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Abstract: Path optimization of logistics and transportation systems has traditionally focused 

on the balance between efficiency and cost, but there is a lack of systematic research on the 

biomechanical load of transport personnel, which leads to fatigue accumulation and increased 

safety hazards. To fill this gap, this paper proposes a path optimization method based on deep 

reinforcement learning (DRL) based on biomechanical theory, aiming to combine 

biomechanical load management of transport personnel with logistics efficiency improvement. 

Firstly, a biomechanical load assessment system for transport personnel during long-distance 

driving is established using human kinematics and dynamics models, with quantitative 

indicators including muscle fatigue index, joint load and driving posture stability. Secondly, a 

national logistics transportation network is constructed based on a graph theory model, with 

transportation distance, time and biomechanical load as constraints for multi-objective 

optimization, and a Deep Q Network (DQN) is designed for path planning optimization. The 

calculation of fatigue index is combined with driving time, road section characteristics and 

individual biomechanical characteristics, and verified by biomechanical simulation tools. In 

order to improve the optimization efficiency, the simulated annealing algorithm is used to 

preliminarily screen the paths, and the DRL model is combined to achieve dynamic adjustment. 

The experimental results show that this method significantly reduces the biomechanical load 

of transport personnel in nationwide logistics scheduling (the fatigue index is controlled below 

0.12), and at the same time reduces the accident rate caused by fatigue (reduced by 40%), and 

the transportation efficiency is superior to traditional research. The research results not only 

deepen the application of biomechanical theory in the field of long-distance transportation, but 

also provide theoretical support and technical reference for building a safe, efficient and 

intelligent logistics and transportation system, and promote the integrated development of 

biomechanics and artificial intelligence in complex engineering problems. 

Keywords: deep reinforcement learning; biomechanical load; path optimization; fatigue index; 

logistics and transportation efficiency 

1. Introduction 

In modern logistics and transportation systems, route optimization [1–3] is 

considered to be the core of improving transportation efficiency and reducing 

transportation costs. However, traditional route optimization strategies usually focus 

on economic benefits and operational efficiency, and pay less attention to the health 

and safety of transportation personnel. Especially in long-distance transportation, the 

fatigue level of drivers has a significant impact on transportation safety and continuity. 

With the continuous growth of logistics demand and the frequent occurrence of related 

accidents, there is an urgent need for an optimization method that can take into account 

both biomechanical load and transportation efficiency, so as to improve overall 

benefits while ensuring safety. 
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In recent years, in the field of logistics scheduling, researchers have proposed a 

variety of models based on traditional optimization methods such as graph theory, 

genetic algorithms, and particle swarm optimization algorithms to improve 

transportation efficiency and reduce costs. Yucel et al. [4] used mixed integer linear 

models and adaptive large domain search algorithms to study a multi-period two-

dimensional vehicle loading and scheduling problem with incompatibility constraints, 

and used real data examples to verify the effectiveness of the method. Lan et al. [5] 

studied the vehicle routing problem with time windows and proposed a 

decomposition-based multi-objective scheduling model and algorithm, which 

successfully solved the three-objective routing optimization problem and proved its 

effectiveness through experiments. Lei [6] used genetic algorithms as a solution 

algorithm in the intelligent transportation model decision-making in the logistics 

industry. Through a large number of experiments and data, it was shown that genetic 

algorithms can optimize the operation path and improve transportation efficiency. 

Cakmak et al. [7] employed the discrete binary particle swarm algorithm to address 

the issue in their research on mathematical model-based evaluation and multi-criteria 

methods for site selection. He observed that the algorithm reaches the optimal result 

more quickly as the test problem scale increases and confirmed the correctness of the 

optimal value through binary integer programming. Sihotang et al. [8] represented 

mining sites and processing plants as points in a graph and transportation routes as 

edges in a graph to formulate a path optimization problem. They used a graph-based 

optimization algorithm to reduce the transportation cost from 2100 units to 1700 units. 

However, these methods mainly focus on traffic flow and road conditions as core 

parameters, and pay less attention to the workload of transportation personnel, 

especially in fatigue management in long-term driving environments. Ignoring 

transport personnel load management will lead to accumulated fatigue, increased 

safety hazards, reduced transport efficiency, driver health problems, increased 

psychological stress and compliance risks, ultimately affecting the safety, efficiency 

and sustainability of the logistics system. 

Due to its superior performance in dynamic decision-making, DRL has gradually 

become an important tool for logistics path optimization. Pan and Liu [9] proposed a 

novel DRL framework to solve the dynamic uncertain vehicle routing problem when 

studying real-time accurate tracking of real urban logistics, and proposed a cutting-

edge reinforcement learning algorithm to control the value function in this problem. 

Zhang et al. [10] introduced a DRL-based hyper-heuristic framework to address the 

container terminal truck routing problem with uncertain service time. This framework 

improves the existing hyper-heuristic approach by leveraging powerful data-driven 

heuristic selection. Experiments show that this method has superior performance 

compared with existing solutions. In order to overcome the limitations of traditional 

research on vehicle routing problems, Zhao et al. [11] proposed a novel DRL model, 

combining the model with a local search algorithm to further improve the final quality 

of the solution. Liu et al. [12] proposed a reinforcement learning-based path planning 

solution for IoT drones, which plans hovering points for drones by learning the 

historical positions of cluster heads and uses simulated annealing to maximize the 

probability of encountering cluster heads, thereby planning the shortest path for drones 

to visit all hovering points. However, in existing studies, the introduction of 



Molecular & Cellular Biomechanics 2025, 22(3), 1325.  

