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Abstract: This study addresses the optimization and bioapplications of a deep learning 

algorithm for predicting the mechanical properties of metal matrix composites (MMCs), a 

critical task for efficient material design. And it is also beneficial for deploring more 

bioapplications of MMCs. Leveraging a comprehensive experimental dataset from multiple 

research institutions, we employ a Convolutional Neural Network (CNN) for feature 

extraction and the Recurrent Neural Network (RNN) for sequence analysis. The dataset 

encompasses mechanical properties such as tensile strength, elastic modulus, and yield 

strength for diverse MMCs with varying compositions and processing conditions. The 

research methodology involves rigorous data preprocessing, feature selection, model 

development, and performance evaluation using metrics like R2 score, Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), precision, and recall. Addressing the challenge 

of model robustness and generalizability, we utilize k-fold cross-validation for training and 

validation. Optimal hyperparameter settings are identified to enhance predictive accuracy. 

Our results reveal high predictive performance, with R2 scores ranging from 0.89 to 0.92 for 

different mechanical properties, thereby demonstrating the model’s efficacy in facilitating 

material design and optimization processes for MMCs. 

Keywords: deep learning; bioapplication; metal matrix composites; mechanical properties 

prediction; convolutional neural network; recurrent neural network; k-fold cross-validation 

1. Introduction 

The rapid advancements in materials science and engineering have necessitated 

the development of novel composite materials with superior mechanical properties. 

Metal Matrix Composites (MMCs) have emerged as a promising class of materials, 

finding applications in aerospace, automotive, biomedical, and defense industries 

due to their enhanced strength, stiffness, and wear resistance. Many MMCs are used 

for medical devices (pacemakers, blood tubes, artificial hearts, etc.) and implants 

(bone plates, sutures, joint replacements, etc.). They are widely applied to restore or 

replace the function of degenerated or traumatized tissues or organs. For example, 

Mg-based MMCs have good biocompatibility and are usually developed for 

orthopedic applications. However, predicting their mechanical properties remains a 

complex and challenging task, often requiring extensive experimental testing. This 

study aims to leverage deep learning algorithms to predict the mechanical properties 
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of MMCs, thereby streamlining the material design process and reducing associated 

time and costs [1,2]. 

The mechanical properties of MMCs, such as biodegradable, biocompatible, 

tensile strength, yield strength, and elastic modulus, are influenced by various factors 

including the type of matrix, reinforcement material, volume fraction of 

reinforcement, and processing techniques. For example, magnesium-based MMC has 

good biocompatibility and is commonly used in orthopedic applications such as bone 

plates and joint replacements. From previous experience, the mechanical properties 

of traditional metallic biomaterials usually cannot match native tissue. Under 

physiological loading, they usually cause stress-shielding effects. In this condition, it 

is not beneficial for the hurt repair. More importantly, traditional implants won’t be 

degradable in the physiological environment. It needs to be removed with additional 

surgery after tissue healing. However, regarding biodegradable materials, they 

usually can be metabolized by the human body; corroding gradually in vivo and the 

corrosion products also won’t lead to a negative response. Thus, the method of 

designing and synthesizing new materials is expected. Traditional empirical and 

analytical methods for predicting these properties are often inaccurate and resource-

intensive. With the advent of machine learning and deep learning technologies, there 

is a growing interest in utilizing these advanced computational methods to enhance 

the accuracy and efficiency of property prediction. Traditional empirical and 

analytical methods are often inaccurate and resource-intensive, requiring extensive 

experimental testing that is time- and cost-intensive [3–10]. 

Accurate prediction of MMCs’ mechanical and biomechanical properties is 

crucial for optimizing material design, application, and ensuring the reliability and 

performance of engineered components. It is helpful in designing and synthesizing 

new materials. And the new materials can be applied in biomedical, industrial, and 

engineering, etc. Deep learning algorithms, capable of handling complex and high-

dimensional data, offer a promising avenue for achieving this goal. By developing a 

robust deep learning model, we can significantly reduce reliance on extensive 

experimental testing, thereby saving time and resources. Additionally, such a model 

can provide valuable insights into the relationships between various input parameters 

and resultant mechanical properties, aiding in the development of more efficient and 

cost-effective material design strategies [11–16]. 

The primary objective of this study is to develop and optimize a deep learning 

model capable of accurately predicting the mechanical properties of MMCs based on 

their compositional and processing parameters. Specifically, the research focuses on: 

1) Data Preprocessing and Feature Selection: Identifying and preprocessing 

relevant features from a comprehensive experimental dataset to ensure the 

quality and relevance of input data. 

