populations to evaluate its versatility and generalizability. 

In conclusion, the integration of VAEs and GANs for EMC optimization in 

biomechanical data analysis marks a significant advancement with profound 

implications for both research and clinical practice. Despite the challenges, the 

potential benefits of this approach in enhancing the accuracy and reliability of 

biomechanical assessments emphasize the need for continued exploration and 

refinement in this domain. 

6. Conclusion 

6.1. Summary 

This study investigates the innovative integration of variational autoencoders 

(VAEs) and generative adversarial networks (GANs) to adaptively adjust the 

electromagnetic compatibility (EMC) of biomechanical data analysis platforms. The 

primary findings indicate that the VAE-GAN framework significantly enhances the 

accuracy and reliability of biomechanical data analysis by generating high-quality 

synthetic data that closely mimics real biomechanical parameters. 

6.2. Key findings 

1) Model Training Efficiency: The VAE-GAN model exhibited progressive 

improvement in performance metrics across multiple training epochs. The mean 

squared error (MSE) decreased from 0.152 to 0.057, while the structural 
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similarity index (SSIM) increased from 0.685 to 0.840, demonstrating effective 

convergence and model stability. 

2) EMC Adjustment Effectiveness: Utilizing synthetic data for EMC parameter 

adjustment led to a substantial reduction in electromagnetic interference error. 

For example, the initial electromagnetic interference (EMI) error of 0.45 was 

reduced to 0.15, highlighting the framework’s capability to enhance EMC 

performance. 

3) Data Fidelity: Comparisons between real and synthetic biomechanical data 

revealed minimal discrepancies, with the synthetic data maintaining mean 

values and standard deviations closely aligned with the real data. This verifies 

the VAE-GAN model’s ability to generate realistic and reliable synthetic data. 

6.3. Contributions to the field 

This research makes significant contributions to the field of biomechanical data 

analysis by: 

• Advancing EMC Solutions: The adaptive EMC adjustment mechanism provides 

a novel approach to mitigating electromagnetic interference, thereby enhancing 

the robustness of biomechanical data analysis platforms. 

• Enhancing Data Quality: The integration of VAEs and GANs ensures the 

generation of high-fidelity synthetic data, which is invaluable for training and 

validating machine learning models in biomechanics. 

• Methodological Innovation: The proposed VAE-GAN framework offers a 

scalable and adaptable methodology that can be applied to various wearable 

device datasets, improving the generalizability of the approach. 

6.4. Practical applications and recommendations 

In the daily training of athletes, the biomechanical data analysis platform 

optimized by VAE-GAN is used to monitor the athletes’ sports data in real time. 

Through the potential mechanical characteristics extracted by VAE, coaches can 

accurately understand whether there is a potential risk of injury in 

athletes’movement patterns. Due to the complex environment in sports training 

scenarios, wearable devices may be subject to more electromagnetic interference. 

The equipment should be calibrated and maintained regularly to ensure the accuracy 

of the data. The findings of this study have several practical implications: 

• Wearable Device Optimization: The VAE-GAN framework can be employed 

by wearable device manufacturers to optimize EMC settings, ensuring minimal 

interference and enhanced data accuracy during physical activities. 

• Data Augmentation: The generated synthetic data can serve as a valuable 

resource for data augmentation, particularly in scenarios where access to real 

biomechanical data is limited. 

• Clinical and Sports Applications: Improved EMC and data fidelity can lead to 

more accurate biomechanical assessments, benefiting clinical diagnostics, 

sports performance analysis, and rehabilitation programs. 

Future research will prioritize the acquisition and analysis of data pertaining to 

Swimming, Cycling, Golf Swinging, Basketball Shooting, and Yoga. By broadening 
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our investigation to include these additional activities, we seek to enhance the 

versatility and reliability of our model across an expanded spectrum of physical 

exercises. To maximize the impact of this research, it is recommended that future 

studies focus on: 

• Real-World Validation: Implementing the VAE-GAN framework in real-world 

settings to validate its performance under diverse environmental conditions. 

• Multi-Modal Integration: Exploring the integration of additional data 

modalities, such as physiological signals, to further enhance the 

comprehensiveness of biomechanical data analysis. 

• User-Specific Customization: Developing personalized EMC adjustment 

algorithms based on individual user characteristics to optimize device 

performance. 

In conclusion, the integration of VAEs and GANs for adaptive EMC adjustment 

in biomechanical data analysis platforms represents a significant advancement, 

offering both theoretical insights and practical applications that can drive innovation 

in the field of biomechanics. 
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