3 

biomechanical parameters is often one-sided and fails to be effectively integrated with 

the path optimization algorithm, which limits the effectiveness of the model in 

practical applications. Therefore, this paper adopts a multi-objective DRL method to 

solve the problem of insufficient consideration of the biomechanical load of transport 

personnel in existing studies. 

Aiming at some problems existing in the transportation path in the current 

logistics transportation system on the basis of DRL [13–15], this paper studies the 

impact of biomechanical load [16,17] on transport personnel and establishes a 

biomechanical load assessment system. In this study, the graph theory [18,19] model 

was used to construct a logistics transportation network. The different components of 

the logistics transportation system were abstracted into nodes and edges in the network. 

The weight information of the edges included key information such as transportation 

distance and transportation time during logistics transportation. A multi-objective 

DQN [20–22] model was designed based on DRL. The model consists of two Q 

networks, which optimize the transportation timeliness and the biomechanical load of 

the transport personnel respectively, aiming to achieve the best balance between the 

two and design the optimal transportation route. At the same time, the simulated 

annealing algorithm [23–25] is used to preliminarily optimize the search space when 

designing the transportation route. The purpose is to optimize the transportation 

efficiency while reducing the fatigue of the transportation personnel. Finally, the 

designed multi-objective DQN model realizes the dynamic adjustment of the 

transportation route during transportation and verifies it using biosimulation software 

to cope with emergencies that may occur during the transportation process. 

Experiments have shown that the method used in this paper can be used to carry out 

logistics transportation across the country, with an average single transportation time 

of 32 h, and has achieved good control of the fatigue index of transportation personnel 

[26–28]. In the experiment, the fatigue index of transportation personnel was 

controlled below 0.12, which improved the safety of transportation personnel during 

transportation. In a certain area, the application of the method in this paper has 

alleviated the occurrence of accidents during transportation, especially accidents 

caused by fatigue, with the probability of occurrence reduced by 40%. This further 

demonstrates that the method presented in this paper enhances transportation safety 

while offering a practical solution for optimizing global logistics scheduling strategies. 

This contributes to the advancement of smart logistics systems [29,30] and supports 

broader industry applications. 

2. Optimization path planning based on biomechanical load 

2.1. Establishment of the biomechanical load assessment system 

The construction of the biomechanical load assessment system is based on the 

kinematic and dynamic models of the human body and is used to quantify the 

biomechanical load that transportation personnel may encounter during long-distance 

driving. This system provides data support for driver load optimization in route 

planning by comprehensively considering factors such as muscle fatigue, joint load, 

and driving posture stability. 

Fatigue index is a key indicator for evaluating driver fatigue, which is mainly 
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calculated by factors such as muscle energy consumption, activity duration, and 

posture stability. 

During long-term driving, the driver’s muscles need to bear a certain load. The 

muscle model Hill’s Muscle Model is used to calculate the muscle’s power output and 

energy consumption during the duration. The calculation formula is: 

𝐹𝑚𝑢𝑠𝑐𝑙𝑒 = ∫ (𝜏(𝑡) ⋅ 𝑣(𝑡)𝑑𝑡
𝑇

0

 (1) 

Among them, 𝜏(𝑡)  represents muscle force, 𝑣(𝑡)  represents muscle 

contraction speed, and T is driving time. Through this formula, the total power 

consumption of muscles during driving can be obtained, and then the degree of fatigue 

can be calculated. 

Joints are important load-bearing parts of the human body. Especially during 

long-term driving, the knee joints, waist and spine bear large mechanical and dynamic 

loads. The joint load model is used to evaluate the pressure and shear force of each 

joint. The evaluation formula is: 

contact

jo

jo
A

F int

int =  (2) 

Among them, 𝐹𝑗𝑜𝑖𝑛𝑡  represents the force borne by the joint, and 𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡 

represents the contact surface area of the joint. 

The driver’s sitting posture has an important impact on the load, especially the 

posture stability of the waist and spine. During driving, the driver needs to maintain a 

certain posture. If the posture is unstable, it will increase the burden on the muscles 

and lead to accelerated fatigue. The posture stability model is used to evaluate the 

driver’s stability during driving. The calculation formula is: 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

∫ (𝜃(𝑡)2)𝑑𝑡
𝑇

0

 (3) 

Among them, 𝜃(𝑡) represents the change in the driver’s sitting angle. 

The health status of each driver is different, which affects the fatigue 

accumulation of the driver under long-term work. By collecting the health records of 

the drivers, the personal health status coefficient of the driver is designed as: 

𝐻 = 1 + 𝛽1 ⋅ 𝑊𝐻 + 𝛽2 ⋅ 𝐻𝐻+. . . +𝛽𝑛 ⋅ 𝑂𝐻 (4) 

are represented by 𝛽1, 𝛽2, . . . , 𝛽𝑛 WH, HH, and OH. If the driver is in poor health, his 

health factor H will be greater than 1, causing the fatigue index to increase. 

The temperature and humidity of the in-car environment will affect the driver’s 

comfort and physical exertion, and then affect the fatigue index. By collecting data on 

the temperature and humidity in the car through sensors, the influence coefficient of 

the in-car environment on the driver’s fatigue index can be calculated: 

𝐸𝑒𝑛𝑣 = 𝜂1 ⋅ 𝑇𝑐𝑎𝑡 + 𝜂2 ⋅ 𝐻𝑐𝑎𝑟 (5) 

coefficient 𝜂1, 𝜂2 representing the influence of temperature and humidity inside the 

car on the driver’s fatigue index. 