2) Model Development and Optimization: Developing a hybrid deep learning 

architecture that combines Convolutional Neural Networks (CNNs) for feature 

extraction and the Recurrent Neural Networks (RNNs) for sequence analysis, 

followed by hyperparameter tuning to optimize the model. 

3) Performance Evaluation: Assessing the predictive performance of the developed 

model using metrics such as R2 score, Root Mean Squared Error (RMSE), and 

precision-recall metrics. 
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Key research questions addressed include: 

⚫ How effectively can a deep learning model predict the mechanical properties of 

MMCs compared to traditional methods? 

⚫ Which features and hyperparameters significantly influence the predictive 

accuracy of the model? 

⚫ How can the model be optimized to achieve the highest possible prediction 

accuracy while maintaining generalizability? 

By addressing these questions, the study aims to provide a robust framework for 

predicting the mechanical properties of MMCs, contributing to advancements in 

materials science and engineering. The insights gained can pave the way for more 

efficient material design processes and enhanced performance of engineered 

components. 

2. Related works 

The field of deep learning has seen significant advancements in various 

domains, including medical imaging, physics, and materials science. In medical 

imaging, by analyzing the mass of retinal fundus photographs, Gulshan et al. [17] 

demonstrated the application of deep learning for the detection of diabetic 

retinopathy and diabetic macular edema in retinal fundus photographs, achieving 

high sensitivity and specificity. And it maximizes the clinical utility of automatic 

grading. This work highlights the potential of deep learning in automating complex 

diagnostic tasks. However, it also underscores the need for further validation in 

clinical settings to ensure the algorithm’s effectiveness in improving patient care 

outcomes [18–20]. 

In the realm of physics, Sirignano and Spiliopoulos [21] introduced a deep 

learning algorithm for solving partial differential equations, the “Deep Galerkin 

Method (DGM)”, which could have significant implications for modeling complex 

physical phenomena. They proved a theorem about the approximation power of 

neural networks for the class of quasilinear parabolic PDEs. Despite its novelty, this 

approach requires extensive testing and validation to ensure its accuracy and 

reliability in various physical scenarios [22–25]. 

The application of deep learning in materials science, particularly in predicting 

the mechanical properties of materials, has also gained traction. Kang et al. [23] 

utilized a deep learning algorithm to achieve high accuracy in real-time multi-gas 

identification using a batch-uniform gas sensor array. This work demonstrates the 

potential of deep learning in enhancing the selectivity and accuracy of sensor 

systems, which is crucial for environmental monitoring, biomedical, and other 

applications. 

In the context of metal matrix composites (MMCs), several studies have 

focused on understanding and optimizing their mechanical properties. Singh et al. 

[26] reviewed the current scenario and future prospects of aluminum MMCs, 

highlighting the need for further research to enhance their characteristics. With 

reference to the various applications, the importance and influences of different 

reinforcing material on the final composite were also discussed. Graphene has 

excellent lubricant and mechanical properties, which make it an ideal material for the 
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high-performance composite. And Graphene metal matrix composite is widely used 

in biomedical, electronics, aerospace, and automotive fields. Chen et al. [27] 

discussed the fabrication, properties, and challenges of graphene-reinforced MMCs, 

emphasizing the potential of this reinforcement material in improving mechanical 

and biomechanical properties. They also prospected directions and applications of 

graphene metal matrix composites. 

Despite these advancements, there remains a gap in the literature regarding the 

application of deep learning algorithms for predicting the mechanical properties of 

MMCs. While studies have explored the use of deep learning in materials science, 

few have specifically focused on MMCs. Moreover, the existing research often lacks 

a comprehensive analysis of the influence of various factors such as reinforcement 

type, volume fraction, and processing techniques on the mechanical properties of 

MMCs. 

This study aims to bridge this gap by employing a deep learning algorithm to 

predict the mechanical properties of MMCs. By leveraging a large dataset 

encompassing diverse MMC compositions and processing conditions, the research 

will develop a model that can accurately predict properties such as tensile strength, 

elastic modulus, and yield strength. This model will not only contribute to the 

existing knowledge system but also provide a valuable tool for materials scientists 

and engineers in designing and optimizing MMCs for various bioapplications. 