Through the analysis of psychological assessment tools, there is a certain 
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relationship between psychological load and physiological load. Higher psychological 

load will lead to increased physiological load, thereby accelerating the accumulation 

of fatigue. The calculation formula for the influence coefficient of psychological load 

is: 

𝐸𝑝𝑠𝑦𝑐ℎ = 𝛿 ⋅ 𝑃 (6) 

where 𝛿 represents the influence coefficient of psychological load on fatigue, and P 

is the driver’s psychological load index evaluated by a psychological assessment tool. 

of muscle fatigue, joint load, posture stability, personal health factor, in-vehicle 

environmental impact factor, and psychological load index is used to form a 

comprehensive fatigue index to describe the overall fatigue level of the driver: 
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Among them, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6 the weight factors of 𝐹𝑚𝑎𝑥 muscle fatigue, 

joint load, posture stability, personal health coefficient, in-vehicle environment impact 

coefficient and psychological load index represent the maximum bearing capacity of 

the muscles and 𝜎𝑚𝑎𝑥 the maximum bearing value of the joint load. 

Based on the calculation of the above fatigue index, the evaluation results of the 

biomechanical load of the driver for each transportation route can be obtained as the 

basis for optimizing route selection. 

2.2. Logistics and transportation network 

When optimizing warehouse site selection and material transportation routes, the 

first thing to do is to build a logistics and transportation network. The network 

constructed in this paper relies on a graph theory model, abstracting the various 

components of the logistics system into nodes and edges in the graph. Each node 

represents a warehouse, logistics center or city, and each edge represents a 

transportation route. On the basis of this network, factors such as traffic flow, road 

conditions, and logistics demand are further considered to assign weights to each edge, 

providing a basis for subsequent path optimization and biomechanical load calculation. 

In the logistics transportation network designed in this paper, each node 

represents a warehouse. Assuming there are N nodes, the node representation is: 

𝑉 = {𝑣1, 𝑣2, . . . . , 𝑣𝑁} (8) 

Among them, 𝑣𝑖  represents the i-th warehouse, and each warehouse 𝑣𝑖  has 

specific attributes, such as location (latitude and longitude), storage capacity, 

transportation connection relationship with other nodes, etc. 

The edge segment between two nodes in the network represents the transportation 

path between the two nodes. The edge between 𝑣𝑖 and 𝑣𝑗 is represented as (𝑣𝑖 , 𝑣𝑗), 

and the weight of the edge is represented as 𝑣𝑖𝑗. This weight reflects the “cost” of the 

transportation path from 𝑣𝑖 to 𝑣𝑗. When constructing the edges in the network, the 

following aspects can be considered: 

(1) Transportation distance includes transportation distance, transportation mode, 

and the actual conditions of the transportation section. 
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(2) Time cost: the travel time on the path, which is limited by factors such as road 

conditions, traffic flow, and vehicle speed. 

(3) Biomechanical load: The biomechanical load on the transport personnel 

during the transportation process, which mainly refers to the fatigue index of the 

transport personnel in this paper. 

Therefore, the weight of each edge can be expressed as: 

𝑤𝑖𝑗 = 𝛼1 ⋅ 𝑑𝑖𝑗 + 𝛼2 ⋅ 𝑡𝑖𝑗 + 𝛼3 ⋅ 𝑓𝑖𝑗 (9) 

Among them, 𝑑𝑖𝑗 is the transportation distance from node 𝑣𝑖 to 𝑣𝑗, in km, 𝑡𝑖𝑗 

is the transportation time from point 𝑣𝑖 to 𝑣𝑗 (unit: h), and 𝑓𝑖𝑗 is the fatigue index 

of the transport personnel from node 𝑣𝑖  to 𝑣𝑗 . 𝛼1 , 𝛼2 , 𝛼3  are the weight 

coefficients corresponding to the three aspects, indicating the importance of the three 

in the total weight. 

The transport distance 𝑑𝑖𝑗 is determined based on the latitude and longitude of 

geographical locations, with the Haversine formula [31,32] applied to compute the 

spherical distance between two network nodes: 

))cos(coscossinarccos(sin jijijiij Rd  −+=  (10) 

𝜓𝑖, 𝜆𝑖 and 𝜓𝑗, 𝜆𝑗 are the longitude and latitude of nodes 𝑣𝑖 and 𝑣𝑗 respectively, 

and R is the radius of the earth, which is 6371 km. 

The derivation process of the Haversine formula is as follows: 

(1) Convert longitude and latitude into spherical coordinate system. 

(2) The central angle between two points on the sphere reflects the angle between 

the center of the sphere and the line connecting the two points. This angle is calculated 

by spherical trigonometry (click formula). 

(3) Introduce the Haversine function to avoid the problem of numerical instability. 

Finally, the great circle distance is obtained through the relationship between the 

spherical angle and the spherical radius, which is the required spherical distance. 

The transportation time 𝑡𝑖𝑗 is affected by factors such as road conditions, traffic 

flow, and road speed limits. Assuming that the average speed of each edge is 𝑣𝑎𝑣𝑔, 

the transportation time is calculated as follows: 

𝑡𝑖𝑗 =
𝑑𝑖𝑗
𝑣𝑎𝑣𝑔

 (11) 

Once the transport distance, transport time and fatigue index are calculated, the 

edge weight 𝑤𝑖𝑗 can also be determined, and the entire logistics transport network is 

represented by a graph as follows: 

𝐺 = (𝑉, 𝐸) (12) 

V is the set of nodes, E is the set of edges between nodes, and each edge (𝑣𝑖 , 𝑣𝑗) has 

a corresponding weight 𝑤𝑖𝑗. An example diagram of a logistics transportation network 

designed between seven nodes A, B, C, D, E, F, and G is shown in Figure 1. 
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Figure 1. Example diagram of a transportation network. 

2.3. Design of multi-objective DQN 

DQN is based on a reinforcement learning framework, which learns how to 

choose the best actions to maximize the cumulative reward through interaction with 

the environment. In the multi-objective DQN designed in this paper, the timeliness of 

logistics transportation (minimizing transportation time) needs to be considered as a 

reward, and the biomechanical load of the transport personnel (minimizing the fatigue 

index) needs to be considered as an additional goal. The purpose of designing a multi-

objective DQN is to optimize the timeliness of logistics and the biomechanical load of 

the transport personnel at the same time, achieving a balance between the two. 

Compared with the traditional Q-network design that updates the expected 

cumulative reward for a state-action pair based on the Q value, this paper makes some 

adjustments and designs two independent Q-networks to estimate the timeliness of 

transportation and the biomechanical load of transportation personnel respectively. 

These two Q-networks are the Q-timeliness network and the Q-fatigue network. This 

method can more clearly separate the optimization process of different objectives, and 

deal with the two objectives of logistics timeliness and biomechanical load of transport 

personnel separately, avoiding their mutual interference in a single Q-network. 

2.3.1. Q Timeliness Network 

In the Q Timeliness Network, logistics timeliness is optimized specifically, 

focusing on how to choose the path to minimize the transportation time. Since the goal 

is to minimize the transportation time, the reward of the Q Timeliness Network is 

designed to be negatively correlated with the transportation time: 

𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = −𝑇𝑝𝑎𝑡ℎ (13) 

Among them, 𝑇𝑝𝑎𝑡ℎ is the transportation time under the current path, which is 

calculated using the transportation distance and average speed under the current path. 

The Q value update formula of the Q time-sensitive network is: 

𝑄𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑠𝑡 , 𝑎𝑡) + 𝜙(𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 + 𝛾𝑚𝑎𝑥
𝑎𝑡+1

𝑄𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑠𝑡 , 𝑎𝑡))  (14) 

𝑠𝑡 represents the state at the current time, 𝑎𝑡 represents the action at the current time, 
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𝜙 is the learning efficiency, 𝛾 is the discount factor, and 𝑚𝑎𝑥
𝑎𝑡+1

𝑄𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑠𝑡+1, 𝑎𝑡+1) 

represents the maximum Q value corresponding to the action 𝑎𝑡+1 
selected in state 

𝑠𝑡+1. 

2.3.2. Q fatigue network 

In the Q-fatigue network, the fatigue index of the transport personnel is optimized 

specifically, focusing on how to select the path to minimize the biomechanical load of 

the transport personnel. Since the goal is to minimize the fatigue index of the transport 

personnel, the reward of the Q-fatigue network is designed to be negatively correlated 

with the fatigue index: 

𝑅𝑓𝑎𝑡𝑖𝑔𝑢𝑒 = −𝐹𝑑𝑟𝑖𝑣𝑒𝑟 (15) 

Among them, 𝐹𝑑𝑟𝑖𝑣𝑒𝑟 is the calculated fatigue index of the transport personnel, 

which is calculated based on the driving time and the complexity of the road section. 

The Q value update formula of the Q fatigue network is: 

𝑄𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑠𝑡, 𝑎𝑡) = 𝑄𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑠𝑡, 𝑎𝑡) + 𝜂(𝑅𝑓𝑎𝑡𝑖𝑔𝑢𝑒 + 𝜅𝑚𝑎𝑥
𝑎𝑡+1

𝑄𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑠𝑡, 𝑎𝑡)) (16) 

Among them, 𝜂  is the learning efficiency, 𝜅  is the discount factor, and 

𝑚𝑎𝑥
𝑎𝑡+1

𝑄𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑠𝑡+1, 𝑎𝑡+1)  represents the maximum Q value corresponding to the 

action 𝑎𝑡+1 selected in state 𝑠𝑡+1. 

2.3.3. Comprehensive reward and strategy selection 

When calculating the comprehensive reward, an exponential function is used to 

weight the reward, making the multi-objective DQN more flexible in adjusting the 

weight of the target. The calculation formula is: 

𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 𝑓(𝜔1 ⋅ 𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) + 𝑓(𝜔2 ⋅ 𝑅𝑓𝑎𝑡𝑖𝑔𝑢𝑒) (17) 

f(x) is an exponential function, and 𝜔1  and 𝜔2  are the weight ratios of the Q-

timeliness network and the Q-fatigue network. The weight ratio is adaptively adjusted 

during the training process to enhance the influence of timeliness while suppressing 

the influence of the fatigue target. 

When designing the strategy selection, the multi-objective optimization [33] 

strategy with constraints is used to constrain the fatigue index. The specific approach 

is to set an upper limit for the fatigue index to ensure that the fatigue index of the 

transport personnel can not exceed a certain safety threshold when selecting the route. 