Furthermore, the study will explore the limitations of current deep learning 

algorithms in predicting mechanical properties and propose potential solutions to 

overcome these challenges. By doing so, the research will pave the way for future 

studies in this field and contribute to the development of more advanced and 

accurate prediction models. 

3. Method 

3.1. Data source 

The data employed in this study were sourced from an extensive experimental 

dataset compiled by various research institutions specializing in metal matrix 

composites (MMCs). This dataset encompasses mechanical properties such as tensile 

strength, elastic modulus, and yield strength for a diverse range of MMCs with 

varying compositions and processing conditions. 

3.2. Dataset description 

The dataset includes experimental measurements of mechanical properties for 

different MMCs under various conditions. Each entry in the dataset features 

attributes such as matrix type, reinforcement material, volume fraction of 

reinforcement, processing technique, and the resultant mechanical properties. 

3.3. Research methodology 

The research methodology comprises the following steps: 

1) Data Preprocessing: 
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⚫ Normalization: The dataset is normalized to ensure uniformity in input 

features. 

⚫ Feature Selection: Influential features affecting mechanical properties are 

identified and selected. 

2) Model Development: 

⚫ Deep Learning Architecture: A Convolutional Neural Network (CNN) is 

employed for feature extraction, a Recurrent Neural Network (RNN) is 

used for sequence analysis. 

3.4. Mathematical formulation 

1) Data Normalization: Data normalization uses Z-score normalization method, 

each feature is scaled to have mean 0 and standard deviation 1. 

𝑥′ =
𝑥 − 𝜇

𝜎
 

where (x) is the original data point, (𝜇) is the mean, and (𝜎) is the standard deviation. 

2) Feature Extraction: 

⚫ CNN Layer: 

y = 𝑓(𝑊 ⋅ 𝑥 + 𝑏) 

where (y) is the output, (W) is the weight matrix, (x) is the input vector, and (f) is the 

activation function. 

3) Loss Function: 

⚫ Mean Squared Error (MSE): 

MSE =
1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 − �̂�𝑖)
2 

where (y_i) is the actual value and (�̂�_i) is the predicted value. 

4) Model Training:  

⚫ Backpropagation Algorithm: 

Δw = −𝜂
𝜕𝐸

𝜕𝑤
 

where the activation function usually chooses ReLU; where (w) is the weight update, 

(𝜂) is the learning rate, and (E) is the error function. 

5) Hyperparameter Tuning: 

⚫ Learning Rate: 

η = 𝜂0 ⋅ 𝑒
−
𝑡
𝑇 

where (𝜂0) is the initial learning rate, and (T) is the decay period. 

6) Performance Evaluation: 

⚫ Accuracy Metrics: 

𝑅2 = 1 −
∑ (𝑛
𝑖=1 𝑦𝑖 − �̂�𝑖)

2

∑ (𝑛
𝑖=1 𝑦𝑖 − 𝑦‾)2

 

⚫ Confusion Matrix: 
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Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where (TP) is true positive, (FP) is false positive, and (FN) is false negative. 

3.5. Detailed methodology 

3.5.1. Data preprocessing 

Normalization: 

x′ =
𝑥 − 𝜇

𝜎
 

This step ensures that all features contribute equally to the model’s learning 

process. 

3.5.2. Model architecture 

CNN Layer: 

h = 𝜎(𝑊 ⋅ 𝑥 + 𝑏) 

where (𝜎) is the activation function, typically ReLU. 

RNN Layer: 

ℎ𝑡 = 𝜎(𝑊ℎ𝑥 ⋅ 𝑥𝑡 +𝑊ℎℎ ⋅ ℎ𝑡−1 + 𝑏ℎ) 

where (h_t) is the hidden state at time (t). 

Output Layer: 

�̂� = 𝜎(𝑊ℎ𝑦 ⋅ ℎ𝑡 + 𝑏𝑦) 

where (𝑦) is the predicted value. 

3.5.3. Training process 

Gradient Descent: 

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂𝛻𝐸(𝑤) 

where (𝜂) is the learning rate, and (E(w)) is the gradient of the error function. 

Adam Optimizer: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 

𝑤𝑡+1 = 𝑤𝑡 −
𝜂�̂�𝑡

√𝑣𝑡 + 𝜖
 

where (m) and (v) are the first and second moment estimates, respectively. 



Molecular & Cellular Biomechanics 2025, 22(2), 1324.  