The constraint conditions are defined as: 

𝐹𝑑𝑟𝑖𝑣𝑒𝑟 ≤ 𝐹𝑚𝑎𝑥 (18) 

𝐹𝑚𝑎𝑥  is the maximum tolerance value of fatigue. Considering that in some cases, 

timeliness may be a hard condition and fatigue index is a soft constraint, in the 

optimization process, priority is given to ensuring the completion of timeliness goals 

and reducing fatigue index while minimizing fatigue constraints. 

2.3.4. Target network and experience replay 

The target network serves as a delayed updated copy of the current network for 

Q value calculation. Using this target network to compute the Q value for the next 

state helps reduce overestimation and enhances training stability. Assuming two Q 
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networks, the current network and the target network, the process for updating the 

target network is as follows: 

A. Copy the parameters of the current network to the target network every several 

time steps: 

𝑄
∧

(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎)  (19) 

𝑄
∧

(𝑠, 𝑎)  represents the target network and 𝑄(𝑠, 𝑎)  represents the current 

network. 

B. The Q value in the Q network is computed using the target network, which 

updates the target value in the equation: 

𝑄
∧

(𝑠𝑡+1, 𝑎𝑡+1) = 𝑚𝑎𝑥
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) (20) 

Experience replay is a strategy that uses historical experiences of the Q network’s 

interaction with the environment and randomly extracts these experiences for training. 

Whenever the Q network interacts with the environment, the four-tuple 

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1)  of state, action, reward, and next state is stored in the experience 

replay pool, and then a small batch of samples are randomly extracted from the 

experience replay pool for training each time. Through experience replay, the time 

dependence in reinforcement learning can be effectively broken and the efficiency of 

learning can be improved. At the same time, reusing the data in the experience replay 

pool can enable the Q network to learn more fully. 

The steps to implement replay are as follows: 

1) Storing experience: Each time the Q network interacts with the environment, 

a four-tuple experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1) is stored. 

2) Randomly extracting samples: Small batches of data can be randomly 

extracted from the experience replay pool, and the number of samples extracted is 

fixed. 

3) Q value update: The Q value function can be updated with randomly extracted 

samples, with the goal of minimizing the loss function, which is: 

𝛤(𝜃) = 𝐸(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)~𝐷[(𝑟𝑡 + (𝛾/𝜅)𝑚𝑎𝑥
𝑎𝑡+1

𝑄
∧

(𝑠𝑡 , 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡))
2] (21) 

(𝛾/𝜅) is the discount factor of the Q-time network and the Q-fatigue network, 

and D is the experience replay pool. 

The architecture of the multi-objective DQN model is shown in Figure 2. 
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Figure 2. Multi-objective DQN architecture. 

2.4. Preliminary optimization of simulated annealing algorithm 

In this paper, the simulated annealing algorithm is used to perform preliminary 

optimization in the path search space, with the goal of reducing the fatigue burden of 

transport personnel while ensuring transportation efficiency. Specifically, simulated 

annealing regards the process of finding a path as a series of transformations and 

adjustments. Each transformation can lead to a slight change in the path. After a certain 

number of random searches and probability acceptance, a path that meets the 

requirements of multi-objective optimization is finally found. 

The specific preliminary optimization steps are: 

(1) Generate an initial solution: The first step of the simulated annealing 

algorithm involves creating an initial solution to serve as the starting point for the 

search. This paper employs a greedy algorithm to generate the initial warehouse and 

transportation path. 

(2) Generate domain solutions: The core of the simulated annealing algorithm is 

to generate and evaluate domain solutions. Domain solutions are generated by making 

small perturbations to the current path. This paper designs three main perturbation 

operations. The first is the exchange operation, which randomly selects two 

transportation routes from the current path and swaps their order. For example, the 

current path is: 

[𝐴, 𝐵, 𝐶, 𝐷] (22) 

After swapping B and C, the new path can be got: 

[𝐴, 𝐶, 𝐵, 𝐷] (23) 

The second is the insertion operation, which randomly selects a warehouse from 

the current path and inserts it to another position in the path. For example, under the 

path of formula (16), selecting warehouse C and inserting it to the front of the path 

becomes: 

[𝐶, 𝐴, 𝐵, 𝐷] (24) 

The third is the reversal operation, which randomly selects a segment of the path 

and reverses the order of the segment. For example, under the path of formula (16), 
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the reversed path of A, B, and C becomes: 

[𝐶, 𝐵, 𝐴, 𝐷] (25) 

(3) Energy calculation: In simulated annealing, “energy” measures solution 

quality. The energy of a path consists of two parts: logistics timeliness and 

transportation personnel fatigue index. Therefore, it is necessary to calculate the 

energy value of each field solution to evaluate the quality of the solution. The energy 

calculation formula is: 

𝐸 = 𝜑1𝑇𝑝𝑎𝑡ℎ + 𝜑2𝐹𝑑𝑟𝑖𝑣𝑒𝑟 (26) 

Among them, E is the total energy of the current path, 𝑇𝑝𝑎𝑡ℎ  is the total 

transportation time of the current path, 𝐹𝑑𝑟𝑖𝑣𝑒𝑟 is the fatigue index of the transport 

personnel, 𝜑1  and 𝜑2  are the weight coefficients of the transportation time and 

fatigue index, respectively. 