7 

3.5.4. Model evaluation 

Root Mean Squared Error (RMSE): 

RMSE = √
1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 − �̂�𝑖)
2 

This metric provides a measure of the average magnitude of the errors. 

Validation: The model was validated using a k-fold cross-validation technique 

to ensure robustness and generalizability. 

By adhering to this structured approach, the study aims to enhance the 

predictive accuracy of mechanical properties of MMCs, thereby facilitating more 

efficient material design and optimization processes. 

4. Results 

4.1. Predictive performance metrics 

The deep learning model was evaluated based on several performance metrics 

to assess its accuracy in predicting the mechanical properties of metal matrix 

composites (MMCs). The results are presented in Tables 1–3. 

Table 1. Performance metrics for tensile strength prediction. 

Metric Value 

R2 Score 0.92 

RMSE (MPa) 15.3 

MAE (MPa) 12.4 

Precision 0.88 

Recall 0.85 

Table 2. Performance metrics for yield strength prediction. 

Metric Value 

R2 Score 0.89 

RMSE (MPa) 18.2 

MAE (MPa) 14.7 

Precision 0.86 

Recall 0.83 

Table 3. Performance metrics for elastic modulus prediction. 

Metric Value 

R2 Score 0.91 

RMSE (GPa) 3.5 

MAE (GPa) 2.8 

Precision 0.90 

Recall 0.87 
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4.2. Model training and validation 

The model was trained and validated using a k-fold cross-validation technique 

to ensure its robustness and generalizability. Table 4 summarizes the training and 

validation performance across different folds. 

Table 4. Training and validation performance across k-folds. 

Fold Training R2 Validation R2 Training RMSE (MPa) Validation RMSE (MPa) 

1 0.91 0.90 14.5 16.1 

2 0.93 0.91 13.8 15.4 

3 0.90 0.89 15.0 17.2 

4 0.92 0.90 14.2 16.0 

5 0.91 0.89 14.7 17.0 

4.3. Hyperparameter tuning results 

The model’s hyperparameters were fine-tuned to optimize performance. Table 

5 presents the optimal hyperparameter settings identified during the tuning process. 

Table 5. Optimal hyperparameter settings. 

Hyperparameter Optimal Value 

Learning Rate 0.001 

Batch Size 32 

Number of Epochs 100 

CNN Layers 3 

RNN Layers 2 

Dropout Rate 0.2 

5. Discussion 

5.1. Model performance and insights 

The application of the deep learning algorithm to predict the mechanical 

properties of metal matrix composites (MMCs) yields several significant insights. 

The high R2 scores, ranging from 0.89 to 0.92, across various mechanical properties 

such as tensile strength, elastic modulus, and yield strength, indicate a strong 

correlation between predicted and actual values. This underscores the model’s 

efficacy in capturing underlying data patterns, thereby providing reliable predictions. 

And it will be beneficial for the future bioapplications. 

5.2. Hybrid architecture efficacy 

The hybrid architecture, integrating Convolutional Neural Networks (CNN), 

and Recurrent Neural Networks (RNN), demonstrates a novel and effective approach. 

CNN layers adeptly extract relevant features from input data, while RNN layers 

manage sequential dependencies, enhancing predictive accuracy. This innovative 

combination addresses the complexity inherent in compositional and processing 

parameters, and their impact on mechanical properties. 
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5.3. Validation and robustness 

The employment of k-fold cross-validation reinforces the model’s robustness, as 

evidenced by consistent performance across different folds (Table 4). This technique 

ensures model generalizability and mitigates overfitting risks, thereby enhancing the 

reliability of predictions for real-world applications. 

5.4. Hyperparameter optimization 

The identified optimal hyperparameters (Table 5) highlight the critical role of 

fine-tuning in achieving superior model performance. Parameters such as a learning 

rate of 0.001, batch size of 32, and specific CNN and RNN configurations are pivotal 

in balancing convergence speed and accuracy. 

5.5. Limitations and considerations 

Several limitations warrant consideration. The model’s performance heavily 

relies on the quality and comprehensiveness of the dataset. While extensive, the 

current dataset may not encompass all possible variations in MMC compositions and 

processing conditions. Additionally, the model’s dependence on historical data may 

limit its ability to capture emerging trends or novel materials. 

5.6. Computational constraints 

Another significant limitation is the computational complexity associated with 

deep learning models. The training process demands substantial computational 

resources, potentially posing barriers for smaller research institutions or companies. 

5.7. Implications and future directions 

Despite these limitations, this study marks a significant advancement in 

predicting the mechanical properties of MMCs using deep learning. The innovative 

integration of CNN and RNN, coupled with rigorous validation techniques, 

establishes a robust framework for future research and practical applications in 

material science, biomedical, and engineering. 

5.8. Academic and industrial implications 

The findings hold substantial implications for both academic research and 

industrial applications. For researchers, this methodology offers a novel approach to 

studying material properties, potentially enhancing material design processes. In 

industry, accurate predictions of mechanical properties can streamline production, 

reduce costs, and improve product quality. And it will also be helpful for developing 

new applications in biomedical, electronics, and automotive fields, etc. 

5.9. Conclusion and future research 

In summary, while the model exhibits high predictive accuracy and robustness, 

further research is essential to address its limitations and explore its applicability to a 

broader range of materials and conditions. The insights garnered from this study lay 

a solid foundation for future advancements in the field of metal matrix composites 

and materials science. 
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6. Conclusion 

6.1. Summary 

This study concentrated on the optimization and application of a deep learning 

algorithm for predicting the mechanical properties of metal matrix composites 

(MMCs). The research employed a comprehensive experimental dataset sourced 

from multiple institutions, encompassing a variety of MMC compositions and 

processing conditions. This dataset included essential mechanical properties such as 

tensile strength, elastic modulus, and yield strength. 

6.2. Key findings 

1) Model Performance: The developed deep learning model, which combined a 

Convolutional Neural Network (CNN) for feature extraction and a Recurrent 

Neural Network (RNN) for sequence analysis, exhibited high predictive 

accuracy. The R2 scores for tensile strength, yield strength, and elastic modulus 

predictions were 0.92, 0.89, and 0.91, respectively. The Root Mean Squared 

Error (RMSE) values were 15.3 MPa for tensile strength, 18.2 MPa for yield 

strength, and 3.5 GPa for elastic modulus. 

2) Robustness and Generalizability: The model’s robustness was validated through 

k-fold cross-validation, ensuring consistent performance across various data 

subsets. The training and validation R2 scores remained high across all folds, 

indicating the model’s generalizability. 

3) Hyperparameter Optimization: Fine-tuning of hyperparameters, including 

learning rate, number of epochs, batch size, and network architecture, 

significantly improved the model’s performance. The optimal settings were 

identified as a learning rate of 0.001, batch size of 32, 100 epochs, 3 CNN 

layers, 2 RNN layers, and a dropout rate of 0.2. 

6.3. Contributions to the field 

This research makes substantial contributions to the field of materials science, 

biomedical, and engineering by: 

1) Advancing Predictive Models: The study highlights the potential of deep 

learning in accurately predicting the mechanical properties of MMCs, which 

can revolutionize material design and optimization. 

2) Data-Driven Approach: By utilizing a large and diverse dataset, the research 

underscores the importance of data-driven methodologies in enhancing the 

understanding and development of advanced materials. 

3) Methodological Innovation: The integration of CNN and RNN in a single 

model for feature extraction and sequence analysis presents a novel approach 

that can be applied to other materials science applications and bioapplications. 

6.4. Practical applications and recommendations 

The findings of this study have several practical implications: 
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1) Material Design and Development: The predictive model can expedite the 

design and development of new MMCs with desired mechanical properties, 

thereby reducing the need for extensive experimental testing. 

2) Manufacturing Optimization: Manufacturers can use the model to optimize 

processing conditions for achieving specific mechanical properties, enhancing 

efficiency and reducing costs. 

3) Educational and Research Tools: The methodology and findings can serve as 

valuable educational resources and research tools for students and researchers in 

materials science, biomedical, and engineering. 

6.5. Future directions 

To further improve the model’s accuracy and applicability, future research 

should consider: 

1) Incorporating Additional Data: Expanding the dataset to include a broader range 

of MMCs and processing conditions. 

2) Advanced Model Architectures: Exploring the use of more sophisticated deep 

learning architectures, such as Transformers, to potentially enhance predictive 

performance. 

3) Real-Time Applications: Developing real-time prediction systems that can be 

integrated into manufacturing processes for on-the-fly adjustments. 

In conclusion, this study effectively demonstrates the capability of deep 

learning in predicting the mechanical properties of MMCs, offering significant 

advancements and practical applications in materials science and biomedical aspects. 

The optimized model and methodologies provide a robust framework for future 

research, industrial, and biomedical applications. 
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