(4) Acceptance criterion: The key to simulated annealing is the acceptance 

criterion, which is used to decide whether to accept a new domain solution. It is worth 

mentioning that the simulated annealing algorithm does not always accept only better 

solutions. It occasionally allows for the acceptance of worse solutions, which can jump 

out of the local optimal solution. The energy change between the domain solution and 

the current solution is calculated as: 

∆𝐸 = 𝐸𝑛𝑒𝑤 − 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (27) 

𝐸𝑛𝑒𝑤  represents the objective function value of the domain solution, and 

𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 represents the objective function value of the current solution. If ∆𝐸 ≤ 0, 

the domain solution is accepted. If ∆𝐸 > 0, the probability of accepting the domain 

solution is determined by the temperature. The calculation formula for the acceptance 

probability is: 

𝑃 = 𝑒𝑥𝑝(
−∆𝐸

𝑇
) (28) 

Among them, P represents the probability of accepting a new solution, ∆𝐸 

represents the energy difference, and T represents the current temperature. The 

temperature T gradually decreases during the execution of the algorithm. 

For example, if the energy of the initial solution is 𝐸(𝑥0) = 36 , 𝑥𝑛𝑒𝑤  the 

energy of the new solution = 4 𝐸(𝑥𝑛𝑒𝑤) = 25 is, which is a decrease of 11, so this 

solution is accepted. However, if 𝑥𝑛𝑒𝑤  the energy of the new solution = 5 is 

𝐸(𝑥𝑛𝑒𝑤) = 38, the energy increases instead, so this new solution is not accepted. 

(5) Temperature decay: The search process of the simulated annealing algorithm 

shrinks the search space by gradually lowering the temperature. The initial 

temperature is high, and poor solutions can be accepted to explore more possibilities. 

As the temperature drops, the algorithm can progressively concentrate on the finer 

details of the optimal solution. After each iteration, the temperature decay is governed 

by the following formula: 

𝑇𝑛+1 = 𝜏 ⋅ 𝑇𝑛 (29) 

𝑇𝑛 is the temperature of the nth iteration, and 𝜏 is the temperature attenuation 

coefficient. 
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(6) Termination criteria: After 200 iterations, check if the output condition is 

satisfied. If it is, the algorithm stops. Otherwise, reduce the temperature and reset the 

iteration count to return to the solution generation phase. 

The operation process of the simulated annealing algorithm is shown in Figure 

3. 

 

Figure 3. Simulated annealing algorithm flow. 

2.5. Dynamic adjustment of transportation routes 

During the logistics transportation process, emergencies (such as sudden traffic 

accidents, weather changes, equipment failures, etc.) may cause significant changes in 

the effectiveness and safety of the transportation route. In order to cope with these 

emergencies, this paper makes adjustments to emergencies based on the multi-

objective DQN model. 

First, in order to cope with emergencies, the state space update includes normal 

transportation information and adds emergencies. The state space of the model is 

adjusted to: 

𝑆𝑡 = [𝑓𝑡, 𝑡𝑡 , 𝑐𝑡 , 𝑟𝑡, 𝑇, 𝛿𝑏𝑟𝑒𝑎𝑘𝑜𝑢𝑡] (30) 

Among them, 𝑓𝑡  represents the fatigue index of the transport personnel, 𝑡𝑡 

represents the current time, 𝑐𝑡 represents the current traffic conditions, 𝑟𝑡 represents 

the road section characteristics, T represents the remaining transport time, and 

𝛿𝑏𝑟𝑒𝑎𝑘𝑜𝑢𝑡 represents the binary variable of the emergency, with a value of 1 if an 

emergency occurs and a value of 0 if there is no emergency. 

Secondly, when an emergency occurs, the reward function needs to be 

dynamically adjusted according to the current environmental information. The reward 
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ratio of the emergency is added to the comprehensive reward formula of formula (11). 

The adjusted formula is: 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 +𝜔3 ⋅ 𝜈𝑏𝑟𝑒𝑎𝑘𝑜𝑢𝑡 (31) 

Among them, 𝜔3 represents the weight coefficient of the emergency situation, 

and 𝜈𝑏𝑟𝑒𝑎𝑘𝑜𝑢𝑡  represents the emergency time. This additional term can avoid 

choosing unsafe or high-fatigue paths when an emergency occurs. 

In emergencies, path selection must consider short-term rewards and also have 

long-term adaptability. Through a continuous learning process, multi-objective DQN 

continuously adjusts the path selection strategy based on feedback after emergencies. 

After each emergency, the model can be updated based on the real-time status and 

rewards to optimize future path selection. Through this feedback mechanism, multi-

objective DQN can adaptively adjust the path strategy to ensure that each emergency 

can be reasonably responded to. 

At the same time, in order to improve the applicability and practicality of the path 

planning model in different physical scenarios, the objective function and constraints 

in the optimization model are flexibly adjusted according to the needs of different 

physical tasks to meet the special requirements of different types of transportation 

tasks. Specifically, in the high-frequency and small-batch transportation scenarios of 

express logistics, the optimization objective function focuses on the shortest time and 

efficient distribution to meet the needs of fast delivery; in cold chain logistics, 

temperature control constraints and penalty mechanisms are added to ensure that the 

temperature during transportation always meets the prescribed standards to avoid 

quality risks. In addition, for special scenarios, such as the transportation of dangerous 

goods and bulk materials, the model can be customized according to safety, road 

carrying capacity and other characteristics. Through these flexible optimization 

adjustments, the model can achieve efficient, safe and practical path planning 

according to the characteristics of different logistics tasks. 

The optimized path is verified using AnyBody Modeling System biomechanical 

simulation software. The verification steps are as follows: 

(1) Modeling the driver’s human body structure: Create a three-dimensional 

human body model of the driver, including bones, muscles, and joints. 

(2) Setting the driver’s scene and action: Set according to the driver’s actual 

situation and the path optimization results designed in this paper to simulate the real 

environment. 

(3) Applying external loads and forces: Define external load sources (such as road 

slope, vibration inside the car, etc.) in the software to simulate the driver’s real driving 

environment. 

(4) Calculate the biological load to verify the results and further verify the results. 

3. Experimental design and result analysis 

3.1. Experimental environment 

The main hardware and software equipment used in this experiment are shown 

in Table 1. 
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Table 1. Main equipment. 

category Equipment Specifications/Versions 

Hardware processor AMD Ryzen 7 5800X 

 Memory 16 GB DDR4 

 storage 512 GB SSD 

 Graphics Processing Unit NVIDIA GeForce GTX 1660 Ti 

 Network Interface 1000 Mbps Ethernet 

Software Environment Development Language Python 3.10 

 Main library TensorFlow 2.6 

 database MySQL 8.0 

 Programming Tools Visual Studio Code 

 Version Control Tools Git 2.32 

Experimental Tools 
Simulated annealing algorithm 

implementation 
SciPy 1.7 

 Deep Learning Frameworks PyTorch 1.9 

 Optimization Tools Scipy.optimize (for numerical optimization) 

3.2. Transportation time analysis 

Transportation time is one of the core indicators for measuring logistics efficiency. 

One of the main goals of optimizing routes and scheduling strategies is to reduce 

transportation time and improve the response speed of the overall logistics system. 

Shorter transportation time improves resource utilization efficiency and better meets 

customer needs and expectations. 

Experimental design: The experiment uses a nationwide logistics transportation 

network dataset to simulate 10 transportation tasks, including the distribution of 

materials from warehouses to destinations. The control group uses traditional 

algorithms (Dijkstra [34–36], A*) for shortest path planning, while the experimental 

group uses the research method in this paper to dynamically adjust the path, taking 

into account factors such as real-time traffic flow and road conditions. In the 

experiment, the same route can be tested multiple times and the transportation time of 

each transportation task can be recorded. Finally, the average transportation time 

(unit/h) of each transportation task can be calculated. The results are shown in Table 

2. 

Table 2 shows the transportation time results of 10 transportation task 

experiments conducted across China, comparing the optimization paths of the 

proposed method with those of the traditional Dijkstra and A algorithms. For the 10 

different transportation tasks, the Dijkstra and A algorithms performed similarly, and 

because they failed to consider dynamic factors such as real-time traffic flow and road 

conditions, the transportation time fluctuated greatly. In contrast, the approach 

presented in this paper leverages dynamic data effectively and adjusts the path 

according to real-time conditions, thereby maintaining a small fluctuation in 

transportation time in different transportation tasks, and the average time for a single 

transportation is 32 h. This result shows that the method proposed in this paper can 

provide a more accurate and efficient path optimization strategy compared to the 

traditional Dijkstra and A* algorithms in the face of complex and changing 
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transportation environments, thereby improving the efficiency and reliability of 

logistics scheduling. 

Table 2. Analysis of transportation time results. 

Transport mission ID This paper studies Dijkstra A* 

1 31.6 41.5 42.2 

2 33.3 55.2 57.8 

3 30.9 48.1 50.5 

4 32.4 37.9 39.2 

5 33.8 61.7 64.3 

6 31.4 49.3 51.1 

7 32.7 52.8 54.2 

8 33.1 40.6 41.7 

9 30.5 49.9 52.4 

10 34.0 46.4 48.5 

3.3. Fatigue of transport personnel 

Fatigue driving is a major cause of traffic accidents. By continuously monitoring 

the fatigue index, potential accident risks can be effectively predicted and avoided, 

thereby reducing the probability of accidents. Proper management of fatigue 

conditions can improve transportation efficiency and reduce delays and accidents 

caused by driver fatigue. In addition, the analysis of fatigue index helps ensure 

compliance with safety regulations, reduce health risks, and improve employees’ 

occupational health and job satisfaction. 

Experimental design: In order to verify the effectiveness of this research method 

in controlling the fatigue index of transportation personnel, the experimental design 

uses this research method and traditional research methods (Dijkstra, A*) for path 

planning for the same transportation task. In the experiment of this research method, 

both timeliness and fatigue index are optimized at the same time. In the traditional 

research method experiment, only timeliness is optimized without considering fatigue 

factors. Finally, the fatigue index of transport personnel in different methods is 

calculated, and a line graph of the change of fatigue index of transport personnel over 

time in the transport task is drawn, as shown in Figure 4. 

Figure 4 is an analysis of the fatigue index of transport personnel using different 

methods for path planning in the transport task in the experiment. In the experiment, 

the fatigue index of the transport personnel at the beginning of the transport task was 

basically the same, and different methods for path planning in the same transport task 

had different transport times, which is shown in the legend. Analyzing the data in 

Figure 4, during the transportation process, as the transportation task continues, the 

fatigue index of the three methods increases. However, for the transportation personnel 

who use the research method in this paper for path planning, the fatigue index remains 

in a low range throughout the transportation process, always below 0.12. The 

transporter who used the research method in this paper to plan the route was the fastest 

among the three transporters to complete the transport task and was also the only one 

whose fatigue index decreased in the later period. This shows that the optimization of 
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biomechanical load in route planning using the research method in this paper can 

ensure the optimization of the transport task while effectively reducing the fatigue of 

the transporter. 

 

Figure 4. Analysis of the fatigue index of transport personnel. 

3.4. Accident analysis 

Analyzing accidents during transportation is the key to verifying the effectiveness 

of the optimization method in this paper. Long driving hours can cause fatigue in 

transport personnel and increase the risk of accidents. By optimizing routes and 

controlling fatigue index, traffic accidents caused by fatigue can be effectively reduced. 

The analysis of accident rates not only helps to evaluate the effectiveness of fatigue 

control and ensure the safety of transport personnel, but also verifies the 

comprehensive effect of multi-objective optimization models in balancing logistics 

efficiency and safety. In addition, accident analysis provides feedback for further 

improving optimization strategies, enhancing transportation safety, and promoting the 

logistics industry to pay attention to the health and safety management of 

transportation personnel. 

Experimental design: In order to analyze the occurrence of accidents before and 

after the application of the research method in this paper, an experiment was conducted 

in a certain area. First, the accident data of the area one month ago was collected, and 

then the accident data of the month was collected one month after the method in this 

paper was applied. The two sets of data were compared and analyzed, and a bar chart 

was drawn as shown in Figure 5. 

Figure 5 is an image showing the accident situation before and after the 

application of the research method in this paper. It mainly conducts statistical analysis 

on five types of accidents, namely, accidents caused by fatigue driving, traffic 

violations, accidents caused by bad weather, accidents caused by overloading, and 

accidents caused by problems with road facilities. The number of accidents involving 

fatigue driving dropped from 120 to 72, the number of accidents involving traffic 

violations dropped from 76 to 62, the number of accidents caused by bad weather 

dropped from 63 to 54, the number of accidents caused by overloading dropped from 

47 to 41, and the number of accidents caused by road facility problems dropped from 

54 to 39. Overall, the number of accidents has decreased after applying the research 
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method in this paper, indicating that the combination of path optimization based on 

deep reinforcement learning and biomechanical load management in this paper can 

effectively reduce traffic accidents caused by factors such as driver fatigue, speeding, 

and bad weather. At the same time, through the refined management of the driver’s 

biomechanical load, it is shown that the optimization method studied in this paper is 

not aimed at a single factor, but improves the safety of the transportation process from 

multiple aspects. In particular, the accident rate caused by fatigue driving has 

decreased by 40%, reflecting the significant advantages of fatigue control in the 

transportation process studied in this paper. 

 

Figure 5. Accident analysis before and after application. 

4. Conclusions 

This paper studies the problem of biomechanical load of transport personnel in 

the current logistics system, which is neglected. A DRL-based method is used to fully 

consider the biomechanical load of transport personnel in the transportation process, 

and a biomechanical load evaluation system is established to focus on analyzing the 

fatigue indicators of transport personnel. This study introduces a graph theory model 

to model nationwide logistics transportation, and designs a multi-objective DQN 

network model to optimize the timeliness of logistics transportation and the 

biomechanical load of transportation personnel. When optimizing the transport path, 

the simulated annealing algorithm can be used to preliminarily optimize the path 

search space, realize dynamic adjustment of the path during the transport process, and 

use biosimulation software to verify the results. Experiments have proved that: 

(1) The research method in this paper can provide accurate and efficient 

transportation path solutions and realize efficient and reliable logistics scheduling. 

(2) When optimizing the transportation path, the research method in this paper 

can not only ensure the timeliness of logistics transportation, but also effectively 

reduce the fatigue of transportation personnel. 

(3) The application of the research method in this paper can effectively reduce 

the occurrence of accidents in the logistics transportation process, especially accidents 

caused by fatigue. 

Although this study provides an effective solution for path optimization 

combined with biomechanical load in logistics dispatch, there are still some 
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shortcomings: 

1) In the study, the fatigue of transport personnel was quantified through factors 

such as transportation time and road section characteristics. This quantification 

method ignores the dynamic changes of the actual fatigue state of transport personnel 

to a certain extent. In fact, there may be more factors affecting the fatigue state of 

transport personnel. These factors may include individual differences of drivers, such 

as physical condition and driving skills, and psychological factors, such as the driver’s 

work pressure and emotional state, etc. These factors may not be quantifiable. 

2) Although this paper has conducted some experiments on the application of the 

research method, different regions and different logistics and transportation systems 

may face different challenges and constraints, such as differences in traffic regulations 

in different regions and uneven distribution of logistics demand, and this study has not 

yet analyzed more situations. 

In view of the above-mentioned shortcomings, future research and optimization 

can be carried out from the following aspects: 

1) Future research directions should focus on individual differences of drivers 

and more refined psychological factors, and analyze multi-dimensional data such as 

biomechanical characteristics, driver’s health status, driving level, work pressure and 

driver’s emotions. Real-time monitoring and quantification of driver fatigue can be 

carried out through personalized dynamic models, thereby improving the accuracy of 

driver fatigue assessment. 

2) Future research needs to focus on analyzing the differences in different traffic 

regulations, road conditions and logistics needs based on multi-regional experiments, 

and building a more adaptable path optimization model to ensure that the optimization 

strategy in different environments can effectively reduce driver fatigue and improve 

transportation efficiency. 
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